Sort all includes in src/gromacs
[alexxy/gromacs.git] / src / gromacs / simd / tests / simd4_floatingpoint.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 #include "gmxpre.h"
36
37 #include <math.h>
38
39 #include "gromacs/math/utilities.h"
40
41 #include "simd4.h"
42
43 namespace gmx
44 {
45 namespace test
46 {
47 namespace
48 {
49
50 /*! \cond internal */
51 /*! \addtogroup module_simd */
52 /*! \{ */
53
54 #ifdef GMX_SIMD4_HAVE_REAL
55
56 /*! \brief Test fixture for SIMD4 floating-point operations (identical to the SIMD4 \ref Simd4Test) */
57 typedef Simd4Test Simd4FloatingpointTest;
58
59 TEST_F(Simd4FloatingpointTest, gmxSimd4SetZeroR)
60 {
61     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(0.0), gmx_simd4_setzero_r());
62 }
63
64 TEST_F(Simd4FloatingpointTest, gmxSimd4Set1R)
65 {
66     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(1.0), gmx_simd4_set1_r(1.0));
67 }
68
69 TEST_F(Simd4FloatingpointTest, gmxSimd4Load1R)
70 {
71     real r = 2.0;
72     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(r), gmx_simd4_load1_r(&r));
73 }
74
75 TEST_F(Simd4FloatingpointTest, gmxSimd4AddR)
76 {
77     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_5_7_9, gmx_simd4_add_r(rSimd4_1_2_3, rSimd4_4_5_6)); // 1+4=5, 2+5=7, 3+6=9
78 }
79
80 TEST_F(Simd4FloatingpointTest, gmxSimd4SubR)
81 {
82     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_4_5_6, gmx_simd4_sub_r(rSimd4_5_7_9, rSimd4_1_2_3)); // 5-1=4, 7-2=5, 9-3=6
83 }
84
85 TEST_F(Simd4FloatingpointTest, gmxSimd4MulR)
86 {
87     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(4, 10, 18), gmx_simd4_mul_r(rSimd4_1_2_3, rSimd4_4_5_6));
88 }
89
90 TEST_F(Simd4FloatingpointTest, gmxSimd4FmaddR)
91 {
92     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(11, 18, 27), gmx_simd4_fmadd_r(rSimd4_1_2_3, rSimd4_4_5_6, rSimd4_7_8_9)); // 1*4+7, etc.
93 }
94
95 TEST_F(Simd4FloatingpointTest, gmxSimd4FmsubR)
96 {
97     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(-3, 2, 9), gmx_simd4_fmsub_r(rSimd4_1_2_3, rSimd4_4_5_6, rSimd4_7_8_9)); // 1*4-7, etc.
98 }
99
100 TEST_F(Simd4FloatingpointTest, gmxSimd4FnmaddR)
101 {
102     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(3, -2, -9), gmx_simd4_fnmadd_r(rSimd4_1_2_3, rSimd4_4_5_6, rSimd4_7_8_9)); // -1*4+7, etc.
103 }
104
105 TEST_F(Simd4FloatingpointTest, gmxSimd4FnmsubR)
106 {
107     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(-11, -18, -27), gmx_simd4_fnmsub_r(rSimd4_1_2_3, rSimd4_4_5_6, rSimd4_7_8_9)); // -1*4-7, etc.
108 }
109
110 TEST_F(Simd4FloatingpointTest, gmxSimd4FabsR)
111 {
112     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_1_2_3, gmx_simd4_fabs_r(rSimd4_1_2_3));    // fabs(x)=x
113     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_1_2_3, gmx_simd4_fabs_r(rSimd4_m1_m2_m3)); // fabs(-x)=x
114 }
115
116 TEST_F(Simd4FloatingpointTest, gmxSimd4FnegR)
117 {
118     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_m1_m2_m3, gmx_simd4_fneg_r(rSimd4_1_2_3));   // fneg(x)=-x
119     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_1_2_3,   gmx_simd4_fneg_r(rSimd4_m1_m2_m3)); // fneg(-x)=x
120 }
121
122 #ifdef GMX_SIMD4_HAVE_LOGICAL
123 /* 1.3333282470703125 has mantissa 0101010101010101 (followed by zeros)
124  * 1.79998779296875   has mantissa 1100110011001100 (followed by zeros)
125  * 1.26666259765625   has mantissa 0100010001000100 (followed by zeros)
126  * 1.8666534423828125 has mantissa 1101110111011101 (followed by zeros)
127  *
128  * Since all of them have the same exponent (2^0), the exponent will
129  * not change with AND or OR operations.
130  */
131 TEST_F(Simd4FloatingpointTest, gmxSimd4AndR)
132 {
133     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(1.26666259765625),
134                              gmx_simd4_and_r(gmx_simd4_set1_r(1.3333282470703125),
135                                              gmx_simd4_set1_r(1.79998779296875)));
136 }
137
138 TEST_F(Simd4FloatingpointTest, gmxSimd4OrR)
139 {
140     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(1.8666534423828125),
141                              gmx_simd4_or_r(gmx_simd4_set1_r(1.3333282470703125),
142                                             gmx_simd4_set1_r(1.79998779296875)));
143 }
144
145 TEST_F(Simd4FloatingpointTest, gmxSimd4XorR)
146 {
147     /* Test xor by taking xor with a number and its negative. This should result
148      * in only the sign bit being set. We then use this bit change the sign of
149      * different numbers.
150      */
151     gmx_simd4_real_t signbit = gmx_simd4_xor_r(gmx_simd4_set1_r(1.5), gmx_simd4_set1_r(-1.5));
152     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(-1, 2, -3), gmx_simd4_xor_r(signbit, setSimd4RealFrom3R(1, -2, 3)));
153 }
154
155 TEST_F(Simd4FloatingpointTest, gmxSimd4AndnotR)
156 {
157     /* Use xor (which we already tested, so fix that first if both tests fail)
158      * to extract the sign bit, and then use andnot to take absolute values.
159      */
160     gmx_simd4_real_t signbit = gmx_simd4_xor_r(gmx_simd4_set1_r(1.5), gmx_simd4_set1_r(-1.5));
161     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(1, 2, 3), gmx_simd4_andnot_r(signbit, setSimd4RealFrom3R(-1, 2, -3)));
162 }
163
164 #endif
165
166 TEST_F(Simd4FloatingpointTest, gmxSimd4MaxR)
167 {
168     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(3, 2, 4), gmx_simd4_max_r(rSimd4_1_2_3, rSimd4_3_1_4));
169     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(3, 2, 4), gmx_simd4_max_r(rSimd4_3_1_4, rSimd4_1_2_3));
170     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(-1, -1, -3), gmx_simd4_max_r(rSimd4_m1_m2_m3, rSimd4_m3_m1_m4));
171     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(-1, -1, -3), gmx_simd4_max_r(rSimd4_m3_m1_m4, rSimd4_m1_m2_m3));
172 }
173
174 TEST_F(Simd4FloatingpointTest, gmxSimd4MinR)
175 {
176     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(1, 1, 3), gmx_simd4_min_r(rSimd4_1_2_3, rSimd4_3_1_4));
177     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(1, 1, 3), gmx_simd4_min_r(rSimd4_3_1_4, rSimd4_1_2_3));
178     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(-3, -2, -4), gmx_simd4_min_r(rSimd4_m1_m2_m3, rSimd4_m3_m1_m4));
179     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(-3, -2, -4), gmx_simd4_min_r(rSimd4_m3_m1_m4, rSimd4_m1_m2_m3));
180 }
181
182 TEST_F(Simd4FloatingpointTest, gmxSimd4RoundR)
183 {
184     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(2), gmx_simd4_round_r(gmx_simd4_set1_r(2.25)));
185     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(4), gmx_simd4_round_r(gmx_simd4_set1_r(3.75)));
186     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(-2), gmx_simd4_round_r(gmx_simd4_set1_r(-2.25)));
187     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(-4), gmx_simd4_round_r(gmx_simd4_set1_r(-3.75)));
188 }
189
190 TEST_F(Simd4FloatingpointTest, gmxSimd4TruncR)
191 {
192     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(2), gmx_simd4_trunc_r(rSimd4_2p25));
193     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(3), gmx_simd4_trunc_r(rSimd4_3p75));
194     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(-2), gmx_simd4_trunc_r(rSimd4_m2p25));
195     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(-3), gmx_simd4_trunc_r(rSimd4_m3p75));
196 }
197
198 /* We do extensive 1/sqrt(x) and 1/x accuracy testing in the tests for
199  * the SIMD math functions, so we just make sure the lookup instructions
200  * appear to work for a few values here.
201  */
202 TEST_F(Simd4FloatingpointTest, gmxSimd4RsqrtR)
203 {
204     gmx_simd4_real_t x      = setSimd4RealFrom3R(4.0, M_PI, 1234567890.0);
205     gmx_simd4_real_t ref    = setSimd4RealFrom3R(0.5, 1.0/sqrt(M_PI), 1.0/sqrt(1234567890.0));
206
207     // The allowed Ulp deviation is 2 to the power of the number of mantissa
208     // digits, minus the number of bits provided by the table lookup
209     setUlpTol(1LL << (std::numeric_limits<real>::digits-GMX_SIMD_RSQRT_BITS));
210     GMX_EXPECT_SIMD4_REAL_NEAR(ref, gmx_simd4_rsqrt_r(x));
211 }
212
213 TEST_F(Simd4FloatingpointTest, gmxSimd4BoolCmpEqAndBlendZeroR)
214 {
215     gmx_simd4_bool_t eq   = gmx_simd4_cmpeq_r(rSimd4_5_7_9, rSimd4_7_8_9);
216     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(0, 0, 3), gmx_simd4_blendzero_r(rSimd4_1_2_3, eq));
217 }
218
219 TEST_F(Simd4FloatingpointTest, gmxSimd4BlendNotZeroR)
220 {
221     gmx_simd4_bool_t eq   = gmx_simd4_cmpeq_r(rSimd4_5_7_9, rSimd4_7_8_9);
222     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(1, 2, 0), gmx_simd4_blendnotzero_r(rSimd4_1_2_3, eq));
223 }
224
225 TEST_F(Simd4FloatingpointTest, gmxSimd4BoolCmpLER)
226 {
227     gmx_simd4_bool_t le   = gmx_simd4_cmple_r(rSimd4_5_7_9, rSimd4_7_8_9);
228     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_1_2_3, gmx_simd4_blendzero_r(rSimd4_1_2_3, le));
229 }
230
231 TEST_F(Simd4FloatingpointTest, gmxSimd4BoolCmpLTR)
232 {
233     gmx_simd4_bool_t lt   = gmx_simd4_cmplt_r(rSimd4_5_7_9, rSimd4_7_8_9);
234     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(1, 2, 0), gmx_simd4_blendzero_r(rSimd4_1_2_3, lt));
235 }
236
237 TEST_F(Simd4FloatingpointTest, gmxSimd4BoolAndB)
238 {
239     gmx_simd4_bool_t eq   = gmx_simd4_cmpeq_r(rSimd4_5_7_9, rSimd4_7_8_9);
240     gmx_simd4_bool_t le   = gmx_simd4_cmple_r(rSimd4_5_7_9, rSimd4_7_8_9);
241     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(0, 0, 3), gmx_simd4_blendzero_r(rSimd4_1_2_3, gmx_simd4_and_b(eq, le)));
242 }
243
244 TEST_F(Simd4FloatingpointTest, gmxSimd4BoolOrB)
245 {
246     gmx_simd4_bool_t eq   = gmx_simd4_cmpeq_r(rSimd4_5_7_9, rSimd4_7_8_9);
247     gmx_simd4_bool_t lt   = gmx_simd4_cmplt_r(rSimd4_5_7_9, rSimd4_7_8_9);
248     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(1, 2, 3), gmx_simd4_blendzero_r(rSimd4_1_2_3, gmx_simd4_or_b(eq, lt)));
249 }
250
251 TEST_F(Simd4FloatingpointTest, gmxSimd4AnytrueB)
252 {
253     gmx_simd4_bool_t eq;
254
255     /* this test is a bit tricky since we don't know the simd width.
256      * We cannot check for truth values for "any" element beyond the first,
257      * since that part of the data will not be used if simd width is 1.
258      */
259     eq = gmx_simd4_cmpeq_r(rSimd4_5_7_9, setSimd4RealFrom3R(5, 0, 0));
260     EXPECT_NE(0, gmx_simd4_anytrue_b(eq));
261
262     eq = gmx_simd4_cmpeq_r(rSimd4_1_2_3, rSimd4_4_5_6);
263     EXPECT_EQ(0, gmx_simd4_anytrue_b(eq));
264 }
265
266 TEST_F(Simd4FloatingpointTest, gmxSimd4BlendvR)
267 {
268     gmx_simd4_bool_t lt   = gmx_simd4_cmplt_r(rSimd4_5_7_9, rSimd4_7_8_9);
269     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(4, 5, 3), gmx_simd4_blendv_r(rSimd4_1_2_3, rSimd4_4_5_6, lt));
270 }
271
272 TEST_F(Simd4FloatingpointTest, gmxSimd4ReduceR)
273 {
274     // The horizontal sum of the SIMD variable depends on the width, so
275     // simply store it an extra time and calculate what the sum should be
276     std::vector<real> v   = simd4Real2Vector(rSimd4_1_2_3);
277     real              sum = 0.0;
278
279     for (int i = 0; i < GMX_SIMD4_WIDTH; i++)
280     {
281         sum += v[i];
282     }
283
284     EXPECT_EQ(sum, gmx_simd4_reduce_r(rSimd4_1_2_3));
285 }
286
287
288 TEST_F(Simd4FloatingpointTest, gmxSimd4Dotproduct3R)
289 {
290     gmx_simd4_real_t v1 = setSimd4RealFrom3R(1, 4, 5);
291     gmx_simd4_real_t v2 = setSimd4RealFrom3R(3, 8, 2);
292 #    ifdef GMX_DOUBLE
293     EXPECT_DOUBLE_EQ(45.0, gmx_simd4_dotproduct3_r(v1, v2));
294 #    else
295     EXPECT_FLOAT_EQ(45.0, gmx_simd4_dotproduct3_r(v1, v2));
296 #    endif
297 }
298
299 #endif      // GMX_SIMD4_HAVE_REAL
300
301 /*! \} */
302 /*! \endcond */
303
304 }      // namespace
305 }      // namespace
306 }      // namespace