Remove unnecessary config.h includes
[alexxy/gromacs.git] / src / gromacs / simd / tests / simd4_floatingpoint.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 #include "gmxpre.h"
36
37 #include <math.h>
38 #include "gromacs/math/utilities.h"
39
40 #include "simd4.h"
41
42 namespace gmx
43 {
44 namespace test
45 {
46 namespace
47 {
48
49 /*! \cond internal */
50 /*! \addtogroup module_simd */
51 /*! \{ */
52
53 #ifdef GMX_SIMD4_HAVE_REAL
54
55 /*! \brief Test fixture for SIMD4 floating-point operations (identical to the SIMD4 \ref Simd4Test) */
56 typedef Simd4Test Simd4FloatingpointTest;
57
58 TEST_F(Simd4FloatingpointTest, gmxSimd4SetZeroR)
59 {
60     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(0.0), gmx_simd4_setzero_r());
61 }
62
63 TEST_F(Simd4FloatingpointTest, gmxSimd4Set1R)
64 {
65     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(1.0), gmx_simd4_set1_r(1.0));
66 }
67
68 TEST_F(Simd4FloatingpointTest, gmxSimd4Load1R)
69 {
70     real r = 2.0;
71     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(r), gmx_simd4_load1_r(&r));
72 }
73
74 TEST_F(Simd4FloatingpointTest, gmxSimd4AddR)
75 {
76     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_5_7_9, gmx_simd4_add_r(rSimd4_1_2_3, rSimd4_4_5_6)); // 1+4=5, 2+5=7, 3+6=9
77 }
78
79 TEST_F(Simd4FloatingpointTest, gmxSimd4SubR)
80 {
81     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_4_5_6, gmx_simd4_sub_r(rSimd4_5_7_9, rSimd4_1_2_3)); // 5-1=4, 7-2=5, 9-3=6
82 }
83
84 TEST_F(Simd4FloatingpointTest, gmxSimd4MulR)
85 {
86     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(4, 10, 18), gmx_simd4_mul_r(rSimd4_1_2_3, rSimd4_4_5_6));
87 }
88
89 TEST_F(Simd4FloatingpointTest, gmxSimd4FmaddR)
90 {
91     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(11, 18, 27), gmx_simd4_fmadd_r(rSimd4_1_2_3, rSimd4_4_5_6, rSimd4_7_8_9)); // 1*4+7, etc.
92 }
93
94 TEST_F(Simd4FloatingpointTest, gmxSimd4FmsubR)
95 {
96     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(-3, 2, 9), gmx_simd4_fmsub_r(rSimd4_1_2_3, rSimd4_4_5_6, rSimd4_7_8_9)); // 1*4-7, etc.
97 }
98
99 TEST_F(Simd4FloatingpointTest, gmxSimd4FnmaddR)
100 {
101     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(3, -2, -9), gmx_simd4_fnmadd_r(rSimd4_1_2_3, rSimd4_4_5_6, rSimd4_7_8_9)); // -1*4+7, etc.
102 }
103
104 TEST_F(Simd4FloatingpointTest, gmxSimd4FnmsubR)
105 {
106     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(-11, -18, -27), gmx_simd4_fnmsub_r(rSimd4_1_2_3, rSimd4_4_5_6, rSimd4_7_8_9)); // -1*4-7, etc.
107 }
108
109 TEST_F(Simd4FloatingpointTest, gmxSimd4FabsR)
110 {
111     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_1_2_3, gmx_simd4_fabs_r(rSimd4_1_2_3));    // fabs(x)=x
112     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_1_2_3, gmx_simd4_fabs_r(rSimd4_m1_m2_m3)); // fabs(-x)=x
113 }
114
115 TEST_F(Simd4FloatingpointTest, gmxSimd4FnegR)
116 {
117     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_m1_m2_m3, gmx_simd4_fneg_r(rSimd4_1_2_3));   // fneg(x)=-x
118     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_1_2_3,   gmx_simd4_fneg_r(rSimd4_m1_m2_m3)); // fneg(-x)=x
119 }
120
121 #ifdef GMX_SIMD4_HAVE_LOGICAL
122 /* 1.3333282470703125 has mantissa 0101010101010101 (followed by zeros)
123  * 1.79998779296875   has mantissa 1100110011001100 (followed by zeros)
124  * 1.26666259765625   has mantissa 0100010001000100 (followed by zeros)
125  * 1.8666534423828125 has mantissa 1101110111011101 (followed by zeros)
126  *
127  * Since all of them have the same exponent (2^0), the exponent will
128  * not change with AND or OR operations.
129  */
130 TEST_F(Simd4FloatingpointTest, gmxSimd4AndR)
131 {
132     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(1.26666259765625),
133                              gmx_simd4_and_r(gmx_simd4_set1_r(1.3333282470703125),
134                                              gmx_simd4_set1_r(1.79998779296875)));
135 }
136
137 TEST_F(Simd4FloatingpointTest, gmxSimd4OrR)
138 {
139     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(1.8666534423828125),
140                              gmx_simd4_or_r(gmx_simd4_set1_r(1.3333282470703125),
141                                             gmx_simd4_set1_r(1.79998779296875)));
142 }
143
144 TEST_F(Simd4FloatingpointTest, gmxSimd4XorR)
145 {
146     /* Test xor by taking xor with a number and its negative. This should result
147      * in only the sign bit being set. We then use this bit change the sign of
148      * different numbers.
149      */
150     gmx_simd4_real_t signbit = gmx_simd4_xor_r(gmx_simd4_set1_r(1.5), gmx_simd4_set1_r(-1.5));
151     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(-1, 2, -3), gmx_simd4_xor_r(signbit, setSimd4RealFrom3R(1, -2, 3)));
152 }
153
154 TEST_F(Simd4FloatingpointTest, gmxSimd4AndnotR)
155 {
156     /* Use xor (which we already tested, so fix that first if both tests fail)
157      * to extract the sign bit, and then use andnot to take absolute values.
158      */
159     gmx_simd4_real_t signbit = gmx_simd4_xor_r(gmx_simd4_set1_r(1.5), gmx_simd4_set1_r(-1.5));
160     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(1, 2, 3), gmx_simd4_andnot_r(signbit, setSimd4RealFrom3R(-1, 2, -3)));
161 }
162
163 #endif
164
165 TEST_F(Simd4FloatingpointTest, gmxSimd4MaxR)
166 {
167     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(3, 2, 4), gmx_simd4_max_r(rSimd4_1_2_3, rSimd4_3_1_4));
168     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(3, 2, 4), gmx_simd4_max_r(rSimd4_3_1_4, rSimd4_1_2_3));
169     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(-1, -1, -3), gmx_simd4_max_r(rSimd4_m1_m2_m3, rSimd4_m3_m1_m4));
170     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(-1, -1, -3), gmx_simd4_max_r(rSimd4_m3_m1_m4, rSimd4_m1_m2_m3));
171 }
172
173 TEST_F(Simd4FloatingpointTest, gmxSimd4MinR)
174 {
175     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(1, 1, 3), gmx_simd4_min_r(rSimd4_1_2_3, rSimd4_3_1_4));
176     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(1, 1, 3), gmx_simd4_min_r(rSimd4_3_1_4, rSimd4_1_2_3));
177     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(-3, -2, -4), gmx_simd4_min_r(rSimd4_m1_m2_m3, rSimd4_m3_m1_m4));
178     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(-3, -2, -4), gmx_simd4_min_r(rSimd4_m3_m1_m4, rSimd4_m1_m2_m3));
179 }
180
181 TEST_F(Simd4FloatingpointTest, gmxSimd4RoundR)
182 {
183     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(2), gmx_simd4_round_r(gmx_simd4_set1_r(2.25)));
184     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(4), gmx_simd4_round_r(gmx_simd4_set1_r(3.75)));
185     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(-2), gmx_simd4_round_r(gmx_simd4_set1_r(-2.25)));
186     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(-4), gmx_simd4_round_r(gmx_simd4_set1_r(-3.75)));
187 }
188
189 TEST_F(Simd4FloatingpointTest, gmxSimd4TruncR)
190 {
191     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(2), gmx_simd4_trunc_r(rSimd4_2p25));
192     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(3), gmx_simd4_trunc_r(rSimd4_3p75));
193     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(-2), gmx_simd4_trunc_r(rSimd4_m2p25));
194     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(-3), gmx_simd4_trunc_r(rSimd4_m3p75));
195 }
196
197 /* We do extensive 1/sqrt(x) and 1/x accuracy testing in the tests for
198  * the SIMD math functions, so we just make sure the lookup instructions
199  * appear to work for a few values here.
200  */
201 TEST_F(Simd4FloatingpointTest, gmxSimd4RsqrtR)
202 {
203     gmx_simd4_real_t x      = setSimd4RealFrom3R(4.0, M_PI, 1234567890.0);
204     gmx_simd4_real_t ref    = setSimd4RealFrom3R(0.5, 1.0/sqrt(M_PI), 1.0/sqrt(1234567890.0));
205
206     // The allowed Ulp deviation is 2 to the power of the number of mantissa
207     // digits, minus the number of bits provided by the table lookup
208     setUlpTol(1LL << (std::numeric_limits<real>::digits-GMX_SIMD_RSQRT_BITS));
209     GMX_EXPECT_SIMD4_REAL_NEAR(ref, gmx_simd4_rsqrt_r(x));
210 }
211
212 TEST_F(Simd4FloatingpointTest, gmxSimd4BoolCmpEqAndBlendZeroR)
213 {
214     gmx_simd4_bool_t eq   = gmx_simd4_cmpeq_r(rSimd4_5_7_9, rSimd4_7_8_9);
215     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(0, 0, 3), gmx_simd4_blendzero_r(rSimd4_1_2_3, eq));
216 }
217
218 TEST_F(Simd4FloatingpointTest, gmxSimd4BlendNotZeroR)
219 {
220     gmx_simd4_bool_t eq   = gmx_simd4_cmpeq_r(rSimd4_5_7_9, rSimd4_7_8_9);
221     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(1, 2, 0), gmx_simd4_blendnotzero_r(rSimd4_1_2_3, eq));
222 }
223
224 TEST_F(Simd4FloatingpointTest, gmxSimd4BoolCmpLER)
225 {
226     gmx_simd4_bool_t le   = gmx_simd4_cmple_r(rSimd4_5_7_9, rSimd4_7_8_9);
227     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_1_2_3, gmx_simd4_blendzero_r(rSimd4_1_2_3, le));
228 }
229
230 TEST_F(Simd4FloatingpointTest, gmxSimd4BoolCmpLTR)
231 {
232     gmx_simd4_bool_t lt   = gmx_simd4_cmplt_r(rSimd4_5_7_9, rSimd4_7_8_9);
233     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(1, 2, 0), gmx_simd4_blendzero_r(rSimd4_1_2_3, lt));
234 }
235
236 TEST_F(Simd4FloatingpointTest, gmxSimd4BoolAndB)
237 {
238     gmx_simd4_bool_t eq   = gmx_simd4_cmpeq_r(rSimd4_5_7_9, rSimd4_7_8_9);
239     gmx_simd4_bool_t le   = gmx_simd4_cmple_r(rSimd4_5_7_9, rSimd4_7_8_9);
240     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(0, 0, 3), gmx_simd4_blendzero_r(rSimd4_1_2_3, gmx_simd4_and_b(eq, le)));
241 }
242
243 TEST_F(Simd4FloatingpointTest, gmxSimd4BoolOrB)
244 {
245     gmx_simd4_bool_t eq   = gmx_simd4_cmpeq_r(rSimd4_5_7_9, rSimd4_7_8_9);
246     gmx_simd4_bool_t lt   = gmx_simd4_cmplt_r(rSimd4_5_7_9, rSimd4_7_8_9);
247     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(1, 2, 3), gmx_simd4_blendzero_r(rSimd4_1_2_3, gmx_simd4_or_b(eq, lt)));
248 }
249
250 TEST_F(Simd4FloatingpointTest, gmxSimd4AnytrueB)
251 {
252     gmx_simd4_bool_t eq;
253
254     /* this test is a bit tricky since we don't know the simd width.
255      * We cannot check for truth values for "any" element beyond the first,
256      * since that part of the data will not be used if simd width is 1.
257      */
258     eq = gmx_simd4_cmpeq_r(rSimd4_5_7_9, setSimd4RealFrom3R(5, 0, 0));
259     EXPECT_NE(0, gmx_simd4_anytrue_b(eq));
260
261     eq = gmx_simd4_cmpeq_r(rSimd4_1_2_3, rSimd4_4_5_6);
262     EXPECT_EQ(0, gmx_simd4_anytrue_b(eq));
263 }
264
265 TEST_F(Simd4FloatingpointTest, gmxSimd4BlendvR)
266 {
267     gmx_simd4_bool_t lt   = gmx_simd4_cmplt_r(rSimd4_5_7_9, rSimd4_7_8_9);
268     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(4, 5, 3), gmx_simd4_blendv_r(rSimd4_1_2_3, rSimd4_4_5_6, lt));
269 }
270
271 TEST_F(Simd4FloatingpointTest, gmxSimd4ReduceR)
272 {
273     // The horizontal sum of the SIMD variable depends on the width, so
274     // simply store it an extra time and calculate what the sum should be
275     std::vector<real> v   = simd4Real2Vector(rSimd4_1_2_3);
276     real              sum = 0.0;
277
278     for (int i = 0; i < GMX_SIMD4_WIDTH; i++)
279     {
280         sum += v[i];
281     }
282
283     EXPECT_EQ(sum, gmx_simd4_reduce_r(rSimd4_1_2_3));
284 }
285
286
287 TEST_F(Simd4FloatingpointTest, gmxSimd4Dotproduct3R)
288 {
289     gmx_simd4_real_t v1 = setSimd4RealFrom3R(1, 4, 5);
290     gmx_simd4_real_t v2 = setSimd4RealFrom3R(3, 8, 2);
291 #    ifdef GMX_DOUBLE
292     EXPECT_DOUBLE_EQ(45.0, gmx_simd4_dotproduct3_r(v1, v2));
293 #    else
294     EXPECT_FLOAT_EQ(45.0, gmx_simd4_dotproduct3_r(v1, v2));
295 #    endif
296 }
297
298 #endif      // GMX_SIMD4_HAVE_REAL
299
300 /*! \} */
301 /*! \endcond */
302
303 }      // namespace
304 }      // namespace
305 }      // namespace