Merge release-4-6 into release-5-0
authorRoland Schulz <roland@utk.edu>
Sun, 10 Aug 2014 01:59:35 +0000 (21:59 -0400)
committerTeemu Murtola <teemu.murtola@gmail.com>
Sun, 10 Aug 2014 03:28:54 +0000 (05:28 +0200)
Conflicts:
CMakeLists.txt (version bump ignored)

Change-Id: I4ba0209b5f69b6470470530662a0b27390a02771

1  2 
src/gromacs/mdlib/pme.c

index 2b2a5c0b19784250629f983ac2e386642135b2f3,0000000000000000000000000000000000000000..532fa3a170e91d0fbca6bfd5b7d3179e16ca2edc
mode 100644,000000..100644
--- /dev/null
@@@ -1,5347 -1,0 +1,5348 @@@
-                         buf_my  = ty1 - offy;
 +/*
 + * This file is part of the GROMACS molecular simulation package.
 + *
 + * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
 + * Copyright (c) 2001-2004, The GROMACS development team.
 + * Copyright (c) 2013,2014, by the GROMACS development team, led by
 + * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
 + * and including many others, as listed in the AUTHORS file in the
 + * top-level source directory and at http://www.gromacs.org.
 + *
 + * GROMACS is free software; you can redistribute it and/or
 + * modify it under the terms of the GNU Lesser General Public License
 + * as published by the Free Software Foundation; either version 2.1
 + * of the License, or (at your option) any later version.
 + *
 + * GROMACS is distributed in the hope that it will be useful,
 + * but WITHOUT ANY WARRANTY; without even the implied warranty of
 + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 + * Lesser General Public License for more details.
 + *
 + * You should have received a copy of the GNU Lesser General Public
 + * License along with GROMACS; if not, see
 + * http://www.gnu.org/licenses, or write to the Free Software Foundation,
 + * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
 + *
 + * If you want to redistribute modifications to GROMACS, please
 + * consider that scientific software is very special. Version
 + * control is crucial - bugs must be traceable. We will be happy to
 + * consider code for inclusion in the official distribution, but
 + * derived work must not be called official GROMACS. Details are found
 + * in the README & COPYING files - if they are missing, get the
 + * official version at http://www.gromacs.org.
 + *
 + * To help us fund GROMACS development, we humbly ask that you cite
 + * the research papers on the package. Check out http://www.gromacs.org.
 + */
 +/* IMPORTANT FOR DEVELOPERS:
 + *
 + * Triclinic pme stuff isn't entirely trivial, and we've experienced
 + * some bugs during development (many of them due to me). To avoid
 + * this in the future, please check the following things if you make
 + * changes in this file:
 + *
 + * 1. You should obtain identical (at least to the PME precision)
 + *    energies, forces, and virial for
 + *    a rectangular box and a triclinic one where the z (or y) axis is
 + *    tilted a whole box side. For instance you could use these boxes:
 + *
 + *    rectangular       triclinic
 + *     2  0  0           2  0  0
 + *     0  2  0           0  2  0
 + *     0  0  6           2  2  6
 + *
 + * 2. You should check the energy conservation in a triclinic box.
 + *
 + * It might seem an overkill, but better safe than sorry.
 + * /Erik 001109
 + */
 +
 +#ifdef HAVE_CONFIG_H
 +#include <config.h>
 +#endif
 +
 +#include <stdio.h>
 +#include <string.h>
 +#include <math.h>
 +#include <assert.h>
 +#include "typedefs.h"
 +#include "txtdump.h"
 +#include "vec.h"
 +#include "gromacs/utility/smalloc.h"
 +#include "coulomb.h"
 +#include "gmx_fatal.h"
 +#include "pme.h"
 +#include "network.h"
 +#include "physics.h"
 +#include "nrnb.h"
 +#include "macros.h"
 +
 +#include "gromacs/fft/parallel_3dfft.h"
 +#include "gromacs/fileio/futil.h"
 +#include "gromacs/fileio/pdbio.h"
 +#include "gromacs/math/gmxcomplex.h"
 +#include "gromacs/timing/cyclecounter.h"
 +#include "gromacs/timing/wallcycle.h"
 +#include "gromacs/utility/gmxmpi.h"
 +#include "gromacs/utility/gmxomp.h"
 +
 +/* Include the SIMD macro file and then check for support */
 +#include "gromacs/simd/simd.h"
 +#include "gromacs/simd/simd_math.h"
 +#ifdef GMX_SIMD_HAVE_REAL
 +/* Turn on arbitrary width SIMD intrinsics for PME solve */
 +#    define PME_SIMD_SOLVE
 +#endif
 +
 +#define PME_GRID_QA    0 /* Gridindex for A-state for Q */
 +#define PME_GRID_C6A   2 /* Gridindex for A-state for LJ */
 +#define DO_Q           2 /* Electrostatic grids have index q<2 */
 +#define DO_Q_AND_LJ    4 /* non-LB LJ grids have index 2 <= q < 4 */
 +#define DO_Q_AND_LJ_LB 9 /* With LB rules we need a total of 2+7 grids */
 +
 +/* Pascal triangle coefficients scaled with (1/2)^6 for LJ-PME with LB-rules */
 +const real lb_scale_factor[] = {
 +    1.0/64, 6.0/64, 15.0/64, 20.0/64,
 +    15.0/64, 6.0/64, 1.0/64
 +};
 +
 +/* Pascal triangle coefficients used in solve_pme_lj_yzx, only need to do 4 calculations due to symmetry */
 +const real lb_scale_factor_symm[] = { 2.0/64, 12.0/64, 30.0/64, 20.0/64 };
 +
 +/* Check if we have 4-wide SIMD macro support */
 +#if (defined GMX_SIMD4_HAVE_REAL)
 +/* Do PME spread and gather with 4-wide SIMD.
 + * NOTE: SIMD is only used with PME order 4 and 5 (which are the most common).
 + */
 +#    define PME_SIMD4_SPREAD_GATHER
 +
 +#    if (defined GMX_SIMD_HAVE_LOADU) && (defined GMX_SIMD_HAVE_STOREU)
 +/* With PME-order=4 on x86, unaligned load+store is slightly faster
 + * than doubling all SIMD operations when using aligned load+store.
 + */
 +#        define PME_SIMD4_UNALIGNED
 +#    endif
 +#endif
 +
 +#define DFT_TOL 1e-7
 +/* #define PRT_FORCE */
 +/* conditions for on the fly time-measurement */
 +/* #define TAKETIME (step > 1 && timesteps < 10) */
 +#define TAKETIME FALSE
 +
 +/* #define PME_TIME_THREADS */
 +
 +#ifdef GMX_DOUBLE
 +#define mpi_type MPI_DOUBLE
 +#else
 +#define mpi_type MPI_FLOAT
 +#endif
 +
 +#ifdef PME_SIMD4_SPREAD_GATHER
 +#    define SIMD4_ALIGNMENT  (GMX_SIMD4_WIDTH*sizeof(real))
 +#else
 +/* We can use any alignment, apart from 0, so we use 4 reals */
 +#    define SIMD4_ALIGNMENT  (4*sizeof(real))
 +#endif
 +
 +/* GMX_CACHE_SEP should be a multiple of the SIMD and SIMD4 register size
 + * to preserve alignment.
 + */
 +#define GMX_CACHE_SEP 64
 +
 +/* We only define a maximum to be able to use local arrays without allocation.
 + * An order larger than 12 should never be needed, even for test cases.
 + * If needed it can be changed here.
 + */
 +#define PME_ORDER_MAX 12
 +
 +/* Internal datastructures */
 +typedef struct {
 +    int send_index0;
 +    int send_nindex;
 +    int recv_index0;
 +    int recv_nindex;
 +    int recv_size;   /* Receive buffer width, used with OpenMP */
 +} pme_grid_comm_t;
 +
 +typedef struct {
 +#ifdef GMX_MPI
 +    MPI_Comm         mpi_comm;
 +#endif
 +    int              nnodes, nodeid;
 +    int             *s2g0;
 +    int             *s2g1;
 +    int              noverlap_nodes;
 +    int             *send_id, *recv_id;
 +    int              send_size; /* Send buffer width, used with OpenMP */
 +    pme_grid_comm_t *comm_data;
 +    real            *sendbuf;
 +    real            *recvbuf;
 +} pme_overlap_t;
 +
 +typedef struct {
 +    int *n;      /* Cumulative counts of the number of particles per thread */
 +    int  nalloc; /* Allocation size of i */
 +    int *i;      /* Particle indices ordered on thread index (n) */
 +} thread_plist_t;
 +
 +typedef struct {
 +    int      *thread_one;
 +    int       n;
 +    int      *ind;
 +    splinevec theta;
 +    real     *ptr_theta_z;
 +    splinevec dtheta;
 +    real     *ptr_dtheta_z;
 +} splinedata_t;
 +
 +typedef struct {
 +    int      dimind;        /* The index of the dimension, 0=x, 1=y */
 +    int      nslab;
 +    int      nodeid;
 +#ifdef GMX_MPI
 +    MPI_Comm mpi_comm;
 +#endif
 +
 +    int     *node_dest;     /* The nodes to send x and q to with DD */
 +    int     *node_src;      /* The nodes to receive x and q from with DD */
 +    int     *buf_index;     /* Index for commnode into the buffers */
 +
 +    int      maxshift;
 +
 +    int      npd;
 +    int      pd_nalloc;
 +    int     *pd;
 +    int     *count;         /* The number of atoms to send to each node */
 +    int    **count_thread;
 +    int     *rcount;        /* The number of atoms to receive */
 +
 +    int      n;
 +    int      nalloc;
 +    rvec    *x;
 +    real    *coefficient;
 +    rvec    *f;
 +    gmx_bool bSpread;       /* These coordinates are used for spreading */
 +    int      pme_order;
 +    ivec    *idx;
 +    rvec    *fractx;            /* Fractional coordinate relative to
 +                                 * the lower cell boundary
 +                                 */
 +    int             nthread;
 +    int            *thread_idx; /* Which thread should spread which coefficient */
 +    thread_plist_t *thread_plist;
 +    splinedata_t   *spline;
 +} pme_atomcomm_t;
 +
 +#define FLBS  3
 +#define FLBSZ 4
 +
 +typedef struct {
 +    ivec  ci;     /* The spatial location of this grid         */
 +    ivec  n;      /* The used size of *grid, including order-1 */
 +    ivec  offset; /* The grid offset from the full node grid   */
 +    int   order;  /* PME spreading order                       */
 +    ivec  s;      /* The allocated size of *grid, s >= n       */
 +    real *grid;   /* The grid local thread, size n             */
 +} pmegrid_t;
 +
 +typedef struct {
 +    pmegrid_t  grid;         /* The full node grid (non thread-local)            */
 +    int        nthread;      /* The number of threads operating on this grid     */
 +    ivec       nc;           /* The local spatial decomposition over the threads */
 +    pmegrid_t *grid_th;      /* Array of grids for each thread                   */
 +    real      *grid_all;     /* Allocated array for the grids in *grid_th        */
 +    int      **g2t;          /* The grid to thread index                         */
 +    ivec       nthread_comm; /* The number of threads to communicate with        */
 +} pmegrids_t;
 +
 +typedef struct {
 +#ifdef PME_SIMD4_SPREAD_GATHER
 +    /* Masks for 4-wide SIMD aligned spreading and gathering */
 +    gmx_simd4_bool_t mask_S0[6], mask_S1[6];
 +#else
 +    int              dummy; /* C89 requires that struct has at least one member */
 +#endif
 +} pme_spline_work_t;
 +
 +typedef struct {
 +    /* work data for solve_pme */
 +    int      nalloc;
 +    real *   mhx;
 +    real *   mhy;
 +    real *   mhz;
 +    real *   m2;
 +    real *   denom;
 +    real *   tmp1_alloc;
 +    real *   tmp1;
 +    real *   tmp2;
 +    real *   eterm;
 +    real *   m2inv;
 +
 +    real     energy_q;
 +    matrix   vir_q;
 +    real     energy_lj;
 +    matrix   vir_lj;
 +} pme_work_t;
 +
 +typedef struct gmx_pme {
 +    int           ndecompdim; /* The number of decomposition dimensions */
 +    int           nodeid;     /* Our nodeid in mpi->mpi_comm */
 +    int           nodeid_major;
 +    int           nodeid_minor;
 +    int           nnodes;    /* The number of nodes doing PME */
 +    int           nnodes_major;
 +    int           nnodes_minor;
 +
 +    MPI_Comm      mpi_comm;
 +    MPI_Comm      mpi_comm_d[2]; /* Indexed on dimension, 0=x, 1=y */
 +#ifdef GMX_MPI
 +    MPI_Datatype  rvec_mpi;      /* the pme vector's MPI type */
 +#endif
 +
 +    gmx_bool   bUseThreads;   /* Does any of the PME ranks have nthread>1 ?  */
 +    int        nthread;       /* The number of threads doing PME on our rank */
 +
 +    gmx_bool   bPPnode;       /* Node also does particle-particle forces */
 +    gmx_bool   bFEP;          /* Compute Free energy contribution */
 +    gmx_bool   bFEP_q;
 +    gmx_bool   bFEP_lj;
 +    int        nkx, nky, nkz; /* Grid dimensions */
 +    gmx_bool   bP3M;          /* Do P3M: optimize the influence function */
 +    int        pme_order;
 +    real       epsilon_r;
 +
 +    int        ljpme_combination_rule;  /* Type of combination rule in LJ-PME */
 +
 +    int        ngrids;                  /* number of grids we maintain for pmegrid, (c)fftgrid and pfft_setups*/
 +
 +    pmegrids_t pmegrid[DO_Q_AND_LJ_LB]; /* Grids on which we do spreading/interpolation,
 +                                         * includes overlap Grid indices are ordered as
 +                                         * follows:
 +                                         * 0: Coloumb PME, state A
 +                                         * 1: Coloumb PME, state B
 +                                         * 2-8: LJ-PME
 +                                         * This can probably be done in a better way
 +                                         * but this simple hack works for now
 +                                         */
 +    /* The PME coefficient spreading grid sizes/strides, includes pme_order-1 */
 +    int        pmegrid_nx, pmegrid_ny, pmegrid_nz;
 +    /* pmegrid_nz might be larger than strictly necessary to ensure
 +     * memory alignment, pmegrid_nz_base gives the real base size.
 +     */
 +    int     pmegrid_nz_base;
 +    /* The local PME grid starting indices */
 +    int     pmegrid_start_ix, pmegrid_start_iy, pmegrid_start_iz;
 +
 +    /* Work data for spreading and gathering */
 +    pme_spline_work_t     *spline_work;
 +
 +    real                 **fftgrid; /* Grids for FFT. With 1D FFT decomposition this can be a pointer */
 +    /* inside the interpolation grid, but separate for 2D PME decomp. */
 +    int                    fftgrid_nx, fftgrid_ny, fftgrid_nz;
 +
 +    t_complex            **cfftgrid;  /* Grids for complex FFT data */
 +
 +    int                    cfftgrid_nx, cfftgrid_ny, cfftgrid_nz;
 +
 +    gmx_parallel_3dfft_t  *pfft_setup;
 +
 +    int                   *nnx, *nny, *nnz;
 +    real                  *fshx, *fshy, *fshz;
 +
 +    pme_atomcomm_t         atc[2]; /* Indexed on decomposition index */
 +    matrix                 recipbox;
 +    splinevec              bsp_mod;
 +    /* Buffers to store data for local atoms for L-B combination rule
 +     * calculations in LJ-PME. lb_buf1 stores either the coefficients
 +     * for spreading/gathering (in serial), or the C6 coefficient for
 +     * local atoms (in parallel).  lb_buf2 is only used in parallel,
 +     * and stores the sigma values for local atoms. */
 +    real                 *lb_buf1, *lb_buf2;
 +    int                   lb_buf_nalloc; /* Allocation size for the above buffers. */
 +
 +    pme_overlap_t         overlap[2];    /* Indexed on dimension, 0=x, 1=y */
 +
 +    pme_atomcomm_t        atc_energy;    /* Only for gmx_pme_calc_energy */
 +
 +    rvec                 *bufv;          /* Communication buffer */
 +    real                 *bufr;          /* Communication buffer */
 +    int                   buf_nalloc;    /* The communication buffer size */
 +
 +    /* thread local work data for solve_pme */
 +    pme_work_t *work;
 +
 +    /* Work data for sum_qgrid */
 +    real *   sum_qgrid_tmp;
 +    real *   sum_qgrid_dd_tmp;
 +} t_gmx_pme;
 +
 +static void calc_interpolation_idx(gmx_pme_t pme, pme_atomcomm_t *atc,
 +                                   int start, int grid_index, int end, int thread)
 +{
 +    int             i;
 +    int            *idxptr, tix, tiy, tiz;
 +    real           *xptr, *fptr, tx, ty, tz;
 +    real            rxx, ryx, ryy, rzx, rzy, rzz;
 +    int             nx, ny, nz;
 +    int             start_ix, start_iy, start_iz;
 +    int            *g2tx, *g2ty, *g2tz;
 +    gmx_bool        bThreads;
 +    int            *thread_idx = NULL;
 +    thread_plist_t *tpl        = NULL;
 +    int            *tpl_n      = NULL;
 +    int             thread_i;
 +
 +    nx  = pme->nkx;
 +    ny  = pme->nky;
 +    nz  = pme->nkz;
 +
 +    start_ix = pme->pmegrid_start_ix;
 +    start_iy = pme->pmegrid_start_iy;
 +    start_iz = pme->pmegrid_start_iz;
 +
 +    rxx = pme->recipbox[XX][XX];
 +    ryx = pme->recipbox[YY][XX];
 +    ryy = pme->recipbox[YY][YY];
 +    rzx = pme->recipbox[ZZ][XX];
 +    rzy = pme->recipbox[ZZ][YY];
 +    rzz = pme->recipbox[ZZ][ZZ];
 +
 +    g2tx = pme->pmegrid[grid_index].g2t[XX];
 +    g2ty = pme->pmegrid[grid_index].g2t[YY];
 +    g2tz = pme->pmegrid[grid_index].g2t[ZZ];
 +
 +    bThreads = (atc->nthread > 1);
 +    if (bThreads)
 +    {
 +        thread_idx = atc->thread_idx;
 +
 +        tpl   = &atc->thread_plist[thread];
 +        tpl_n = tpl->n;
 +        for (i = 0; i < atc->nthread; i++)
 +        {
 +            tpl_n[i] = 0;
 +        }
 +    }
 +
 +    for (i = start; i < end; i++)
 +    {
 +        xptr   = atc->x[i];
 +        idxptr = atc->idx[i];
 +        fptr   = atc->fractx[i];
 +
 +        /* Fractional coordinates along box vectors, add 2.0 to make 100% sure we are positive for triclinic boxes */
 +        tx = nx * ( xptr[XX] * rxx + xptr[YY] * ryx + xptr[ZZ] * rzx + 2.0 );
 +        ty = ny * (                  xptr[YY] * ryy + xptr[ZZ] * rzy + 2.0 );
 +        tz = nz * (                                   xptr[ZZ] * rzz + 2.0 );
 +
 +        tix = (int)(tx);
 +        tiy = (int)(ty);
 +        tiz = (int)(tz);
 +
 +        /* Because decomposition only occurs in x and y,
 +         * we never have a fraction correction in z.
 +         */
 +        fptr[XX] = tx - tix + pme->fshx[tix];
 +        fptr[YY] = ty - tiy + pme->fshy[tiy];
 +        fptr[ZZ] = tz - tiz;
 +
 +        idxptr[XX] = pme->nnx[tix];
 +        idxptr[YY] = pme->nny[tiy];
 +        idxptr[ZZ] = pme->nnz[tiz];
 +
 +#ifdef DEBUG
 +        range_check(idxptr[XX], 0, pme->pmegrid_nx);
 +        range_check(idxptr[YY], 0, pme->pmegrid_ny);
 +        range_check(idxptr[ZZ], 0, pme->pmegrid_nz);
 +#endif
 +
 +        if (bThreads)
 +        {
 +            thread_i      = g2tx[idxptr[XX]] + g2ty[idxptr[YY]] + g2tz[idxptr[ZZ]];
 +            thread_idx[i] = thread_i;
 +            tpl_n[thread_i]++;
 +        }
 +    }
 +
 +    if (bThreads)
 +    {
 +        /* Make a list of particle indices sorted on thread */
 +
 +        /* Get the cumulative count */
 +        for (i = 1; i < atc->nthread; i++)
 +        {
 +            tpl_n[i] += tpl_n[i-1];
 +        }
 +        /* The current implementation distributes particles equally
 +         * over the threads, so we could actually allocate for that
 +         * in pme_realloc_atomcomm_things.
 +         */
 +        if (tpl_n[atc->nthread-1] > tpl->nalloc)
 +        {
 +            tpl->nalloc = over_alloc_large(tpl_n[atc->nthread-1]);
 +            srenew(tpl->i, tpl->nalloc);
 +        }
 +        /* Set tpl_n to the cumulative start */
 +        for (i = atc->nthread-1; i >= 1; i--)
 +        {
 +            tpl_n[i] = tpl_n[i-1];
 +        }
 +        tpl_n[0] = 0;
 +
 +        /* Fill our thread local array with indices sorted on thread */
 +        for (i = start; i < end; i++)
 +        {
 +            tpl->i[tpl_n[atc->thread_idx[i]]++] = i;
 +        }
 +        /* Now tpl_n contains the cummulative count again */
 +    }
 +}
 +
 +static void make_thread_local_ind(pme_atomcomm_t *atc,
 +                                  int thread, splinedata_t *spline)
 +{
 +    int             n, t, i, start, end;
 +    thread_plist_t *tpl;
 +
 +    /* Combine the indices made by each thread into one index */
 +
 +    n     = 0;
 +    start = 0;
 +    for (t = 0; t < atc->nthread; t++)
 +    {
 +        tpl = &atc->thread_plist[t];
 +        /* Copy our part (start - end) from the list of thread t */
 +        if (thread > 0)
 +        {
 +            start = tpl->n[thread-1];
 +        }
 +        end = tpl->n[thread];
 +        for (i = start; i < end; i++)
 +        {
 +            spline->ind[n++] = tpl->i[i];
 +        }
 +    }
 +
 +    spline->n = n;
 +}
 +
 +
 +static void pme_calc_pidx(int start, int end,
 +                          matrix recipbox, rvec x[],
 +                          pme_atomcomm_t *atc, int *count)
 +{
 +    int   nslab, i;
 +    int   si;
 +    real *xptr, s;
 +    real  rxx, ryx, rzx, ryy, rzy;
 +    int  *pd;
 +
 +    /* Calculate PME task index (pidx) for each grid index.
 +     * Here we always assign equally sized slabs to each node
 +     * for load balancing reasons (the PME grid spacing is not used).
 +     */
 +
 +    nslab = atc->nslab;
 +    pd    = atc->pd;
 +
 +    /* Reset the count */
 +    for (i = 0; i < nslab; i++)
 +    {
 +        count[i] = 0;
 +    }
 +
 +    if (atc->dimind == 0)
 +    {
 +        rxx = recipbox[XX][XX];
 +        ryx = recipbox[YY][XX];
 +        rzx = recipbox[ZZ][XX];
 +        /* Calculate the node index in x-dimension */
 +        for (i = start; i < end; i++)
 +        {
 +            xptr   = x[i];
 +            /* Fractional coordinates along box vectors */
 +            s     = nslab*(xptr[XX]*rxx + xptr[YY]*ryx + xptr[ZZ]*rzx);
 +            si    = (int)(s + 2*nslab) % nslab;
 +            pd[i] = si;
 +            count[si]++;
 +        }
 +    }
 +    else
 +    {
 +        ryy = recipbox[YY][YY];
 +        rzy = recipbox[ZZ][YY];
 +        /* Calculate the node index in y-dimension */
 +        for (i = start; i < end; i++)
 +        {
 +            xptr   = x[i];
 +            /* Fractional coordinates along box vectors */
 +            s     = nslab*(xptr[YY]*ryy + xptr[ZZ]*rzy);
 +            si    = (int)(s + 2*nslab) % nslab;
 +            pd[i] = si;
 +            count[si]++;
 +        }
 +    }
 +}
 +
 +static void pme_calc_pidx_wrapper(int natoms, matrix recipbox, rvec x[],
 +                                  pme_atomcomm_t *atc)
 +{
 +    int nthread, thread, slab;
 +
 +    nthread = atc->nthread;
 +
 +#pragma omp parallel for num_threads(nthread) schedule(static)
 +    for (thread = 0; thread < nthread; thread++)
 +    {
 +        pme_calc_pidx(natoms* thread   /nthread,
 +                      natoms*(thread+1)/nthread,
 +                      recipbox, x, atc, atc->count_thread[thread]);
 +    }
 +    /* Non-parallel reduction, since nslab is small */
 +
 +    for (thread = 1; thread < nthread; thread++)
 +    {
 +        for (slab = 0; slab < atc->nslab; slab++)
 +        {
 +            atc->count_thread[0][slab] += atc->count_thread[thread][slab];
 +        }
 +    }
 +}
 +
 +static void realloc_splinevec(splinevec th, real **ptr_z, int nalloc)
 +{
 +    const int padding = 4;
 +    int       i;
 +
 +    srenew(th[XX], nalloc);
 +    srenew(th[YY], nalloc);
 +    /* In z we add padding, this is only required for the aligned SIMD code */
 +    sfree_aligned(*ptr_z);
 +    snew_aligned(*ptr_z, nalloc+2*padding, SIMD4_ALIGNMENT);
 +    th[ZZ] = *ptr_z + padding;
 +
 +    for (i = 0; i < padding; i++)
 +    {
 +        (*ptr_z)[               i] = 0;
 +        (*ptr_z)[padding+nalloc+i] = 0;
 +    }
 +}
 +
 +static void pme_realloc_splinedata(splinedata_t *spline, pme_atomcomm_t *atc)
 +{
 +    int i, d;
 +
 +    srenew(spline->ind, atc->nalloc);
 +    /* Initialize the index to identity so it works without threads */
 +    for (i = 0; i < atc->nalloc; i++)
 +    {
 +        spline->ind[i] = i;
 +    }
 +
 +    realloc_splinevec(spline->theta, &spline->ptr_theta_z,
 +                      atc->pme_order*atc->nalloc);
 +    realloc_splinevec(spline->dtheta, &spline->ptr_dtheta_z,
 +                      atc->pme_order*atc->nalloc);
 +}
 +
 +static void pme_realloc_atomcomm_things(pme_atomcomm_t *atc)
 +{
 +    int nalloc_old, i, j, nalloc_tpl;
 +
 +    /* We have to avoid a NULL pointer for atc->x to avoid
 +     * possible fatal errors in MPI routines.
 +     */
 +    if (atc->n > atc->nalloc || atc->nalloc == 0)
 +    {
 +        nalloc_old  = atc->nalloc;
 +        atc->nalloc = over_alloc_dd(max(atc->n, 1));
 +
 +        if (atc->nslab > 1)
 +        {
 +            srenew(atc->x, atc->nalloc);
 +            srenew(atc->coefficient, atc->nalloc);
 +            srenew(atc->f, atc->nalloc);
 +            for (i = nalloc_old; i < atc->nalloc; i++)
 +            {
 +                clear_rvec(atc->f[i]);
 +            }
 +        }
 +        if (atc->bSpread)
 +        {
 +            srenew(atc->fractx, atc->nalloc);
 +            srenew(atc->idx, atc->nalloc);
 +
 +            if (atc->nthread > 1)
 +            {
 +                srenew(atc->thread_idx, atc->nalloc);
 +            }
 +
 +            for (i = 0; i < atc->nthread; i++)
 +            {
 +                pme_realloc_splinedata(&atc->spline[i], atc);
 +            }
 +        }
 +    }
 +}
 +
 +static void pme_dd_sendrecv(pme_atomcomm_t gmx_unused *atc,
 +                            gmx_bool gmx_unused bBackward, int gmx_unused shift,
 +                            void gmx_unused *buf_s, int gmx_unused nbyte_s,
 +                            void gmx_unused *buf_r, int gmx_unused nbyte_r)
 +{
 +#ifdef GMX_MPI
 +    int        dest, src;
 +    MPI_Status stat;
 +
 +    if (bBackward == FALSE)
 +    {
 +        dest = atc->node_dest[shift];
 +        src  = atc->node_src[shift];
 +    }
 +    else
 +    {
 +        dest = atc->node_src[shift];
 +        src  = atc->node_dest[shift];
 +    }
 +
 +    if (nbyte_s > 0 && nbyte_r > 0)
 +    {
 +        MPI_Sendrecv(buf_s, nbyte_s, MPI_BYTE,
 +                     dest, shift,
 +                     buf_r, nbyte_r, MPI_BYTE,
 +                     src, shift,
 +                     atc->mpi_comm, &stat);
 +    }
 +    else if (nbyte_s > 0)
 +    {
 +        MPI_Send(buf_s, nbyte_s, MPI_BYTE,
 +                 dest, shift,
 +                 atc->mpi_comm);
 +    }
 +    else if (nbyte_r > 0)
 +    {
 +        MPI_Recv(buf_r, nbyte_r, MPI_BYTE,
 +                 src, shift,
 +                 atc->mpi_comm, &stat);
 +    }
 +#endif
 +}
 +
 +static void dd_pmeredist_pos_coeffs(gmx_pme_t pme,
 +                                    int n, gmx_bool bX, rvec *x, real *data,
 +                                    pme_atomcomm_t *atc)
 +{
 +    int *commnode, *buf_index;
 +    int  nnodes_comm, i, nsend, local_pos, buf_pos, node, scount, rcount;
 +
 +    commnode  = atc->node_dest;
 +    buf_index = atc->buf_index;
 +
 +    nnodes_comm = min(2*atc->maxshift, atc->nslab-1);
 +
 +    nsend = 0;
 +    for (i = 0; i < nnodes_comm; i++)
 +    {
 +        buf_index[commnode[i]] = nsend;
 +        nsend                 += atc->count[commnode[i]];
 +    }
 +    if (bX)
 +    {
 +        if (atc->count[atc->nodeid] + nsend != n)
 +        {
 +            gmx_fatal(FARGS, "%d particles communicated to PME rank %d are more than 2/3 times the cut-off out of the domain decomposition cell of their charge group in dimension %c.\n"
 +                      "This usually means that your system is not well equilibrated.",
 +                      n - (atc->count[atc->nodeid] + nsend),
 +                      pme->nodeid, 'x'+atc->dimind);
 +        }
 +
 +        if (nsend > pme->buf_nalloc)
 +        {
 +            pme->buf_nalloc = over_alloc_dd(nsend);
 +            srenew(pme->bufv, pme->buf_nalloc);
 +            srenew(pme->bufr, pme->buf_nalloc);
 +        }
 +
 +        atc->n = atc->count[atc->nodeid];
 +        for (i = 0; i < nnodes_comm; i++)
 +        {
 +            scount = atc->count[commnode[i]];
 +            /* Communicate the count */
 +            if (debug)
 +            {
 +                fprintf(debug, "dimind %d PME rank %d send to rank %d: %d\n",
 +                        atc->dimind, atc->nodeid, commnode[i], scount);
 +            }
 +            pme_dd_sendrecv(atc, FALSE, i,
 +                            &scount, sizeof(int),
 +                            &atc->rcount[i], sizeof(int));
 +            atc->n += atc->rcount[i];
 +        }
 +
 +        pme_realloc_atomcomm_things(atc);
 +    }
 +
 +    local_pos = 0;
 +    for (i = 0; i < n; i++)
 +    {
 +        node = atc->pd[i];
 +        if (node == atc->nodeid)
 +        {
 +            /* Copy direct to the receive buffer */
 +            if (bX)
 +            {
 +                copy_rvec(x[i], atc->x[local_pos]);
 +            }
 +            atc->coefficient[local_pos] = data[i];
 +            local_pos++;
 +        }
 +        else
 +        {
 +            /* Copy to the send buffer */
 +            if (bX)
 +            {
 +                copy_rvec(x[i], pme->bufv[buf_index[node]]);
 +            }
 +            pme->bufr[buf_index[node]] = data[i];
 +            buf_index[node]++;
 +        }
 +    }
 +
 +    buf_pos = 0;
 +    for (i = 0; i < nnodes_comm; i++)
 +    {
 +        scount = atc->count[commnode[i]];
 +        rcount = atc->rcount[i];
 +        if (scount > 0 || rcount > 0)
 +        {
 +            if (bX)
 +            {
 +                /* Communicate the coordinates */
 +                pme_dd_sendrecv(atc, FALSE, i,
 +                                pme->bufv[buf_pos], scount*sizeof(rvec),
 +                                atc->x[local_pos], rcount*sizeof(rvec));
 +            }
 +            /* Communicate the coefficients */
 +            pme_dd_sendrecv(atc, FALSE, i,
 +                            pme->bufr+buf_pos, scount*sizeof(real),
 +                            atc->coefficient+local_pos, rcount*sizeof(real));
 +            buf_pos   += scount;
 +            local_pos += atc->rcount[i];
 +        }
 +    }
 +}
 +
 +static void dd_pmeredist_f(gmx_pme_t pme, pme_atomcomm_t *atc,
 +                           int n, rvec *f,
 +                           gmx_bool bAddF)
 +{
 +    int *commnode, *buf_index;
 +    int  nnodes_comm, local_pos, buf_pos, i, scount, rcount, node;
 +
 +    commnode  = atc->node_dest;
 +    buf_index = atc->buf_index;
 +
 +    nnodes_comm = min(2*atc->maxshift, atc->nslab-1);
 +
 +    local_pos = atc->count[atc->nodeid];
 +    buf_pos   = 0;
 +    for (i = 0; i < nnodes_comm; i++)
 +    {
 +        scount = atc->rcount[i];
 +        rcount = atc->count[commnode[i]];
 +        if (scount > 0 || rcount > 0)
 +        {
 +            /* Communicate the forces */
 +            pme_dd_sendrecv(atc, TRUE, i,
 +                            atc->f[local_pos], scount*sizeof(rvec),
 +                            pme->bufv[buf_pos], rcount*sizeof(rvec));
 +            local_pos += scount;
 +        }
 +        buf_index[commnode[i]] = buf_pos;
 +        buf_pos               += rcount;
 +    }
 +
 +    local_pos = 0;
 +    if (bAddF)
 +    {
 +        for (i = 0; i < n; i++)
 +        {
 +            node = atc->pd[i];
 +            if (node == atc->nodeid)
 +            {
 +                /* Add from the local force array */
 +                rvec_inc(f[i], atc->f[local_pos]);
 +                local_pos++;
 +            }
 +            else
 +            {
 +                /* Add from the receive buffer */
 +                rvec_inc(f[i], pme->bufv[buf_index[node]]);
 +                buf_index[node]++;
 +            }
 +        }
 +    }
 +    else
 +    {
 +        for (i = 0; i < n; i++)
 +        {
 +            node = atc->pd[i];
 +            if (node == atc->nodeid)
 +            {
 +                /* Copy from the local force array */
 +                copy_rvec(atc->f[local_pos], f[i]);
 +                local_pos++;
 +            }
 +            else
 +            {
 +                /* Copy from the receive buffer */
 +                copy_rvec(pme->bufv[buf_index[node]], f[i]);
 +                buf_index[node]++;
 +            }
 +        }
 +    }
 +}
 +
 +#ifdef GMX_MPI
 +static void gmx_sum_qgrid_dd(gmx_pme_t pme, real *grid, int direction)
 +{
 +    pme_overlap_t *overlap;
 +    int            send_index0, send_nindex;
 +    int            recv_index0, recv_nindex;
 +    MPI_Status     stat;
 +    int            i, j, k, ix, iy, iz, icnt;
 +    int            ipulse, send_id, recv_id, datasize;
 +    real          *p;
 +    real          *sendptr, *recvptr;
 +
 +    /* Start with minor-rank communication. This is a bit of a pain since it is not contiguous */
 +    overlap = &pme->overlap[1];
 +
 +    for (ipulse = 0; ipulse < overlap->noverlap_nodes; ipulse++)
 +    {
 +        /* Since we have already (un)wrapped the overlap in the z-dimension,
 +         * we only have to communicate 0 to nkz (not pmegrid_nz).
 +         */
 +        if (direction == GMX_SUM_GRID_FORWARD)
 +        {
 +            send_id       = overlap->send_id[ipulse];
 +            recv_id       = overlap->recv_id[ipulse];
 +            send_index0   = overlap->comm_data[ipulse].send_index0;
 +            send_nindex   = overlap->comm_data[ipulse].send_nindex;
 +            recv_index0   = overlap->comm_data[ipulse].recv_index0;
 +            recv_nindex   = overlap->comm_data[ipulse].recv_nindex;
 +        }
 +        else
 +        {
 +            send_id       = overlap->recv_id[ipulse];
 +            recv_id       = overlap->send_id[ipulse];
 +            send_index0   = overlap->comm_data[ipulse].recv_index0;
 +            send_nindex   = overlap->comm_data[ipulse].recv_nindex;
 +            recv_index0   = overlap->comm_data[ipulse].send_index0;
 +            recv_nindex   = overlap->comm_data[ipulse].send_nindex;
 +        }
 +
 +        /* Copy data to contiguous send buffer */
 +        if (debug)
 +        {
 +            fprintf(debug, "PME send rank %d %d -> %d grid start %d Communicating %d to %d\n",
 +                    pme->nodeid, overlap->nodeid, send_id,
 +                    pme->pmegrid_start_iy,
 +                    send_index0-pme->pmegrid_start_iy,
 +                    send_index0-pme->pmegrid_start_iy+send_nindex);
 +        }
 +        icnt = 0;
 +        for (i = 0; i < pme->pmegrid_nx; i++)
 +        {
 +            ix = i;
 +            for (j = 0; j < send_nindex; j++)
 +            {
 +                iy = j + send_index0 - pme->pmegrid_start_iy;
 +                for (k = 0; k < pme->nkz; k++)
 +                {
 +                    iz = k;
 +                    overlap->sendbuf[icnt++] = grid[ix*(pme->pmegrid_ny*pme->pmegrid_nz)+iy*(pme->pmegrid_nz)+iz];
 +                }
 +            }
 +        }
 +
 +        datasize      = pme->pmegrid_nx * pme->nkz;
 +
 +        MPI_Sendrecv(overlap->sendbuf, send_nindex*datasize, GMX_MPI_REAL,
 +                     send_id, ipulse,
 +                     overlap->recvbuf, recv_nindex*datasize, GMX_MPI_REAL,
 +                     recv_id, ipulse,
 +                     overlap->mpi_comm, &stat);
 +
 +        /* Get data from contiguous recv buffer */
 +        if (debug)
 +        {
 +            fprintf(debug, "PME recv rank %d %d <- %d grid start %d Communicating %d to %d\n",
 +                    pme->nodeid, overlap->nodeid, recv_id,
 +                    pme->pmegrid_start_iy,
 +                    recv_index0-pme->pmegrid_start_iy,
 +                    recv_index0-pme->pmegrid_start_iy+recv_nindex);
 +        }
 +        icnt = 0;
 +        for (i = 0; i < pme->pmegrid_nx; i++)
 +        {
 +            ix = i;
 +            for (j = 0; j < recv_nindex; j++)
 +            {
 +                iy = j + recv_index0 - pme->pmegrid_start_iy;
 +                for (k = 0; k < pme->nkz; k++)
 +                {
 +                    iz = k;
 +                    if (direction == GMX_SUM_GRID_FORWARD)
 +                    {
 +                        grid[ix*(pme->pmegrid_ny*pme->pmegrid_nz)+iy*(pme->pmegrid_nz)+iz] += overlap->recvbuf[icnt++];
 +                    }
 +                    else
 +                    {
 +                        grid[ix*(pme->pmegrid_ny*pme->pmegrid_nz)+iy*(pme->pmegrid_nz)+iz]  = overlap->recvbuf[icnt++];
 +                    }
 +                }
 +            }
 +        }
 +    }
 +
 +    /* Major dimension is easier, no copying required,
 +     * but we might have to sum to separate array.
 +     * Since we don't copy, we have to communicate up to pmegrid_nz,
 +     * not nkz as for the minor direction.
 +     */
 +    overlap = &pme->overlap[0];
 +
 +    for (ipulse = 0; ipulse < overlap->noverlap_nodes; ipulse++)
 +    {
 +        if (direction == GMX_SUM_GRID_FORWARD)
 +        {
 +            send_id       = overlap->send_id[ipulse];
 +            recv_id       = overlap->recv_id[ipulse];
 +            send_index0   = overlap->comm_data[ipulse].send_index0;
 +            send_nindex   = overlap->comm_data[ipulse].send_nindex;
 +            recv_index0   = overlap->comm_data[ipulse].recv_index0;
 +            recv_nindex   = overlap->comm_data[ipulse].recv_nindex;
 +            recvptr       = overlap->recvbuf;
 +        }
 +        else
 +        {
 +            send_id       = overlap->recv_id[ipulse];
 +            recv_id       = overlap->send_id[ipulse];
 +            send_index0   = overlap->comm_data[ipulse].recv_index0;
 +            send_nindex   = overlap->comm_data[ipulse].recv_nindex;
 +            recv_index0   = overlap->comm_data[ipulse].send_index0;
 +            recv_nindex   = overlap->comm_data[ipulse].send_nindex;
 +            recvptr       = grid + (recv_index0-pme->pmegrid_start_ix)*(pme->pmegrid_ny*pme->pmegrid_nz);
 +        }
 +
 +        sendptr       = grid + (send_index0-pme->pmegrid_start_ix)*(pme->pmegrid_ny*pme->pmegrid_nz);
 +        datasize      = pme->pmegrid_ny * pme->pmegrid_nz;
 +
 +        if (debug)
 +        {
 +            fprintf(debug, "PME send rank %d %d -> %d grid start %d Communicating %d to %d\n",
 +                    pme->nodeid, overlap->nodeid, send_id,
 +                    pme->pmegrid_start_ix,
 +                    send_index0-pme->pmegrid_start_ix,
 +                    send_index0-pme->pmegrid_start_ix+send_nindex);
 +            fprintf(debug, "PME recv rank %d %d <- %d grid start %d Communicating %d to %d\n",
 +                    pme->nodeid, overlap->nodeid, recv_id,
 +                    pme->pmegrid_start_ix,
 +                    recv_index0-pme->pmegrid_start_ix,
 +                    recv_index0-pme->pmegrid_start_ix+recv_nindex);
 +        }
 +
 +        MPI_Sendrecv(sendptr, send_nindex*datasize, GMX_MPI_REAL,
 +                     send_id, ipulse,
 +                     recvptr, recv_nindex*datasize, GMX_MPI_REAL,
 +                     recv_id, ipulse,
 +                     overlap->mpi_comm, &stat);
 +
 +        /* ADD data from contiguous recv buffer */
 +        if (direction == GMX_SUM_GRID_FORWARD)
 +        {
 +            p = grid + (recv_index0-pme->pmegrid_start_ix)*(pme->pmegrid_ny*pme->pmegrid_nz);
 +            for (i = 0; i < recv_nindex*datasize; i++)
 +            {
 +                p[i] += overlap->recvbuf[i];
 +            }
 +        }
 +    }
 +}
 +#endif
 +
 +
 +static int copy_pmegrid_to_fftgrid(gmx_pme_t pme, real *pmegrid, real *fftgrid, int grid_index)
 +{
 +    ivec    local_fft_ndata, local_fft_offset, local_fft_size;
 +    ivec    local_pme_size;
 +    int     i, ix, iy, iz;
 +    int     pmeidx, fftidx;
 +
 +    /* Dimensions should be identical for A/B grid, so we just use A here */
 +    gmx_parallel_3dfft_real_limits(pme->pfft_setup[grid_index],
 +                                   local_fft_ndata,
 +                                   local_fft_offset,
 +                                   local_fft_size);
 +
 +    local_pme_size[0] = pme->pmegrid_nx;
 +    local_pme_size[1] = pme->pmegrid_ny;
 +    local_pme_size[2] = pme->pmegrid_nz;
 +
 +    /* The fftgrid is always 'justified' to the lower-left corner of the PME grid,
 +       the offset is identical, and the PME grid always has more data (due to overlap)
 +     */
 +    {
 +#ifdef DEBUG_PME
 +        FILE *fp, *fp2;
 +        char  fn[STRLEN];
 +        real  val;
 +        sprintf(fn, "pmegrid%d.pdb", pme->nodeid);
 +        fp = gmx_ffopen(fn, "w");
 +        sprintf(fn, "pmegrid%d.txt", pme->nodeid);
 +        fp2 = gmx_ffopen(fn, "w");
 +#endif
 +
 +        for (ix = 0; ix < local_fft_ndata[XX]; ix++)
 +        {
 +            for (iy = 0; iy < local_fft_ndata[YY]; iy++)
 +            {
 +                for (iz = 0; iz < local_fft_ndata[ZZ]; iz++)
 +                {
 +                    pmeidx          = ix*(local_pme_size[YY]*local_pme_size[ZZ])+iy*(local_pme_size[ZZ])+iz;
 +                    fftidx          = ix*(local_fft_size[YY]*local_fft_size[ZZ])+iy*(local_fft_size[ZZ])+iz;
 +                    fftgrid[fftidx] = pmegrid[pmeidx];
 +#ifdef DEBUG_PME
 +                    val = 100*pmegrid[pmeidx];
 +                    if (pmegrid[pmeidx] != 0)
 +                    {
 +                        gmx_fprintf_pdb_atomline(fp, epdbATOM, pmeidx, "CA", ' ', "GLY", ' ', pmeidx, ' ',
 +                                                 5.0*ix, 5.0*iy, 5.0*iz, 1.0, val, "");
 +                    }
 +                    if (pmegrid[pmeidx] != 0)
 +                    {
 +                        fprintf(fp2, "%-12s  %5d  %5d  %5d  %12.5e\n",
 +                                "qgrid",
 +                                pme->pmegrid_start_ix + ix,
 +                                pme->pmegrid_start_iy + iy,
 +                                pme->pmegrid_start_iz + iz,
 +                                pmegrid[pmeidx]);
 +                    }
 +#endif
 +                }
 +            }
 +        }
 +#ifdef DEBUG_PME
 +        gmx_ffclose(fp);
 +        gmx_ffclose(fp2);
 +#endif
 +    }
 +    return 0;
 +}
 +
 +
 +static gmx_cycles_t omp_cyc_start()
 +{
 +    return gmx_cycles_read();
 +}
 +
 +static gmx_cycles_t omp_cyc_end(gmx_cycles_t c)
 +{
 +    return gmx_cycles_read() - c;
 +}
 +
 +
 +static int copy_fftgrid_to_pmegrid(gmx_pme_t pme, const real *fftgrid, real *pmegrid, int grid_index,
 +                                   int nthread, int thread)
 +{
 +    ivec          local_fft_ndata, local_fft_offset, local_fft_size;
 +    ivec          local_pme_size;
 +    int           ixy0, ixy1, ixy, ix, iy, iz;
 +    int           pmeidx, fftidx;
 +#ifdef PME_TIME_THREADS
 +    gmx_cycles_t  c1;
 +    static double cs1 = 0;
 +    static int    cnt = 0;
 +#endif
 +
 +#ifdef PME_TIME_THREADS
 +    c1 = omp_cyc_start();
 +#endif
 +    /* Dimensions should be identical for A/B grid, so we just use A here */
 +    gmx_parallel_3dfft_real_limits(pme->pfft_setup[grid_index],
 +                                   local_fft_ndata,
 +                                   local_fft_offset,
 +                                   local_fft_size);
 +
 +    local_pme_size[0] = pme->pmegrid_nx;
 +    local_pme_size[1] = pme->pmegrid_ny;
 +    local_pme_size[2] = pme->pmegrid_nz;
 +
 +    /* The fftgrid is always 'justified' to the lower-left corner of the PME grid,
 +       the offset is identical, and the PME grid always has more data (due to overlap)
 +     */
 +    ixy0 = ((thread  )*local_fft_ndata[XX]*local_fft_ndata[YY])/nthread;
 +    ixy1 = ((thread+1)*local_fft_ndata[XX]*local_fft_ndata[YY])/nthread;
 +
 +    for (ixy = ixy0; ixy < ixy1; ixy++)
 +    {
 +        ix = ixy/local_fft_ndata[YY];
 +        iy = ixy - ix*local_fft_ndata[YY];
 +
 +        pmeidx = (ix*local_pme_size[YY] + iy)*local_pme_size[ZZ];
 +        fftidx = (ix*local_fft_size[YY] + iy)*local_fft_size[ZZ];
 +        for (iz = 0; iz < local_fft_ndata[ZZ]; iz++)
 +        {
 +            pmegrid[pmeidx+iz] = fftgrid[fftidx+iz];
 +        }
 +    }
 +
 +#ifdef PME_TIME_THREADS
 +    c1   = omp_cyc_end(c1);
 +    cs1 += (double)c1;
 +    cnt++;
 +    if (cnt % 20 == 0)
 +    {
 +        printf("copy %.2f\n", cs1*1e-9);
 +    }
 +#endif
 +
 +    return 0;
 +}
 +
 +
 +static void wrap_periodic_pmegrid(gmx_pme_t pme, real *pmegrid)
 +{
 +    int     nx, ny, nz, pnx, pny, pnz, ny_x, overlap, ix, iy, iz;
 +
 +    nx = pme->nkx;
 +    ny = pme->nky;
 +    nz = pme->nkz;
 +
 +    pnx = pme->pmegrid_nx;
 +    pny = pme->pmegrid_ny;
 +    pnz = pme->pmegrid_nz;
 +
 +    overlap = pme->pme_order - 1;
 +
 +    /* Add periodic overlap in z */
 +    for (ix = 0; ix < pme->pmegrid_nx; ix++)
 +    {
 +        for (iy = 0; iy < pme->pmegrid_ny; iy++)
 +        {
 +            for (iz = 0; iz < overlap; iz++)
 +            {
 +                pmegrid[(ix*pny+iy)*pnz+iz] +=
 +                    pmegrid[(ix*pny+iy)*pnz+nz+iz];
 +            }
 +        }
 +    }
 +
 +    if (pme->nnodes_minor == 1)
 +    {
 +        for (ix = 0; ix < pme->pmegrid_nx; ix++)
 +        {
 +            for (iy = 0; iy < overlap; iy++)
 +            {
 +                for (iz = 0; iz < nz; iz++)
 +                {
 +                    pmegrid[(ix*pny+iy)*pnz+iz] +=
 +                        pmegrid[(ix*pny+ny+iy)*pnz+iz];
 +                }
 +            }
 +        }
 +    }
 +
 +    if (pme->nnodes_major == 1)
 +    {
 +        ny_x = (pme->nnodes_minor == 1 ? ny : pme->pmegrid_ny);
 +
 +        for (ix = 0; ix < overlap; ix++)
 +        {
 +            for (iy = 0; iy < ny_x; iy++)
 +            {
 +                for (iz = 0; iz < nz; iz++)
 +                {
 +                    pmegrid[(ix*pny+iy)*pnz+iz] +=
 +                        pmegrid[((nx+ix)*pny+iy)*pnz+iz];
 +                }
 +            }
 +        }
 +    }
 +}
 +
 +
 +static void unwrap_periodic_pmegrid(gmx_pme_t pme, real *pmegrid)
 +{
 +    int     nx, ny, nz, pnx, pny, pnz, ny_x, overlap, ix;
 +
 +    nx = pme->nkx;
 +    ny = pme->nky;
 +    nz = pme->nkz;
 +
 +    pnx = pme->pmegrid_nx;
 +    pny = pme->pmegrid_ny;
 +    pnz = pme->pmegrid_nz;
 +
 +    overlap = pme->pme_order - 1;
 +
 +    if (pme->nnodes_major == 1)
 +    {
 +        ny_x = (pme->nnodes_minor == 1 ? ny : pme->pmegrid_ny);
 +
 +        for (ix = 0; ix < overlap; ix++)
 +        {
 +            int iy, iz;
 +
 +            for (iy = 0; iy < ny_x; iy++)
 +            {
 +                for (iz = 0; iz < nz; iz++)
 +                {
 +                    pmegrid[((nx+ix)*pny+iy)*pnz+iz] =
 +                        pmegrid[(ix*pny+iy)*pnz+iz];
 +                }
 +            }
 +        }
 +    }
 +
 +    if (pme->nnodes_minor == 1)
 +    {
 +#pragma omp parallel for num_threads(pme->nthread) schedule(static)
 +        for (ix = 0; ix < pme->pmegrid_nx; ix++)
 +        {
 +            int iy, iz;
 +
 +            for (iy = 0; iy < overlap; iy++)
 +            {
 +                for (iz = 0; iz < nz; iz++)
 +                {
 +                    pmegrid[(ix*pny+ny+iy)*pnz+iz] =
 +                        pmegrid[(ix*pny+iy)*pnz+iz];
 +                }
 +            }
 +        }
 +    }
 +
 +    /* Copy periodic overlap in z */
 +#pragma omp parallel for num_threads(pme->nthread) schedule(static)
 +    for (ix = 0; ix < pme->pmegrid_nx; ix++)
 +    {
 +        int iy, iz;
 +
 +        for (iy = 0; iy < pme->pmegrid_ny; iy++)
 +        {
 +            for (iz = 0; iz < overlap; iz++)
 +            {
 +                pmegrid[(ix*pny+iy)*pnz+nz+iz] =
 +                    pmegrid[(ix*pny+iy)*pnz+iz];
 +            }
 +        }
 +    }
 +}
 +
 +
 +/* This has to be a macro to enable full compiler optimization with xlC (and probably others too) */
 +#define DO_BSPLINE(order)                            \
 +    for (ithx = 0; (ithx < order); ithx++)                    \
 +    {                                                    \
 +        index_x = (i0+ithx)*pny*pnz;                     \
 +        valx    = coefficient*thx[ithx];                          \
 +                                                     \
 +        for (ithy = 0; (ithy < order); ithy++)                \
 +        {                                                \
 +            valxy    = valx*thy[ithy];                   \
 +            index_xy = index_x+(j0+ithy)*pnz;            \
 +                                                     \
 +            for (ithz = 0; (ithz < order); ithz++)            \
 +            {                                            \
 +                index_xyz        = index_xy+(k0+ithz);   \
 +                grid[index_xyz] += valxy*thz[ithz];      \
 +            }                                            \
 +        }                                                \
 +    }
 +
 +
 +static void spread_coefficients_bsplines_thread(pmegrid_t                    *pmegrid,
 +                                                pme_atomcomm_t               *atc,
 +                                                splinedata_t                 *spline,
 +                                                pme_spline_work_t gmx_unused *work)
 +{
 +
 +    /* spread coefficients from home atoms to local grid */
 +    real          *grid;
 +    pme_overlap_t *ol;
 +    int            b, i, nn, n, ithx, ithy, ithz, i0, j0, k0;
 +    int       *    idxptr;
 +    int            order, norder, index_x, index_xy, index_xyz;
 +    real           valx, valxy, coefficient;
 +    real          *thx, *thy, *thz;
 +    int            localsize, bndsize;
 +    int            pnx, pny, pnz, ndatatot;
 +    int            offx, offy, offz;
 +
 +#if defined PME_SIMD4_SPREAD_GATHER && !defined PME_SIMD4_UNALIGNED
 +    real           thz_buffer[GMX_SIMD4_WIDTH*3], *thz_aligned;
 +
 +    thz_aligned = gmx_simd4_align_r(thz_buffer);
 +#endif
 +
 +    pnx = pmegrid->s[XX];
 +    pny = pmegrid->s[YY];
 +    pnz = pmegrid->s[ZZ];
 +
 +    offx = pmegrid->offset[XX];
 +    offy = pmegrid->offset[YY];
 +    offz = pmegrid->offset[ZZ];
 +
 +    ndatatot = pnx*pny*pnz;
 +    grid     = pmegrid->grid;
 +    for (i = 0; i < ndatatot; i++)
 +    {
 +        grid[i] = 0;
 +    }
 +
 +    order = pmegrid->order;
 +
 +    for (nn = 0; nn < spline->n; nn++)
 +    {
 +        n           = spline->ind[nn];
 +        coefficient = atc->coefficient[n];
 +
 +        if (coefficient != 0)
 +        {
 +            idxptr = atc->idx[n];
 +            norder = nn*order;
 +
 +            i0   = idxptr[XX] - offx;
 +            j0   = idxptr[YY] - offy;
 +            k0   = idxptr[ZZ] - offz;
 +
 +            thx = spline->theta[XX] + norder;
 +            thy = spline->theta[YY] + norder;
 +            thz = spline->theta[ZZ] + norder;
 +
 +            switch (order)
 +            {
 +                case 4:
 +#ifdef PME_SIMD4_SPREAD_GATHER
 +#ifdef PME_SIMD4_UNALIGNED
 +#define PME_SPREAD_SIMD4_ORDER4
 +#else
 +#define PME_SPREAD_SIMD4_ALIGNED
 +#define PME_ORDER 4
 +#endif
 +#include "pme_simd4.h"
 +#else
 +                    DO_BSPLINE(4);
 +#endif
 +                    break;
 +                case 5:
 +#ifdef PME_SIMD4_SPREAD_GATHER
 +#define PME_SPREAD_SIMD4_ALIGNED
 +#define PME_ORDER 5
 +#include "pme_simd4.h"
 +#else
 +                    DO_BSPLINE(5);
 +#endif
 +                    break;
 +                default:
 +                    DO_BSPLINE(order);
 +                    break;
 +            }
 +        }
 +    }
 +}
 +
 +static void set_grid_alignment(int gmx_unused *pmegrid_nz, int gmx_unused pme_order)
 +{
 +#ifdef PME_SIMD4_SPREAD_GATHER
 +    if (pme_order == 5
 +#ifndef PME_SIMD4_UNALIGNED
 +        || pme_order == 4
 +#endif
 +        )
 +    {
 +        /* Round nz up to a multiple of 4 to ensure alignment */
 +        *pmegrid_nz = ((*pmegrid_nz + 3) & ~3);
 +    }
 +#endif
 +}
 +
 +static void set_gridsize_alignment(int gmx_unused *gridsize, int gmx_unused pme_order)
 +{
 +#ifdef PME_SIMD4_SPREAD_GATHER
 +#ifndef PME_SIMD4_UNALIGNED
 +    if (pme_order == 4)
 +    {
 +        /* Add extra elements to ensured aligned operations do not go
 +         * beyond the allocated grid size.
 +         * Note that for pme_order=5, the pme grid z-size alignment
 +         * ensures that we will not go beyond the grid size.
 +         */
 +        *gridsize += 4;
 +    }
 +#endif
 +#endif
 +}
 +
 +static void pmegrid_init(pmegrid_t *grid,
 +                         int cx, int cy, int cz,
 +                         int x0, int y0, int z0,
 +                         int x1, int y1, int z1,
 +                         gmx_bool set_alignment,
 +                         int pme_order,
 +                         real *ptr)
 +{
 +    int nz, gridsize;
 +
 +    grid->ci[XX]     = cx;
 +    grid->ci[YY]     = cy;
 +    grid->ci[ZZ]     = cz;
 +    grid->offset[XX] = x0;
 +    grid->offset[YY] = y0;
 +    grid->offset[ZZ] = z0;
 +    grid->n[XX]      = x1 - x0 + pme_order - 1;
 +    grid->n[YY]      = y1 - y0 + pme_order - 1;
 +    grid->n[ZZ]      = z1 - z0 + pme_order - 1;
 +    copy_ivec(grid->n, grid->s);
 +
 +    nz = grid->s[ZZ];
 +    set_grid_alignment(&nz, pme_order);
 +    if (set_alignment)
 +    {
 +        grid->s[ZZ] = nz;
 +    }
 +    else if (nz != grid->s[ZZ])
 +    {
 +        gmx_incons("pmegrid_init call with an unaligned z size");
 +    }
 +
 +    grid->order = pme_order;
 +    if (ptr == NULL)
 +    {
 +        gridsize = grid->s[XX]*grid->s[YY]*grid->s[ZZ];
 +        set_gridsize_alignment(&gridsize, pme_order);
 +        snew_aligned(grid->grid, gridsize, SIMD4_ALIGNMENT);
 +    }
 +    else
 +    {
 +        grid->grid = ptr;
 +    }
 +}
 +
 +static int div_round_up(int enumerator, int denominator)
 +{
 +    return (enumerator + denominator - 1)/denominator;
 +}
 +
 +static void make_subgrid_division(const ivec n, int ovl, int nthread,
 +                                  ivec nsub)
 +{
 +    int gsize_opt, gsize;
 +    int nsx, nsy, nsz;
 +    char *env;
 +
 +    gsize_opt = -1;
 +    for (nsx = 1; nsx <= nthread; nsx++)
 +    {
 +        if (nthread % nsx == 0)
 +        {
 +            for (nsy = 1; nsy <= nthread; nsy++)
 +            {
 +                if (nsx*nsy <= nthread && nthread % (nsx*nsy) == 0)
 +                {
 +                    nsz = nthread/(nsx*nsy);
 +
 +                    /* Determine the number of grid points per thread */
 +                    gsize =
 +                        (div_round_up(n[XX], nsx) + ovl)*
 +                        (div_round_up(n[YY], nsy) + ovl)*
 +                        (div_round_up(n[ZZ], nsz) + ovl);
 +
 +                    /* Minimize the number of grids points per thread
 +                     * and, secondarily, the number of cuts in minor dimensions.
 +                     */
 +                    if (gsize_opt == -1 ||
 +                        gsize < gsize_opt ||
 +                        (gsize == gsize_opt &&
 +                         (nsz < nsub[ZZ] || (nsz == nsub[ZZ] && nsy < nsub[YY]))))
 +                    {
 +                        nsub[XX]  = nsx;
 +                        nsub[YY]  = nsy;
 +                        nsub[ZZ]  = nsz;
 +                        gsize_opt = gsize;
 +                    }
 +                }
 +            }
 +        }
 +    }
 +
 +    env = getenv("GMX_PME_THREAD_DIVISION");
 +    if (env != NULL)
 +    {
 +        sscanf(env, "%d %d %d", &nsub[XX], &nsub[YY], &nsub[ZZ]);
 +    }
 +
 +    if (nsub[XX]*nsub[YY]*nsub[ZZ] != nthread)
 +    {
 +        gmx_fatal(FARGS, "PME grid thread division (%d x %d x %d) does not match the total number of threads (%d)", nsub[XX], nsub[YY], nsub[ZZ], nthread);
 +    }
 +}
 +
 +static void pmegrids_init(pmegrids_t *grids,
 +                          int nx, int ny, int nz, int nz_base,
 +                          int pme_order,
 +                          gmx_bool bUseThreads,
 +                          int nthread,
 +                          int overlap_x,
 +                          int overlap_y)
 +{
 +    ivec n, n_base, g0, g1;
 +    int t, x, y, z, d, i, tfac;
 +    int max_comm_lines = -1;
 +
 +    n[XX] = nx - (pme_order - 1);
 +    n[YY] = ny - (pme_order - 1);
 +    n[ZZ] = nz - (pme_order - 1);
 +
 +    copy_ivec(n, n_base);
 +    n_base[ZZ] = nz_base;
 +
 +    pmegrid_init(&grids->grid, 0, 0, 0, 0, 0, 0, n[XX], n[YY], n[ZZ], FALSE, pme_order,
 +                 NULL);
 +
 +    grids->nthread = nthread;
 +
 +    make_subgrid_division(n_base, pme_order-1, grids->nthread, grids->nc);
 +
 +    if (bUseThreads)
 +    {
 +        ivec nst;
 +        int gridsize;
 +
 +        for (d = 0; d < DIM; d++)
 +        {
 +            nst[d] = div_round_up(n[d], grids->nc[d]) + pme_order - 1;
 +        }
 +        set_grid_alignment(&nst[ZZ], pme_order);
 +
 +        if (debug)
 +        {
 +            fprintf(debug, "pmegrid thread local division: %d x %d x %d\n",
 +                    grids->nc[XX], grids->nc[YY], grids->nc[ZZ]);
 +            fprintf(debug, "pmegrid %d %d %d max thread pmegrid %d %d %d\n",
 +                    nx, ny, nz,
 +                    nst[XX], nst[YY], nst[ZZ]);
 +        }
 +
 +        snew(grids->grid_th, grids->nthread);
 +        t        = 0;
 +        gridsize = nst[XX]*nst[YY]*nst[ZZ];
 +        set_gridsize_alignment(&gridsize, pme_order);
 +        snew_aligned(grids->grid_all,
 +                     grids->nthread*gridsize+(grids->nthread+1)*GMX_CACHE_SEP,
 +                     SIMD4_ALIGNMENT);
 +
 +        for (x = 0; x < grids->nc[XX]; x++)
 +        {
 +            for (y = 0; y < grids->nc[YY]; y++)
 +            {
 +                for (z = 0; z < grids->nc[ZZ]; z++)
 +                {
 +                    pmegrid_init(&grids->grid_th[t],
 +                                 x, y, z,
 +                                 (n[XX]*(x  ))/grids->nc[XX],
 +                                 (n[YY]*(y  ))/grids->nc[YY],
 +                                 (n[ZZ]*(z  ))/grids->nc[ZZ],
 +                                 (n[XX]*(x+1))/grids->nc[XX],
 +                                 (n[YY]*(y+1))/grids->nc[YY],
 +                                 (n[ZZ]*(z+1))/grids->nc[ZZ],
 +                                 TRUE,
 +                                 pme_order,
 +                                 grids->grid_all+GMX_CACHE_SEP+t*(gridsize+GMX_CACHE_SEP));
 +                    t++;
 +                }
 +            }
 +        }
 +    }
 +    else
 +    {
 +        grids->grid_th = NULL;
 +    }
 +
 +    snew(grids->g2t, DIM);
 +    tfac = 1;
 +    for (d = DIM-1; d >= 0; d--)
 +    {
 +        snew(grids->g2t[d], n[d]);
 +        t = 0;
 +        for (i = 0; i < n[d]; i++)
 +        {
 +            /* The second check should match the parameters
 +             * of the pmegrid_init call above.
 +             */
 +            while (t + 1 < grids->nc[d] && i >= (n[d]*(t+1))/grids->nc[d])
 +            {
 +                t++;
 +            }
 +            grids->g2t[d][i] = t*tfac;
 +        }
 +
 +        tfac *= grids->nc[d];
 +
 +        switch (d)
 +        {
 +            case XX: max_comm_lines = overlap_x;     break;
 +            case YY: max_comm_lines = overlap_y;     break;
 +            case ZZ: max_comm_lines = pme_order - 1; break;
 +        }
 +        grids->nthread_comm[d] = 0;
 +        while ((n[d]*grids->nthread_comm[d])/grids->nc[d] < max_comm_lines &&
 +               grids->nthread_comm[d] < grids->nc[d])
 +        {
 +            grids->nthread_comm[d]++;
 +        }
 +        if (debug != NULL)
 +        {
 +            fprintf(debug, "pmegrid thread grid communication range in %c: %d\n",
 +                    'x'+d, grids->nthread_comm[d]);
 +        }
 +        /* It should be possible to make grids->nthread_comm[d]==grids->nc[d]
 +         * work, but this is not a problematic restriction.
 +         */
 +        if (grids->nc[d] > 1 && grids->nthread_comm[d] > grids->nc[d])
 +        {
 +            gmx_fatal(FARGS, "Too many threads for PME (%d) compared to the number of grid lines, reduce the number of threads doing PME", grids->nthread);
 +        }
 +    }
 +}
 +
 +
 +static void pmegrids_destroy(pmegrids_t *grids)
 +{
 +    int t;
 +
 +    if (grids->grid.grid != NULL)
 +    {
 +        sfree(grids->grid.grid);
 +
 +        if (grids->nthread > 0)
 +        {
 +            for (t = 0; t < grids->nthread; t++)
 +            {
 +                sfree(grids->grid_th[t].grid);
 +            }
 +            sfree(grids->grid_th);
 +        }
 +    }
 +}
 +
 +
 +static void realloc_work(pme_work_t *work, int nkx)
 +{
 +    int simd_width;
 +
 +    if (nkx > work->nalloc)
 +    {
 +        work->nalloc = nkx;
 +        srenew(work->mhx, work->nalloc);
 +        srenew(work->mhy, work->nalloc);
 +        srenew(work->mhz, work->nalloc);
 +        srenew(work->m2, work->nalloc);
 +        /* Allocate an aligned pointer for SIMD operations, including extra
 +         * elements at the end for padding.
 +         */
 +#ifdef PME_SIMD_SOLVE
 +        simd_width = GMX_SIMD_REAL_WIDTH;
 +#else
 +        /* We can use any alignment, apart from 0, so we use 4 */
 +        simd_width = 4;
 +#endif
 +        sfree_aligned(work->denom);
 +        sfree_aligned(work->tmp1);
 +        sfree_aligned(work->tmp2);
 +        sfree_aligned(work->eterm);
 +        snew_aligned(work->denom, work->nalloc+simd_width, simd_width*sizeof(real));
 +        snew_aligned(work->tmp1,  work->nalloc+simd_width, simd_width*sizeof(real));
 +        snew_aligned(work->tmp2,  work->nalloc+simd_width, simd_width*sizeof(real));
 +        snew_aligned(work->eterm, work->nalloc+simd_width, simd_width*sizeof(real));
 +        srenew(work->m2inv, work->nalloc);
 +    }
 +}
 +
 +
 +static void free_work(pme_work_t *work)
 +{
 +    sfree(work->mhx);
 +    sfree(work->mhy);
 +    sfree(work->mhz);
 +    sfree(work->m2);
 +    sfree_aligned(work->denom);
 +    sfree_aligned(work->tmp1);
 +    sfree_aligned(work->tmp2);
 +    sfree_aligned(work->eterm);
 +    sfree(work->m2inv);
 +}
 +
 +
 +#if defined PME_SIMD_SOLVE
 +/* Calculate exponentials through SIMD */
 +gmx_inline static void calc_exponentials_q(int gmx_unused start, int end, real f, real *d_aligned, real *r_aligned, real *e_aligned)
 +{
 +    {
 +        const gmx_simd_real_t two = gmx_simd_set1_r(2.0);
 +        gmx_simd_real_t f_simd;
 +        gmx_simd_real_t lu;
 +        gmx_simd_real_t tmp_d1, d_inv, tmp_r, tmp_e;
 +        int kx;
 +        f_simd = gmx_simd_set1_r(f);
 +        /* We only need to calculate from start. But since start is 0 or 1
 +         * and we want to use aligned loads/stores, we always start from 0.
 +         */
 +        for (kx = 0; kx < end; kx += GMX_SIMD_REAL_WIDTH)
 +        {
 +            tmp_d1   = gmx_simd_load_r(d_aligned+kx);
 +            d_inv    = gmx_simd_inv_r(tmp_d1);
 +            tmp_r    = gmx_simd_load_r(r_aligned+kx);
 +            tmp_r    = gmx_simd_exp_r(tmp_r);
 +            tmp_e    = gmx_simd_mul_r(f_simd, d_inv);
 +            tmp_e    = gmx_simd_mul_r(tmp_e, tmp_r);
 +            gmx_simd_store_r(e_aligned+kx, tmp_e);
 +        }
 +    }
 +}
 +#else
 +gmx_inline static void calc_exponentials_q(int start, int end, real f, real *d, real *r, real *e)
 +{
 +    int kx;
 +    for (kx = start; kx < end; kx++)
 +    {
 +        d[kx] = 1.0/d[kx];
 +    }
 +    for (kx = start; kx < end; kx++)
 +    {
 +        r[kx] = exp(r[kx]);
 +    }
 +    for (kx = start; kx < end; kx++)
 +    {
 +        e[kx] = f*r[kx]*d[kx];
 +    }
 +}
 +#endif
 +
 +#if defined PME_SIMD_SOLVE
 +/* Calculate exponentials through SIMD */
 +gmx_inline static void calc_exponentials_lj(int gmx_unused start, int end, real *r_aligned, real *factor_aligned, real *d_aligned)
 +{
 +    gmx_simd_real_t tmp_r, tmp_d, tmp_fac, d_inv, tmp_mk;
 +    const gmx_simd_real_t sqr_PI = gmx_simd_sqrt_r(gmx_simd_set1_r(M_PI));
 +    int kx;
 +    for (kx = 0; kx < end; kx += GMX_SIMD_REAL_WIDTH)
 +    {
 +        /* We only need to calculate from start. But since start is 0 or 1
 +         * and we want to use aligned loads/stores, we always start from 0.
 +         */
 +        tmp_d = gmx_simd_load_r(d_aligned+kx);
 +        d_inv = gmx_simd_inv_r(tmp_d);
 +        gmx_simd_store_r(d_aligned+kx, d_inv);
 +        tmp_r = gmx_simd_load_r(r_aligned+kx);
 +        tmp_r = gmx_simd_exp_r(tmp_r);
 +        gmx_simd_store_r(r_aligned+kx, tmp_r);
 +        tmp_mk  = gmx_simd_load_r(factor_aligned+kx);
 +        tmp_fac = gmx_simd_mul_r(sqr_PI, gmx_simd_mul_r(tmp_mk, gmx_simd_erfc_r(tmp_mk)));
 +        gmx_simd_store_r(factor_aligned+kx, tmp_fac);
 +    }
 +}
 +#else
 +gmx_inline static void calc_exponentials_lj(int start, int end, real *r, real *tmp2, real *d)
 +{
 +    int kx;
 +    real mk;
 +    for (kx = start; kx < end; kx++)
 +    {
 +        d[kx] = 1.0/d[kx];
 +    }
 +
 +    for (kx = start; kx < end; kx++)
 +    {
 +        r[kx] = exp(r[kx]);
 +    }
 +
 +    for (kx = start; kx < end; kx++)
 +    {
 +        mk       = tmp2[kx];
 +        tmp2[kx] = sqrt(M_PI)*mk*gmx_erfc(mk);
 +    }
 +}
 +#endif
 +
 +static int solve_pme_yzx(gmx_pme_t pme, t_complex *grid,
 +                         real ewaldcoeff, real vol,
 +                         gmx_bool bEnerVir,
 +                         int nthread, int thread)
 +{
 +    /* do recip sum over local cells in grid */
 +    /* y major, z middle, x minor or continuous */
 +    t_complex *p0;
 +    int     kx, ky, kz, maxkx, maxky, maxkz;
 +    int     nx, ny, nz, iyz0, iyz1, iyz, iy, iz, kxstart, kxend;
 +    real    mx, my, mz;
 +    real    factor = M_PI*M_PI/(ewaldcoeff*ewaldcoeff);
 +    real    ets2, struct2, vfactor, ets2vf;
 +    real    d1, d2, energy = 0;
 +    real    by, bz;
 +    real    virxx = 0, virxy = 0, virxz = 0, viryy = 0, viryz = 0, virzz = 0;
 +    real    rxx, ryx, ryy, rzx, rzy, rzz;
 +    pme_work_t *work;
 +    real    *mhx, *mhy, *mhz, *m2, *denom, *tmp1, *eterm, *m2inv;
 +    real    mhxk, mhyk, mhzk, m2k;
 +    real    corner_fac;
 +    ivec    complex_order;
 +    ivec    local_ndata, local_offset, local_size;
 +    real    elfac;
 +
 +    elfac = ONE_4PI_EPS0/pme->epsilon_r;
 +
 +    nx = pme->nkx;
 +    ny = pme->nky;
 +    nz = pme->nkz;
 +
 +    /* Dimensions should be identical for A/B grid, so we just use A here */
 +    gmx_parallel_3dfft_complex_limits(pme->pfft_setup[PME_GRID_QA],
 +                                      complex_order,
 +                                      local_ndata,
 +                                      local_offset,
 +                                      local_size);
 +
 +    rxx = pme->recipbox[XX][XX];
 +    ryx = pme->recipbox[YY][XX];
 +    ryy = pme->recipbox[YY][YY];
 +    rzx = pme->recipbox[ZZ][XX];
 +    rzy = pme->recipbox[ZZ][YY];
 +    rzz = pme->recipbox[ZZ][ZZ];
 +
 +    maxkx = (nx+1)/2;
 +    maxky = (ny+1)/2;
 +    maxkz = nz/2+1;
 +
 +    work  = &pme->work[thread];
 +    mhx   = work->mhx;
 +    mhy   = work->mhy;
 +    mhz   = work->mhz;
 +    m2    = work->m2;
 +    denom = work->denom;
 +    tmp1  = work->tmp1;
 +    eterm = work->eterm;
 +    m2inv = work->m2inv;
 +
 +    iyz0 = local_ndata[YY]*local_ndata[ZZ]* thread   /nthread;
 +    iyz1 = local_ndata[YY]*local_ndata[ZZ]*(thread+1)/nthread;
 +
 +    for (iyz = iyz0; iyz < iyz1; iyz++)
 +    {
 +        iy = iyz/local_ndata[ZZ];
 +        iz = iyz - iy*local_ndata[ZZ];
 +
 +        ky = iy + local_offset[YY];
 +
 +        if (ky < maxky)
 +        {
 +            my = ky;
 +        }
 +        else
 +        {
 +            my = (ky - ny);
 +        }
 +
 +        by = M_PI*vol*pme->bsp_mod[YY][ky];
 +
 +        kz = iz + local_offset[ZZ];
 +
 +        mz = kz;
 +
 +        bz = pme->bsp_mod[ZZ][kz];
 +
 +        /* 0.5 correction for corner points */
 +        corner_fac = 1;
 +        if (kz == 0 || kz == (nz+1)/2)
 +        {
 +            corner_fac = 0.5;
 +        }
 +
 +        p0 = grid + iy*local_size[ZZ]*local_size[XX] + iz*local_size[XX];
 +
 +        /* We should skip the k-space point (0,0,0) */
 +        /* Note that since here x is the minor index, local_offset[XX]=0 */
 +        if (local_offset[XX] > 0 || ky > 0 || kz > 0)
 +        {
 +            kxstart = local_offset[XX];
 +        }
 +        else
 +        {
 +            kxstart = local_offset[XX] + 1;
 +            p0++;
 +        }
 +        kxend = local_offset[XX] + local_ndata[XX];
 +
 +        if (bEnerVir)
 +        {
 +            /* More expensive inner loop, especially because of the storage
 +             * of the mh elements in array's.
 +             * Because x is the minor grid index, all mh elements
 +             * depend on kx for triclinic unit cells.
 +             */
 +
 +            /* Two explicit loops to avoid a conditional inside the loop */
 +            for (kx = kxstart; kx < maxkx; kx++)
 +            {
 +                mx = kx;
 +
 +                mhxk      = mx * rxx;
 +                mhyk      = mx * ryx + my * ryy;
 +                mhzk      = mx * rzx + my * rzy + mz * rzz;
 +                m2k       = mhxk*mhxk + mhyk*mhyk + mhzk*mhzk;
 +                mhx[kx]   = mhxk;
 +                mhy[kx]   = mhyk;
 +                mhz[kx]   = mhzk;
 +                m2[kx]    = m2k;
 +                denom[kx] = m2k*bz*by*pme->bsp_mod[XX][kx];
 +                tmp1[kx]  = -factor*m2k;
 +            }
 +
 +            for (kx = maxkx; kx < kxend; kx++)
 +            {
 +                mx = (kx - nx);
 +
 +                mhxk      = mx * rxx;
 +                mhyk      = mx * ryx + my * ryy;
 +                mhzk      = mx * rzx + my * rzy + mz * rzz;
 +                m2k       = mhxk*mhxk + mhyk*mhyk + mhzk*mhzk;
 +                mhx[kx]   = mhxk;
 +                mhy[kx]   = mhyk;
 +                mhz[kx]   = mhzk;
 +                m2[kx]    = m2k;
 +                denom[kx] = m2k*bz*by*pme->bsp_mod[XX][kx];
 +                tmp1[kx]  = -factor*m2k;
 +            }
 +
 +            for (kx = kxstart; kx < kxend; kx++)
 +            {
 +                m2inv[kx] = 1.0/m2[kx];
 +            }
 +
 +            calc_exponentials_q(kxstart, kxend, elfac, denom, tmp1, eterm);
 +
 +            for (kx = kxstart; kx < kxend; kx++, p0++)
 +            {
 +                d1      = p0->re;
 +                d2      = p0->im;
 +
 +                p0->re  = d1*eterm[kx];
 +                p0->im  = d2*eterm[kx];
 +
 +                struct2 = 2.0*(d1*d1+d2*d2);
 +
 +                tmp1[kx] = eterm[kx]*struct2;
 +            }
 +
 +            for (kx = kxstart; kx < kxend; kx++)
 +            {
 +                ets2     = corner_fac*tmp1[kx];
 +                vfactor  = (factor*m2[kx] + 1.0)*2.0*m2inv[kx];
 +                energy  += ets2;
 +
 +                ets2vf   = ets2*vfactor;
 +                virxx   += ets2vf*mhx[kx]*mhx[kx] - ets2;
 +                virxy   += ets2vf*mhx[kx]*mhy[kx];
 +                virxz   += ets2vf*mhx[kx]*mhz[kx];
 +                viryy   += ets2vf*mhy[kx]*mhy[kx] - ets2;
 +                viryz   += ets2vf*mhy[kx]*mhz[kx];
 +                virzz   += ets2vf*mhz[kx]*mhz[kx] - ets2;
 +            }
 +        }
 +        else
 +        {
 +            /* We don't need to calculate the energy and the virial.
 +             * In this case the triclinic overhead is small.
 +             */
 +
 +            /* Two explicit loops to avoid a conditional inside the loop */
 +
 +            for (kx = kxstart; kx < maxkx; kx++)
 +            {
 +                mx = kx;
 +
 +                mhxk      = mx * rxx;
 +                mhyk      = mx * ryx + my * ryy;
 +                mhzk      = mx * rzx + my * rzy + mz * rzz;
 +                m2k       = mhxk*mhxk + mhyk*mhyk + mhzk*mhzk;
 +                denom[kx] = m2k*bz*by*pme->bsp_mod[XX][kx];
 +                tmp1[kx]  = -factor*m2k;
 +            }
 +
 +            for (kx = maxkx; kx < kxend; kx++)
 +            {
 +                mx = (kx - nx);
 +
 +                mhxk      = mx * rxx;
 +                mhyk      = mx * ryx + my * ryy;
 +                mhzk      = mx * rzx + my * rzy + mz * rzz;
 +                m2k       = mhxk*mhxk + mhyk*mhyk + mhzk*mhzk;
 +                denom[kx] = m2k*bz*by*pme->bsp_mod[XX][kx];
 +                tmp1[kx]  = -factor*m2k;
 +            }
 +
 +            calc_exponentials_q(kxstart, kxend, elfac, denom, tmp1, eterm);
 +
 +            for (kx = kxstart; kx < kxend; kx++, p0++)
 +            {
 +                d1      = p0->re;
 +                d2      = p0->im;
 +
 +                p0->re  = d1*eterm[kx];
 +                p0->im  = d2*eterm[kx];
 +            }
 +        }
 +    }
 +
 +    if (bEnerVir)
 +    {
 +        /* Update virial with local values.
 +         * The virial is symmetric by definition.
 +         * this virial seems ok for isotropic scaling, but I'm
 +         * experiencing problems on semiisotropic membranes.
 +         * IS THAT COMMENT STILL VALID??? (DvdS, 2001/02/07).
 +         */
 +        work->vir_q[XX][XX] = 0.25*virxx;
 +        work->vir_q[YY][YY] = 0.25*viryy;
 +        work->vir_q[ZZ][ZZ] = 0.25*virzz;
 +        work->vir_q[XX][YY] = work->vir_q[YY][XX] = 0.25*virxy;
 +        work->vir_q[XX][ZZ] = work->vir_q[ZZ][XX] = 0.25*virxz;
 +        work->vir_q[YY][ZZ] = work->vir_q[ZZ][YY] = 0.25*viryz;
 +
 +        /* This energy should be corrected for a charged system */
 +        work->energy_q = 0.5*energy;
 +    }
 +
 +    /* Return the loop count */
 +    return local_ndata[YY]*local_ndata[XX];
 +}
 +
 +static int solve_pme_lj_yzx(gmx_pme_t pme, t_complex **grid, gmx_bool bLB,
 +                            real ewaldcoeff, real vol,
 +                            gmx_bool bEnerVir, int nthread, int thread)
 +{
 +    /* do recip sum over local cells in grid */
 +    /* y major, z middle, x minor or continuous */
 +    int     ig, gcount;
 +    int     kx, ky, kz, maxkx, maxky, maxkz;
 +    int     nx, ny, nz, iy, iyz0, iyz1, iyz, iz, kxstart, kxend;
 +    real    mx, my, mz;
 +    real    factor = M_PI*M_PI/(ewaldcoeff*ewaldcoeff);
 +    real    ets2, ets2vf;
 +    real    eterm, vterm, d1, d2, energy = 0;
 +    real    by, bz;
 +    real    virxx = 0, virxy = 0, virxz = 0, viryy = 0, viryz = 0, virzz = 0;
 +    real    rxx, ryx, ryy, rzx, rzy, rzz;
 +    real    *mhx, *mhy, *mhz, *m2, *denom, *tmp1, *tmp2;
 +    real    mhxk, mhyk, mhzk, m2k;
 +    real    mk;
 +    pme_work_t *work;
 +    real    corner_fac;
 +    ivec    complex_order;
 +    ivec    local_ndata, local_offset, local_size;
 +    nx = pme->nkx;
 +    ny = pme->nky;
 +    nz = pme->nkz;
 +
 +    /* Dimensions should be identical for A/B grid, so we just use A here */
 +    gmx_parallel_3dfft_complex_limits(pme->pfft_setup[PME_GRID_C6A],
 +                                      complex_order,
 +                                      local_ndata,
 +                                      local_offset,
 +                                      local_size);
 +    rxx = pme->recipbox[XX][XX];
 +    ryx = pme->recipbox[YY][XX];
 +    ryy = pme->recipbox[YY][YY];
 +    rzx = pme->recipbox[ZZ][XX];
 +    rzy = pme->recipbox[ZZ][YY];
 +    rzz = pme->recipbox[ZZ][ZZ];
 +
 +    maxkx = (nx+1)/2;
 +    maxky = (ny+1)/2;
 +    maxkz = nz/2+1;
 +
 +    work  = &pme->work[thread];
 +    mhx   = work->mhx;
 +    mhy   = work->mhy;
 +    mhz   = work->mhz;
 +    m2    = work->m2;
 +    denom = work->denom;
 +    tmp1  = work->tmp1;
 +    tmp2  = work->tmp2;
 +
 +    iyz0 = local_ndata[YY]*local_ndata[ZZ]* thread   /nthread;
 +    iyz1 = local_ndata[YY]*local_ndata[ZZ]*(thread+1)/nthread;
 +
 +    for (iyz = iyz0; iyz < iyz1; iyz++)
 +    {
 +        iy = iyz/local_ndata[ZZ];
 +        iz = iyz - iy*local_ndata[ZZ];
 +
 +        ky = iy + local_offset[YY];
 +
 +        if (ky < maxky)
 +        {
 +            my = ky;
 +        }
 +        else
 +        {
 +            my = (ky - ny);
 +        }
 +
 +        by = 3.0*vol*pme->bsp_mod[YY][ky]
 +            / (M_PI*sqrt(M_PI)*ewaldcoeff*ewaldcoeff*ewaldcoeff);
 +
 +        kz = iz + local_offset[ZZ];
 +
 +        mz = kz;
 +
 +        bz = pme->bsp_mod[ZZ][kz];
 +
 +        /* 0.5 correction for corner points */
 +        corner_fac = 1;
 +        if (kz == 0 || kz == (nz+1)/2)
 +        {
 +            corner_fac = 0.5;
 +        }
 +
 +        kxstart = local_offset[XX];
 +        kxend   = local_offset[XX] + local_ndata[XX];
 +        if (bEnerVir)
 +        {
 +            /* More expensive inner loop, especially because of the
 +             * storage of the mh elements in array's.  Because x is the
 +             * minor grid index, all mh elements depend on kx for
 +             * triclinic unit cells.
 +             */
 +
 +            /* Two explicit loops to avoid a conditional inside the loop */
 +            for (kx = kxstart; kx < maxkx; kx++)
 +            {
 +                mx = kx;
 +
 +                mhxk      = mx * rxx;
 +                mhyk      = mx * ryx + my * ryy;
 +                mhzk      = mx * rzx + my * rzy + mz * rzz;
 +                m2k       = mhxk*mhxk + mhyk*mhyk + mhzk*mhzk;
 +                mhx[kx]   = mhxk;
 +                mhy[kx]   = mhyk;
 +                mhz[kx]   = mhzk;
 +                m2[kx]    = m2k;
 +                denom[kx] = bz*by*pme->bsp_mod[XX][kx];
 +                tmp1[kx]  = -factor*m2k;
 +                tmp2[kx]  = sqrt(factor*m2k);
 +            }
 +
 +            for (kx = maxkx; kx < kxend; kx++)
 +            {
 +                mx = (kx - nx);
 +
 +                mhxk      = mx * rxx;
 +                mhyk      = mx * ryx + my * ryy;
 +                mhzk      = mx * rzx + my * rzy + mz * rzz;
 +                m2k       = mhxk*mhxk + mhyk*mhyk + mhzk*mhzk;
 +                mhx[kx]   = mhxk;
 +                mhy[kx]   = mhyk;
 +                mhz[kx]   = mhzk;
 +                m2[kx]    = m2k;
 +                denom[kx] = bz*by*pme->bsp_mod[XX][kx];
 +                tmp1[kx]  = -factor*m2k;
 +                tmp2[kx]  = sqrt(factor*m2k);
 +            }
 +
 +            calc_exponentials_lj(kxstart, kxend, tmp1, tmp2, denom);
 +
 +            for (kx = kxstart; kx < kxend; kx++)
 +            {
 +                m2k   = factor*m2[kx];
 +                eterm = -((1.0 - 2.0*m2k)*tmp1[kx]
 +                          + 2.0*m2k*tmp2[kx]);
 +                vterm    = 3.0*(-tmp1[kx] + tmp2[kx]);
 +                tmp1[kx] = eterm*denom[kx];
 +                tmp2[kx] = vterm*denom[kx];
 +            }
 +
 +            if (!bLB)
 +            {
 +                t_complex *p0;
 +                real       struct2;
 +
 +                p0 = grid[0] + iy*local_size[ZZ]*local_size[XX] + iz*local_size[XX];
 +                for (kx = kxstart; kx < kxend; kx++, p0++)
 +                {
 +                    d1      = p0->re;
 +                    d2      = p0->im;
 +
 +                    eterm   = tmp1[kx];
 +                    vterm   = tmp2[kx];
 +                    p0->re  = d1*eterm;
 +                    p0->im  = d2*eterm;
 +
 +                    struct2 = 2.0*(d1*d1+d2*d2);
 +
 +                    tmp1[kx] = eterm*struct2;
 +                    tmp2[kx] = vterm*struct2;
 +                }
 +            }
 +            else
 +            {
 +                real *struct2 = denom;
 +                real  str2;
 +
 +                for (kx = kxstart; kx < kxend; kx++)
 +                {
 +                    struct2[kx] = 0.0;
 +                }
 +                /* Due to symmetry we only need to calculate 4 of the 7 terms */
 +                for (ig = 0; ig <= 3; ++ig)
 +                {
 +                    t_complex *p0, *p1;
 +                    real       scale;
 +
 +                    p0    = grid[ig] + iy*local_size[ZZ]*local_size[XX] + iz*local_size[XX];
 +                    p1    = grid[6-ig] + iy*local_size[ZZ]*local_size[XX] + iz*local_size[XX];
 +                    scale = 2.0*lb_scale_factor_symm[ig];
 +                    for (kx = kxstart; kx < kxend; ++kx, ++p0, ++p1)
 +                    {
 +                        struct2[kx] += scale*(p0->re*p1->re + p0->im*p1->im);
 +                    }
 +
 +                }
 +                for (ig = 0; ig <= 6; ++ig)
 +                {
 +                    t_complex *p0;
 +
 +                    p0 = grid[ig] + iy*local_size[ZZ]*local_size[XX] + iz*local_size[XX];
 +                    for (kx = kxstart; kx < kxend; kx++, p0++)
 +                    {
 +                        d1     = p0->re;
 +                        d2     = p0->im;
 +
 +                        eterm  = tmp1[kx];
 +                        p0->re = d1*eterm;
 +                        p0->im = d2*eterm;
 +                    }
 +                }
 +                for (kx = kxstart; kx < kxend; kx++)
 +                {
 +                    eterm    = tmp1[kx];
 +                    vterm    = tmp2[kx];
 +                    str2     = struct2[kx];
 +                    tmp1[kx] = eterm*str2;
 +                    tmp2[kx] = vterm*str2;
 +                }
 +            }
 +
 +            for (kx = kxstart; kx < kxend; kx++)
 +            {
 +                ets2     = corner_fac*tmp1[kx];
 +                vterm    = 2.0*factor*tmp2[kx];
 +                energy  += ets2;
 +                ets2vf   = corner_fac*vterm;
 +                virxx   += ets2vf*mhx[kx]*mhx[kx] - ets2;
 +                virxy   += ets2vf*mhx[kx]*mhy[kx];
 +                virxz   += ets2vf*mhx[kx]*mhz[kx];
 +                viryy   += ets2vf*mhy[kx]*mhy[kx] - ets2;
 +                viryz   += ets2vf*mhy[kx]*mhz[kx];
 +                virzz   += ets2vf*mhz[kx]*mhz[kx] - ets2;
 +            }
 +        }
 +        else
 +        {
 +            /* We don't need to calculate the energy and the virial.
 +             *  In this case the triclinic overhead is small.
 +             */
 +
 +            /* Two explicit loops to avoid a conditional inside the loop */
 +
 +            for (kx = kxstart; kx < maxkx; kx++)
 +            {
 +                mx = kx;
 +
 +                mhxk      = mx * rxx;
 +                mhyk      = mx * ryx + my * ryy;
 +                mhzk      = mx * rzx + my * rzy + mz * rzz;
 +                m2k       = mhxk*mhxk + mhyk*mhyk + mhzk*mhzk;
 +                m2[kx]    = m2k;
 +                denom[kx] = bz*by*pme->bsp_mod[XX][kx];
 +                tmp1[kx]  = -factor*m2k;
 +                tmp2[kx]  = sqrt(factor*m2k);
 +            }
 +
 +            for (kx = maxkx; kx < kxend; kx++)
 +            {
 +                mx = (kx - nx);
 +
 +                mhxk      = mx * rxx;
 +                mhyk      = mx * ryx + my * ryy;
 +                mhzk      = mx * rzx + my * rzy + mz * rzz;
 +                m2k       = mhxk*mhxk + mhyk*mhyk + mhzk*mhzk;
 +                m2[kx]    = m2k;
 +                denom[kx] = bz*by*pme->bsp_mod[XX][kx];
 +                tmp1[kx]  = -factor*m2k;
 +                tmp2[kx]  = sqrt(factor*m2k);
 +            }
 +
 +            calc_exponentials_lj(kxstart, kxend, tmp1, tmp2, denom);
 +
 +            for (kx = kxstart; kx < kxend; kx++)
 +            {
 +                m2k    = factor*m2[kx];
 +                eterm  = -((1.0 - 2.0*m2k)*tmp1[kx]
 +                           + 2.0*m2k*tmp2[kx]);
 +                tmp1[kx] = eterm*denom[kx];
 +            }
 +            gcount = (bLB ? 7 : 1);
 +            for (ig = 0; ig < gcount; ++ig)
 +            {
 +                t_complex *p0;
 +
 +                p0 = grid[ig] + iy*local_size[ZZ]*local_size[XX] + iz*local_size[XX];
 +                for (kx = kxstart; kx < kxend; kx++, p0++)
 +                {
 +                    d1      = p0->re;
 +                    d2      = p0->im;
 +
 +                    eterm   = tmp1[kx];
 +
 +                    p0->re  = d1*eterm;
 +                    p0->im  = d2*eterm;
 +                }
 +            }
 +        }
 +    }
 +    if (bEnerVir)
 +    {
 +        work->vir_lj[XX][XX] = 0.25*virxx;
 +        work->vir_lj[YY][YY] = 0.25*viryy;
 +        work->vir_lj[ZZ][ZZ] = 0.25*virzz;
 +        work->vir_lj[XX][YY] = work->vir_lj[YY][XX] = 0.25*virxy;
 +        work->vir_lj[XX][ZZ] = work->vir_lj[ZZ][XX] = 0.25*virxz;
 +        work->vir_lj[YY][ZZ] = work->vir_lj[ZZ][YY] = 0.25*viryz;
 +
 +        /* This energy should be corrected for a charged system */
 +        work->energy_lj = 0.5*energy;
 +    }
 +    /* Return the loop count */
 +    return local_ndata[YY]*local_ndata[XX];
 +}
 +
 +static void get_pme_ener_vir_q(const gmx_pme_t pme, int nthread,
 +                               real *mesh_energy, matrix vir)
 +{
 +    /* This function sums output over threads and should therefore
 +     * only be called after thread synchronization.
 +     */
 +    int thread;
 +
 +    *mesh_energy = pme->work[0].energy_q;
 +    copy_mat(pme->work[0].vir_q, vir);
 +
 +    for (thread = 1; thread < nthread; thread++)
 +    {
 +        *mesh_energy += pme->work[thread].energy_q;
 +        m_add(vir, pme->work[thread].vir_q, vir);
 +    }
 +}
 +
 +static void get_pme_ener_vir_lj(const gmx_pme_t pme, int nthread,
 +                                real *mesh_energy, matrix vir)
 +{
 +    /* This function sums output over threads and should therefore
 +     * only be called after thread synchronization.
 +     */
 +    int thread;
 +
 +    *mesh_energy = pme->work[0].energy_lj;
 +    copy_mat(pme->work[0].vir_lj, vir);
 +
 +    for (thread = 1; thread < nthread; thread++)
 +    {
 +        *mesh_energy += pme->work[thread].energy_lj;
 +        m_add(vir, pme->work[thread].vir_lj, vir);
 +    }
 +}
 +
 +
 +#define DO_FSPLINE(order)                      \
 +    for (ithx = 0; (ithx < order); ithx++)              \
 +    {                                              \
 +        index_x = (i0+ithx)*pny*pnz;               \
 +        tx      = thx[ithx];                       \
 +        dx      = dthx[ithx];                      \
 +                                               \
 +        for (ithy = 0; (ithy < order); ithy++)          \
 +        {                                          \
 +            index_xy = index_x+(j0+ithy)*pnz;      \
 +            ty       = thy[ithy];                  \
 +            dy       = dthy[ithy];                 \
 +            fxy1     = fz1 = 0;                    \
 +                                               \
 +            for (ithz = 0; (ithz < order); ithz++)      \
 +            {                                      \
 +                gval  = grid[index_xy+(k0+ithz)];  \
 +                fxy1 += thz[ithz]*gval;            \
 +                fz1  += dthz[ithz]*gval;           \
 +            }                                      \
 +            fx += dx*ty*fxy1;                      \
 +            fy += tx*dy*fxy1;                      \
 +            fz += tx*ty*fz1;                       \
 +        }                                          \
 +    }
 +
 +
 +static void gather_f_bsplines(gmx_pme_t pme, real *grid,
 +                              gmx_bool bClearF, pme_atomcomm_t *atc,
 +                              splinedata_t *spline,
 +                              real scale)
 +{
 +    /* sum forces for local particles */
 +    int     nn, n, ithx, ithy, ithz, i0, j0, k0;
 +    int     index_x, index_xy;
 +    int     nx, ny, nz, pnx, pny, pnz;
 +    int *   idxptr;
 +    real    tx, ty, dx, dy, coefficient;
 +    real    fx, fy, fz, gval;
 +    real    fxy1, fz1;
 +    real    *thx, *thy, *thz, *dthx, *dthy, *dthz;
 +    int     norder;
 +    real    rxx, ryx, ryy, rzx, rzy, rzz;
 +    int     order;
 +
 +    pme_spline_work_t *work;
 +
 +#if defined PME_SIMD4_SPREAD_GATHER && !defined PME_SIMD4_UNALIGNED
 +    real           thz_buffer[GMX_SIMD4_WIDTH*3],  *thz_aligned;
 +    real           dthz_buffer[GMX_SIMD4_WIDTH*3], *dthz_aligned;
 +
 +    thz_aligned  = gmx_simd4_align_r(thz_buffer);
 +    dthz_aligned = gmx_simd4_align_r(dthz_buffer);
 +#endif
 +
 +    work = pme->spline_work;
 +
 +    order = pme->pme_order;
 +    thx   = spline->theta[XX];
 +    thy   = spline->theta[YY];
 +    thz   = spline->theta[ZZ];
 +    dthx  = spline->dtheta[XX];
 +    dthy  = spline->dtheta[YY];
 +    dthz  = spline->dtheta[ZZ];
 +    nx    = pme->nkx;
 +    ny    = pme->nky;
 +    nz    = pme->nkz;
 +    pnx   = pme->pmegrid_nx;
 +    pny   = pme->pmegrid_ny;
 +    pnz   = pme->pmegrid_nz;
 +
 +    rxx   = pme->recipbox[XX][XX];
 +    ryx   = pme->recipbox[YY][XX];
 +    ryy   = pme->recipbox[YY][YY];
 +    rzx   = pme->recipbox[ZZ][XX];
 +    rzy   = pme->recipbox[ZZ][YY];
 +    rzz   = pme->recipbox[ZZ][ZZ];
 +
 +    for (nn = 0; nn < spline->n; nn++)
 +    {
 +        n           = spline->ind[nn];
 +        coefficient = scale*atc->coefficient[n];
 +
 +        if (bClearF)
 +        {
 +            atc->f[n][XX] = 0;
 +            atc->f[n][YY] = 0;
 +            atc->f[n][ZZ] = 0;
 +        }
 +        if (coefficient != 0)
 +        {
 +            fx     = 0;
 +            fy     = 0;
 +            fz     = 0;
 +            idxptr = atc->idx[n];
 +            norder = nn*order;
 +
 +            i0   = idxptr[XX];
 +            j0   = idxptr[YY];
 +            k0   = idxptr[ZZ];
 +
 +            /* Pointer arithmetic alert, next six statements */
 +            thx  = spline->theta[XX] + norder;
 +            thy  = spline->theta[YY] + norder;
 +            thz  = spline->theta[ZZ] + norder;
 +            dthx = spline->dtheta[XX] + norder;
 +            dthy = spline->dtheta[YY] + norder;
 +            dthz = spline->dtheta[ZZ] + norder;
 +
 +            switch (order)
 +            {
 +                case 4:
 +#ifdef PME_SIMD4_SPREAD_GATHER
 +#ifdef PME_SIMD4_UNALIGNED
 +#define PME_GATHER_F_SIMD4_ORDER4
 +#else
 +#define PME_GATHER_F_SIMD4_ALIGNED
 +#define PME_ORDER 4
 +#endif
 +#include "pme_simd4.h"
 +#else
 +                    DO_FSPLINE(4);
 +#endif
 +                    break;
 +                case 5:
 +#ifdef PME_SIMD4_SPREAD_GATHER
 +#define PME_GATHER_F_SIMD4_ALIGNED
 +#define PME_ORDER 5
 +#include "pme_simd4.h"
 +#else
 +                    DO_FSPLINE(5);
 +#endif
 +                    break;
 +                default:
 +                    DO_FSPLINE(order);
 +                    break;
 +            }
 +
 +            atc->f[n][XX] += -coefficient*( fx*nx*rxx );
 +            atc->f[n][YY] += -coefficient*( fx*nx*ryx + fy*ny*ryy );
 +            atc->f[n][ZZ] += -coefficient*( fx*nx*rzx + fy*ny*rzy + fz*nz*rzz );
 +        }
 +    }
 +    /* Since the energy and not forces are interpolated
 +     * the net force might not be exactly zero.
 +     * This can be solved by also interpolating F, but
 +     * that comes at a cost.
 +     * A better hack is to remove the net force every
 +     * step, but that must be done at a higher level
 +     * since this routine doesn't see all atoms if running
 +     * in parallel. Don't know how important it is?  EL 990726
 +     */
 +}
 +
 +
 +static real gather_energy_bsplines(gmx_pme_t pme, real *grid,
 +                                   pme_atomcomm_t *atc)
 +{
 +    splinedata_t *spline;
 +    int     n, ithx, ithy, ithz, i0, j0, k0;
 +    int     index_x, index_xy;
 +    int *   idxptr;
 +    real    energy, pot, tx, ty, coefficient, gval;
 +    real    *thx, *thy, *thz;
 +    int     norder;
 +    int     order;
 +
 +    spline = &atc->spline[0];
 +
 +    order = pme->pme_order;
 +
 +    energy = 0;
 +    for (n = 0; (n < atc->n); n++)
 +    {
 +        coefficient      = atc->coefficient[n];
 +
 +        if (coefficient != 0)
 +        {
 +            idxptr = atc->idx[n];
 +            norder = n*order;
 +
 +            i0   = idxptr[XX];
 +            j0   = idxptr[YY];
 +            k0   = idxptr[ZZ];
 +
 +            /* Pointer arithmetic alert, next three statements */
 +            thx  = spline->theta[XX] + norder;
 +            thy  = spline->theta[YY] + norder;
 +            thz  = spline->theta[ZZ] + norder;
 +
 +            pot = 0;
 +            for (ithx = 0; (ithx < order); ithx++)
 +            {
 +                index_x = (i0+ithx)*pme->pmegrid_ny*pme->pmegrid_nz;
 +                tx      = thx[ithx];
 +
 +                for (ithy = 0; (ithy < order); ithy++)
 +                {
 +                    index_xy = index_x+(j0+ithy)*pme->pmegrid_nz;
 +                    ty       = thy[ithy];
 +
 +                    for (ithz = 0; (ithz < order); ithz++)
 +                    {
 +                        gval  = grid[index_xy+(k0+ithz)];
 +                        pot  += tx*ty*thz[ithz]*gval;
 +                    }
 +
 +                }
 +            }
 +
 +            energy += pot*coefficient;
 +        }
 +    }
 +
 +    return energy;
 +}
 +
 +/* Macro to force loop unrolling by fixing order.
 + * This gives a significant performance gain.
 + */
 +#define CALC_SPLINE(order)                     \
 +    {                                              \
 +        int j, k, l;                                 \
 +        real dr, div;                               \
 +        real data[PME_ORDER_MAX];                  \
 +        real ddata[PME_ORDER_MAX];                 \
 +                                               \
 +        for (j = 0; (j < DIM); j++)                     \
 +        {                                          \
 +            dr  = xptr[j];                         \
 +                                               \
 +            /* dr is relative offset from lower cell limit */ \
 +            data[order-1] = 0;                     \
 +            data[1]       = dr;                          \
 +            data[0]       = 1 - dr;                      \
 +                                               \
 +            for (k = 3; (k < order); k++)               \
 +            {                                      \
 +                div       = 1.0/(k - 1.0);               \
 +                data[k-1] = div*dr*data[k-2];      \
 +                for (l = 1; (l < (k-1)); l++)           \
 +                {                                  \
 +                    data[k-l-1] = div*((dr+l)*data[k-l-2]+(k-l-dr)* \
 +                                       data[k-l-1]);                \
 +                }                                  \
 +                data[0] = div*(1-dr)*data[0];      \
 +            }                                      \
 +            /* differentiate */                    \
 +            ddata[0] = -data[0];                   \
 +            for (k = 1; (k < order); k++)               \
 +            {                                      \
 +                ddata[k] = data[k-1] - data[k];    \
 +            }                                      \
 +                                               \
 +            div           = 1.0/(order - 1);                 \
 +            data[order-1] = div*dr*data[order-2];  \
 +            for (l = 1; (l < (order-1)); l++)           \
 +            {                                      \
 +                data[order-l-1] = div*((dr+l)*data[order-l-2]+    \
 +                                       (order-l-dr)*data[order-l-1]); \
 +            }                                      \
 +            data[0] = div*(1 - dr)*data[0];        \
 +                                               \
 +            for (k = 0; k < order; k++)                 \
 +            {                                      \
 +                theta[j][i*order+k]  = data[k];    \
 +                dtheta[j][i*order+k] = ddata[k];   \
 +            }                                      \
 +        }                                          \
 +    }
 +
 +void make_bsplines(splinevec theta, splinevec dtheta, int order,
 +                   rvec fractx[], int nr, int ind[], real coefficient[],
 +                   gmx_bool bDoSplines)
 +{
 +    /* construct splines for local atoms */
 +    int  i, ii;
 +    real *xptr;
 +
 +    for (i = 0; i < nr; i++)
 +    {
 +        /* With free energy we do not use the coefficient check.
 +         * In most cases this will be more efficient than calling make_bsplines
 +         * twice, since usually more than half the particles have non-zero coefficients.
 +         */
 +        ii = ind[i];
 +        if (bDoSplines || coefficient[ii] != 0.0)
 +        {
 +            xptr = fractx[ii];
 +            switch (order)
 +            {
 +                case 4:  CALC_SPLINE(4);     break;
 +                case 5:  CALC_SPLINE(5);     break;
 +                default: CALC_SPLINE(order); break;
 +            }
 +        }
 +    }
 +}
 +
 +
 +void make_dft_mod(real *mod, real *data, int ndata)
 +{
 +    int i, j;
 +    real sc, ss, arg;
 +
 +    for (i = 0; i < ndata; i++)
 +    {
 +        sc = ss = 0;
 +        for (j = 0; j < ndata; j++)
 +        {
 +            arg = (2.0*M_PI*i*j)/ndata;
 +            sc += data[j]*cos(arg);
 +            ss += data[j]*sin(arg);
 +        }
 +        mod[i] = sc*sc+ss*ss;
 +    }
 +    for (i = 0; i < ndata; i++)
 +    {
 +        if (mod[i] < 1e-7)
 +        {
 +            mod[i] = (mod[i-1]+mod[i+1])*0.5;
 +        }
 +    }
 +}
 +
 +
 +static void make_bspline_moduli(splinevec bsp_mod,
 +                                int nx, int ny, int nz, int order)
 +{
 +    int nmax = max(nx, max(ny, nz));
 +    real *data, *ddata, *bsp_data;
 +    int i, k, l;
 +    real div;
 +
 +    snew(data, order);
 +    snew(ddata, order);
 +    snew(bsp_data, nmax);
 +
 +    data[order-1] = 0;
 +    data[1]       = 0;
 +    data[0]       = 1;
 +
 +    for (k = 3; k < order; k++)
 +    {
 +        div       = 1.0/(k-1.0);
 +        data[k-1] = 0;
 +        for (l = 1; l < (k-1); l++)
 +        {
 +            data[k-l-1] = div*(l*data[k-l-2]+(k-l)*data[k-l-1]);
 +        }
 +        data[0] = div*data[0];
 +    }
 +    /* differentiate */
 +    ddata[0] = -data[0];
 +    for (k = 1; k < order; k++)
 +    {
 +        ddata[k] = data[k-1]-data[k];
 +    }
 +    div           = 1.0/(order-1);
 +    data[order-1] = 0;
 +    for (l = 1; l < (order-1); l++)
 +    {
 +        data[order-l-1] = div*(l*data[order-l-2]+(order-l)*data[order-l-1]);
 +    }
 +    data[0] = div*data[0];
 +
 +    for (i = 0; i < nmax; i++)
 +    {
 +        bsp_data[i] = 0;
 +    }
 +    for (i = 1; i <= order; i++)
 +    {
 +        bsp_data[i] = data[i-1];
 +    }
 +
 +    make_dft_mod(bsp_mod[XX], bsp_data, nx);
 +    make_dft_mod(bsp_mod[YY], bsp_data, ny);
 +    make_dft_mod(bsp_mod[ZZ], bsp_data, nz);
 +
 +    sfree(data);
 +    sfree(ddata);
 +    sfree(bsp_data);
 +}
 +
 +
 +/* Return the P3M optimal influence function */
 +static double do_p3m_influence(double z, int order)
 +{
 +    double z2, z4;
 +
 +    z2 = z*z;
 +    z4 = z2*z2;
 +
 +    /* The formula and most constants can be found in:
 +     * Ballenegger et al., JCTC 8, 936 (2012)
 +     */
 +    switch (order)
 +    {
 +        case 2:
 +            return 1.0 - 2.0*z2/3.0;
 +            break;
 +        case 3:
 +            return 1.0 - z2 + 2.0*z4/15.0;
 +            break;
 +        case 4:
 +            return 1.0 - 4.0*z2/3.0 + 2.0*z4/5.0 + 4.0*z2*z4/315.0;
 +            break;
 +        case 5:
 +            return 1.0 - 5.0*z2/3.0 + 7.0*z4/9.0 - 17.0*z2*z4/189.0 + 2.0*z4*z4/2835.0;
 +            break;
 +        case 6:
 +            return 1.0 - 2.0*z2 + 19.0*z4/15.0 - 256.0*z2*z4/945.0 + 62.0*z4*z4/4725.0 + 4.0*z2*z4*z4/155925.0;
 +            break;
 +        case 7:
 +            return 1.0 - 7.0*z2/3.0 + 28.0*z4/15.0 - 16.0*z2*z4/27.0 + 26.0*z4*z4/405.0 - 2.0*z2*z4*z4/1485.0 + 4.0*z4*z4*z4/6081075.0;
 +        case 8:
 +            return 1.0 - 8.0*z2/3.0 + 116.0*z4/45.0 - 344.0*z2*z4/315.0 + 914.0*z4*z4/4725.0 - 248.0*z4*z4*z2/22275.0 + 21844.0*z4*z4*z4/212837625.0 - 8.0*z4*z4*z4*z2/638512875.0;
 +            break;
 +    }
 +
 +    return 0.0;
 +}
 +
 +/* Calculate the P3M B-spline moduli for one dimension */
 +static void make_p3m_bspline_moduli_dim(real *bsp_mod, int n, int order)
 +{
 +    double zarg, zai, sinzai, infl;
 +    int    maxk, i;
 +
 +    if (order > 8)
 +    {
 +        gmx_fatal(FARGS, "The current P3M code only supports orders up to 8");
 +    }
 +
 +    zarg = M_PI/n;
 +
 +    maxk = (n + 1)/2;
 +
 +    for (i = -maxk; i < 0; i++)
 +    {
 +        zai          = zarg*i;
 +        sinzai       = sin(zai);
 +        infl         = do_p3m_influence(sinzai, order);
 +        bsp_mod[n+i] = infl*infl*pow(sinzai/zai, -2.0*order);
 +    }
 +    bsp_mod[0] = 1.0;
 +    for (i = 1; i < maxk; i++)
 +    {
 +        zai        = zarg*i;
 +        sinzai     = sin(zai);
 +        infl       = do_p3m_influence(sinzai, order);
 +        bsp_mod[i] = infl*infl*pow(sinzai/zai, -2.0*order);
 +    }
 +}
 +
 +/* Calculate the P3M B-spline moduli */
 +static void make_p3m_bspline_moduli(splinevec bsp_mod,
 +                                    int nx, int ny, int nz, int order)
 +{
 +    make_p3m_bspline_moduli_dim(bsp_mod[XX], nx, order);
 +    make_p3m_bspline_moduli_dim(bsp_mod[YY], ny, order);
 +    make_p3m_bspline_moduli_dim(bsp_mod[ZZ], nz, order);
 +}
 +
 +
 +static void setup_coordinate_communication(pme_atomcomm_t *atc)
 +{
 +    int nslab, n, i;
 +    int fw, bw;
 +
 +    nslab = atc->nslab;
 +
 +    n = 0;
 +    for (i = 1; i <= nslab/2; i++)
 +    {
 +        fw = (atc->nodeid + i) % nslab;
 +        bw = (atc->nodeid - i + nslab) % nslab;
 +        if (n < nslab - 1)
 +        {
 +            atc->node_dest[n] = fw;
 +            atc->node_src[n]  = bw;
 +            n++;
 +        }
 +        if (n < nslab - 1)
 +        {
 +            atc->node_dest[n] = bw;
 +            atc->node_src[n]  = fw;
 +            n++;
 +        }
 +    }
 +}
 +
 +int gmx_pme_destroy(FILE *log, gmx_pme_t *pmedata)
 +{
 +    int thread, i;
 +
 +    if (NULL != log)
 +    {
 +        fprintf(log, "Destroying PME data structures.\n");
 +    }
 +
 +    sfree((*pmedata)->nnx);
 +    sfree((*pmedata)->nny);
 +    sfree((*pmedata)->nnz);
 +
 +    for (i = 0; i < (*pmedata)->ngrids; ++i)
 +    {
 +        pmegrids_destroy(&(*pmedata)->pmegrid[i]);
 +        sfree((*pmedata)->fftgrid[i]);
 +        sfree((*pmedata)->cfftgrid[i]);
 +        gmx_parallel_3dfft_destroy((*pmedata)->pfft_setup[i]);
 +    }
 +
 +    sfree((*pmedata)->lb_buf1);
 +    sfree((*pmedata)->lb_buf2);
 +
 +    for (thread = 0; thread < (*pmedata)->nthread; thread++)
 +    {
 +        free_work(&(*pmedata)->work[thread]);
 +    }
 +    sfree((*pmedata)->work);
 +
 +    sfree(*pmedata);
 +    *pmedata = NULL;
 +
 +    return 0;
 +}
 +
 +static int mult_up(int n, int f)
 +{
 +    return ((n + f - 1)/f)*f;
 +}
 +
 +
 +static double pme_load_imbalance(gmx_pme_t pme)
 +{
 +    int    nma, nmi;
 +    double n1, n2, n3;
 +
 +    nma = pme->nnodes_major;
 +    nmi = pme->nnodes_minor;
 +
 +    n1 = mult_up(pme->nkx, nma)*mult_up(pme->nky, nmi)*pme->nkz;
 +    n2 = mult_up(pme->nkx, nma)*mult_up(pme->nkz, nmi)*pme->nky;
 +    n3 = mult_up(pme->nky, nma)*mult_up(pme->nkz, nmi)*pme->nkx;
 +
 +    /* pme_solve is roughly double the cost of an fft */
 +
 +    return (n1 + n2 + 3*n3)/(double)(6*pme->nkx*pme->nky*pme->nkz);
 +}
 +
 +static void init_atomcomm(gmx_pme_t pme, pme_atomcomm_t *atc,
 +                          int dimind, gmx_bool bSpread)
 +{
 +    int nk, k, s, thread;
 +
 +    atc->dimind    = dimind;
 +    atc->nslab     = 1;
 +    atc->nodeid    = 0;
 +    atc->pd_nalloc = 0;
 +#ifdef GMX_MPI
 +    if (pme->nnodes > 1)
 +    {
 +        atc->mpi_comm = pme->mpi_comm_d[dimind];
 +        MPI_Comm_size(atc->mpi_comm, &atc->nslab);
 +        MPI_Comm_rank(atc->mpi_comm, &atc->nodeid);
 +    }
 +    if (debug)
 +    {
 +        fprintf(debug, "For PME atom communication in dimind %d: nslab %d rank %d\n", atc->dimind, atc->nslab, atc->nodeid);
 +    }
 +#endif
 +
 +    atc->bSpread   = bSpread;
 +    atc->pme_order = pme->pme_order;
 +
 +    if (atc->nslab > 1)
 +    {
 +        snew(atc->node_dest, atc->nslab);
 +        snew(atc->node_src, atc->nslab);
 +        setup_coordinate_communication(atc);
 +
 +        snew(atc->count_thread, pme->nthread);
 +        for (thread = 0; thread < pme->nthread; thread++)
 +        {
 +            snew(atc->count_thread[thread], atc->nslab);
 +        }
 +        atc->count = atc->count_thread[0];
 +        snew(atc->rcount, atc->nslab);
 +        snew(atc->buf_index, atc->nslab);
 +    }
 +
 +    atc->nthread = pme->nthread;
 +    if (atc->nthread > 1)
 +    {
 +        snew(atc->thread_plist, atc->nthread);
 +    }
 +    snew(atc->spline, atc->nthread);
 +    for (thread = 0; thread < atc->nthread; thread++)
 +    {
 +        if (atc->nthread > 1)
 +        {
 +            snew(atc->thread_plist[thread].n, atc->nthread+2*GMX_CACHE_SEP);
 +            atc->thread_plist[thread].n += GMX_CACHE_SEP;
 +        }
 +        snew(atc->spline[thread].thread_one, pme->nthread);
 +        atc->spline[thread].thread_one[thread] = 1;
 +    }
 +}
 +
 +static void
 +init_overlap_comm(pme_overlap_t *  ol,
 +                  int              norder,
 +#ifdef GMX_MPI
 +                  MPI_Comm         comm,
 +#endif
 +                  int              nnodes,
 +                  int              nodeid,
 +                  int              ndata,
 +                  int              commplainsize)
 +{
 +    int lbnd, rbnd, maxlr, b, i;
 +    int exten;
 +    int nn, nk;
 +    pme_grid_comm_t *pgc;
 +    gmx_bool bCont;
 +    int fft_start, fft_end, send_index1, recv_index1;
 +#ifdef GMX_MPI
 +    MPI_Status stat;
 +
 +    ol->mpi_comm = comm;
 +#endif
 +
 +    ol->nnodes = nnodes;
 +    ol->nodeid = nodeid;
 +
 +    /* Linear translation of the PME grid won't affect reciprocal space
 +     * calculations, so to optimize we only interpolate "upwards",
 +     * which also means we only have to consider overlap in one direction.
 +     * I.e., particles on this node might also be spread to grid indices
 +     * that belong to higher nodes (modulo nnodes)
 +     */
 +
 +    snew(ol->s2g0, ol->nnodes+1);
 +    snew(ol->s2g1, ol->nnodes);
 +    if (debug)
 +    {
 +        fprintf(debug, "PME slab boundaries:");
 +    }
 +    for (i = 0; i < nnodes; i++)
 +    {
 +        /* s2g0 the local interpolation grid start.
 +         * s2g1 the local interpolation grid end.
 +         * Because grid overlap communication only goes forward,
 +         * the grid the slabs for fft's should be rounded down.
 +         */
 +        ol->s2g0[i] = ( i   *ndata + 0       )/nnodes;
 +        ol->s2g1[i] = ((i+1)*ndata + nnodes-1)/nnodes + norder - 1;
 +
 +        if (debug)
 +        {
 +            fprintf(debug, "  %3d %3d", ol->s2g0[i], ol->s2g1[i]);
 +        }
 +    }
 +    ol->s2g0[nnodes] = ndata;
 +    if (debug)
 +    {
 +        fprintf(debug, "\n");
 +    }
 +
 +    /* Determine with how many nodes we need to communicate the grid overlap */
 +    b = 0;
 +    do
 +    {
 +        b++;
 +        bCont = FALSE;
 +        for (i = 0; i < nnodes; i++)
 +        {
 +            if ((i+b <  nnodes && ol->s2g1[i] > ol->s2g0[i+b]) ||
 +                (i+b >= nnodes && ol->s2g1[i] > ol->s2g0[i+b-nnodes] + ndata))
 +            {
 +                bCont = TRUE;
 +            }
 +        }
 +    }
 +    while (bCont && b < nnodes);
 +    ol->noverlap_nodes = b - 1;
 +
 +    snew(ol->send_id, ol->noverlap_nodes);
 +    snew(ol->recv_id, ol->noverlap_nodes);
 +    for (b = 0; b < ol->noverlap_nodes; b++)
 +    {
 +        ol->send_id[b] = (ol->nodeid + (b + 1)) % ol->nnodes;
 +        ol->recv_id[b] = (ol->nodeid - (b + 1) + ol->nnodes) % ol->nnodes;
 +    }
 +    snew(ol->comm_data, ol->noverlap_nodes);
 +
 +    ol->send_size = 0;
 +    for (b = 0; b < ol->noverlap_nodes; b++)
 +    {
 +        pgc = &ol->comm_data[b];
 +        /* Send */
 +        fft_start        = ol->s2g0[ol->send_id[b]];
 +        fft_end          = ol->s2g0[ol->send_id[b]+1];
 +        if (ol->send_id[b] < nodeid)
 +        {
 +            fft_start += ndata;
 +            fft_end   += ndata;
 +        }
 +        send_index1       = ol->s2g1[nodeid];
 +        send_index1       = min(send_index1, fft_end);
 +        pgc->send_index0  = fft_start;
 +        pgc->send_nindex  = max(0, send_index1 - pgc->send_index0);
 +        ol->send_size    += pgc->send_nindex;
 +
 +        /* We always start receiving to the first index of our slab */
 +        fft_start        = ol->s2g0[ol->nodeid];
 +        fft_end          = ol->s2g0[ol->nodeid+1];
 +        recv_index1      = ol->s2g1[ol->recv_id[b]];
 +        if (ol->recv_id[b] > nodeid)
 +        {
 +            recv_index1 -= ndata;
 +        }
 +        recv_index1      = min(recv_index1, fft_end);
 +        pgc->recv_index0 = fft_start;
 +        pgc->recv_nindex = max(0, recv_index1 - pgc->recv_index0);
 +    }
 +
 +#ifdef GMX_MPI
 +    /* Communicate the buffer sizes to receive */
 +    for (b = 0; b < ol->noverlap_nodes; b++)
 +    {
 +        MPI_Sendrecv(&ol->send_size, 1, MPI_INT, ol->send_id[b], b,
 +                     &ol->comm_data[b].recv_size, 1, MPI_INT, ol->recv_id[b], b,
 +                     ol->mpi_comm, &stat);
 +    }
 +#endif
 +
 +    /* For non-divisible grid we need pme_order iso pme_order-1 */
 +    snew(ol->sendbuf, norder*commplainsize);
 +    snew(ol->recvbuf, norder*commplainsize);
 +}
 +
 +static void
 +make_gridindex5_to_localindex(int n, int local_start, int local_range,
 +                              int **global_to_local,
 +                              real **fraction_shift)
 +{
 +    int i;
 +    int * gtl;
 +    real * fsh;
 +
 +    snew(gtl, 5*n);
 +    snew(fsh, 5*n);
 +    for (i = 0; (i < 5*n); i++)
 +    {
 +        /* Determine the global to local grid index */
 +        gtl[i] = (i - local_start + n) % n;
 +        /* For coordinates that fall within the local grid the fraction
 +         * is correct, we don't need to shift it.
 +         */
 +        fsh[i] = 0;
 +        if (local_range < n)
 +        {
 +            /* Due to rounding issues i could be 1 beyond the lower or
 +             * upper boundary of the local grid. Correct the index for this.
 +             * If we shift the index, we need to shift the fraction by
 +             * the same amount in the other direction to not affect
 +             * the weights.
 +             * Note that due to this shifting the weights at the end of
 +             * the spline might change, but that will only involve values
 +             * between zero and values close to the precision of a real,
 +             * which is anyhow the accuracy of the whole mesh calculation.
 +             */
 +            /* With local_range=0 we should not change i=local_start */
 +            if (i % n != local_start)
 +            {
 +                if (gtl[i] == n-1)
 +                {
 +                    gtl[i] = 0;
 +                    fsh[i] = -1;
 +                }
 +                else if (gtl[i] == local_range)
 +                {
 +                    gtl[i] = local_range - 1;
 +                    fsh[i] = 1;
 +                }
 +            }
 +        }
 +    }
 +
 +    *global_to_local = gtl;
 +    *fraction_shift  = fsh;
 +}
 +
 +static pme_spline_work_t *make_pme_spline_work(int gmx_unused order)
 +{
 +    pme_spline_work_t *work;
 +
 +#ifdef PME_SIMD4_SPREAD_GATHER
 +    real             tmp[GMX_SIMD4_WIDTH*3], *tmp_aligned;
 +    gmx_simd4_real_t zero_S;
 +    gmx_simd4_real_t real_mask_S0, real_mask_S1;
 +    int              of, i;
 +
 +    snew_aligned(work, 1, SIMD4_ALIGNMENT);
 +
 +    tmp_aligned = gmx_simd4_align_r(tmp);
 +
 +    zero_S = gmx_simd4_setzero_r();
 +
 +    /* Generate bit masks to mask out the unused grid entries,
 +     * as we only operate on order of the 8 grid entries that are
 +     * load into 2 SIMD registers.
 +     */
 +    for (of = 0; of < 2*GMX_SIMD4_WIDTH-(order-1); of++)
 +    {
 +        for (i = 0; i < 2*GMX_SIMD4_WIDTH; i++)
 +        {
 +            tmp_aligned[i] = (i >= of && i < of+order ? -1.0 : 1.0);
 +        }
 +        real_mask_S0      = gmx_simd4_load_r(tmp_aligned);
 +        real_mask_S1      = gmx_simd4_load_r(tmp_aligned+GMX_SIMD4_WIDTH);
 +        work->mask_S0[of] = gmx_simd4_cmplt_r(real_mask_S0, zero_S);
 +        work->mask_S1[of] = gmx_simd4_cmplt_r(real_mask_S1, zero_S);
 +    }
 +#else
 +    work = NULL;
 +#endif
 +
 +    return work;
 +}
 +
 +void gmx_pme_check_restrictions(int pme_order,
 +                                int nkx, int nky, int nkz,
 +                                int nnodes_major,
 +                                int nnodes_minor,
 +                                gmx_bool bUseThreads,
 +                                gmx_bool bFatal,
 +                                gmx_bool *bValidSettings)
 +{
 +    if (pme_order > PME_ORDER_MAX)
 +    {
 +        if (!bFatal)
 +        {
 +            *bValidSettings = FALSE;
 +            return;
 +        }
 +        gmx_fatal(FARGS, "pme_order (%d) is larger than the maximum allowed value (%d). Modify and recompile the code if you really need such a high order.",
 +                  pme_order, PME_ORDER_MAX);
 +    }
 +
 +    if (nkx <= pme_order*(nnodes_major > 1 ? 2 : 1) ||
 +        nky <= pme_order*(nnodes_minor > 1 ? 2 : 1) ||
 +        nkz <= pme_order)
 +    {
 +        if (!bFatal)
 +        {
 +            *bValidSettings = FALSE;
 +            return;
 +        }
 +        gmx_fatal(FARGS, "The PME grid sizes need to be larger than pme_order (%d) and for dimensions with domain decomposition larger than 2*pme_order",
 +                  pme_order);
 +    }
 +
 +    /* Check for a limitation of the (current) sum_fftgrid_dd code.
 +     * We only allow multiple communication pulses in dim 1, not in dim 0.
 +     */
 +    if (bUseThreads && (nkx < nnodes_major*pme_order &&
 +                        nkx != nnodes_major*(pme_order - 1)))
 +    {
 +        if (!bFatal)
 +        {
 +            *bValidSettings = FALSE;
 +            return;
 +        }
 +        gmx_fatal(FARGS, "The number of PME grid lines per rank along x is %g. But when using OpenMP threads, the number of grid lines per rank along x should be >= pme_order (%d) or = pmeorder-1. To resolve this issue, use fewer ranks along x (and possibly more along y and/or z) by specifying -dd manually.",
 +                  nkx/(double)nnodes_major, pme_order);
 +    }
 +
 +    if (bValidSettings != NULL)
 +    {
 +        *bValidSettings = TRUE;
 +    }
 +
 +    return;
 +}
 +
 +int gmx_pme_init(gmx_pme_t *         pmedata,
 +                 t_commrec *         cr,
 +                 int                 nnodes_major,
 +                 int                 nnodes_minor,
 +                 t_inputrec *        ir,
 +                 int                 homenr,
 +                 gmx_bool            bFreeEnergy_q,
 +                 gmx_bool            bFreeEnergy_lj,
 +                 gmx_bool            bReproducible,
 +                 int                 nthread)
 +{
 +    gmx_pme_t pme = NULL;
 +
 +    int  use_threads, sum_use_threads, i;
 +    ivec ndata;
 +
 +    if (debug)
 +    {
 +        fprintf(debug, "Creating PME data structures.\n");
 +    }
 +    snew(pme, 1);
 +
 +    pme->sum_qgrid_tmp       = NULL;
 +    pme->sum_qgrid_dd_tmp    = NULL;
 +    pme->buf_nalloc          = 0;
 +
 +    pme->nnodes              = 1;
 +    pme->bPPnode             = TRUE;
 +
 +    pme->nnodes_major        = nnodes_major;
 +    pme->nnodes_minor        = nnodes_minor;
 +
 +#ifdef GMX_MPI
 +    if (nnodes_major*nnodes_minor > 1)
 +    {
 +        pme->mpi_comm = cr->mpi_comm_mygroup;
 +
 +        MPI_Comm_rank(pme->mpi_comm, &pme->nodeid);
 +        MPI_Comm_size(pme->mpi_comm, &pme->nnodes);
 +        if (pme->nnodes != nnodes_major*nnodes_minor)
 +        {
 +            gmx_incons("PME rank count mismatch");
 +        }
 +    }
 +    else
 +    {
 +        pme->mpi_comm = MPI_COMM_NULL;
 +    }
 +#endif
 +
 +    if (pme->nnodes == 1)
 +    {
 +#ifdef GMX_MPI
 +        pme->mpi_comm_d[0] = MPI_COMM_NULL;
 +        pme->mpi_comm_d[1] = MPI_COMM_NULL;
 +#endif
 +        pme->ndecompdim   = 0;
 +        pme->nodeid_major = 0;
 +        pme->nodeid_minor = 0;
 +#ifdef GMX_MPI
 +        pme->mpi_comm_d[0] = pme->mpi_comm_d[1] = MPI_COMM_NULL;
 +#endif
 +    }
 +    else
 +    {
 +        if (nnodes_minor == 1)
 +        {
 +#ifdef GMX_MPI
 +            pme->mpi_comm_d[0] = pme->mpi_comm;
 +            pme->mpi_comm_d[1] = MPI_COMM_NULL;
 +#endif
 +            pme->ndecompdim   = 1;
 +            pme->nodeid_major = pme->nodeid;
 +            pme->nodeid_minor = 0;
 +
 +        }
 +        else if (nnodes_major == 1)
 +        {
 +#ifdef GMX_MPI
 +            pme->mpi_comm_d[0] = MPI_COMM_NULL;
 +            pme->mpi_comm_d[1] = pme->mpi_comm;
 +#endif
 +            pme->ndecompdim   = 1;
 +            pme->nodeid_major = 0;
 +            pme->nodeid_minor = pme->nodeid;
 +        }
 +        else
 +        {
 +            if (pme->nnodes % nnodes_major != 0)
 +            {
 +                gmx_incons("For 2D PME decomposition, #PME ranks must be divisible by the number of ranks in the major dimension");
 +            }
 +            pme->ndecompdim = 2;
 +
 +#ifdef GMX_MPI
 +            MPI_Comm_split(pme->mpi_comm, pme->nodeid % nnodes_minor,
 +                           pme->nodeid, &pme->mpi_comm_d[0]);  /* My communicator along major dimension */
 +            MPI_Comm_split(pme->mpi_comm, pme->nodeid/nnodes_minor,
 +                           pme->nodeid, &pme->mpi_comm_d[1]);  /* My communicator along minor dimension */
 +
 +            MPI_Comm_rank(pme->mpi_comm_d[0], &pme->nodeid_major);
 +            MPI_Comm_size(pme->mpi_comm_d[0], &pme->nnodes_major);
 +            MPI_Comm_rank(pme->mpi_comm_d[1], &pme->nodeid_minor);
 +            MPI_Comm_size(pme->mpi_comm_d[1], &pme->nnodes_minor);
 +#endif
 +        }
 +        pme->bPPnode = (cr->duty & DUTY_PP);
 +    }
 +
 +    pme->nthread = nthread;
 +
 +    /* Check if any of the PME MPI ranks uses threads */
 +    use_threads = (pme->nthread > 1 ? 1 : 0);
 +#ifdef GMX_MPI
 +    if (pme->nnodes > 1)
 +    {
 +        MPI_Allreduce(&use_threads, &sum_use_threads, 1, MPI_INT,
 +                      MPI_SUM, pme->mpi_comm);
 +    }
 +    else
 +#endif
 +    {
 +        sum_use_threads = use_threads;
 +    }
 +    pme->bUseThreads = (sum_use_threads > 0);
 +
 +    if (ir->ePBC == epbcSCREW)
 +    {
 +        gmx_fatal(FARGS, "pme does not (yet) work with pbc = screw");
 +    }
 +
 +    pme->bFEP_q      = ((ir->efep != efepNO) && bFreeEnergy_q);
 +    pme->bFEP_lj     = ((ir->efep != efepNO) && bFreeEnergy_lj);
 +    pme->bFEP        = (pme->bFEP_q || pme->bFEP_lj);
 +    pme->nkx         = ir->nkx;
 +    pme->nky         = ir->nky;
 +    pme->nkz         = ir->nkz;
 +    pme->bP3M        = (ir->coulombtype == eelP3M_AD || getenv("GMX_PME_P3M") != NULL);
 +    pme->pme_order   = ir->pme_order;
 +
 +    /* Always constant electrostatics coefficients */
 +    pme->epsilon_r   = ir->epsilon_r;
 +
 +    /* Always constant LJ coefficients */
 +    pme->ljpme_combination_rule = ir->ljpme_combination_rule;
 +
 +    /* If we violate restrictions, generate a fatal error here */
 +    gmx_pme_check_restrictions(pme->pme_order,
 +                               pme->nkx, pme->nky, pme->nkz,
 +                               pme->nnodes_major,
 +                               pme->nnodes_minor,
 +                               pme->bUseThreads,
 +                               TRUE,
 +                               NULL);
 +
 +    if (pme->nnodes > 1)
 +    {
 +        double imbal;
 +
 +#ifdef GMX_MPI
 +        MPI_Type_contiguous(DIM, mpi_type, &(pme->rvec_mpi));
 +        MPI_Type_commit(&(pme->rvec_mpi));
 +#endif
 +
 +        /* Note that the coefficient spreading and force gathering, which usually
 +         * takes about the same amount of time as FFT+solve_pme,
 +         * is always fully load balanced
 +         * (unless the coefficient distribution is inhomogeneous).
 +         */
 +
 +        imbal = pme_load_imbalance(pme);
 +        if (imbal >= 1.2 && pme->nodeid_major == 0 && pme->nodeid_minor == 0)
 +        {
 +            fprintf(stderr,
 +                    "\n"
 +                    "NOTE: The load imbalance in PME FFT and solve is %d%%.\n"
 +                    "      For optimal PME load balancing\n"
 +                    "      PME grid_x (%d) and grid_y (%d) should be divisible by #PME_ranks_x (%d)\n"
 +                    "      and PME grid_y (%d) and grid_z (%d) should be divisible by #PME_ranks_y (%d)\n"
 +                    "\n",
 +                    (int)((imbal-1)*100 + 0.5),
 +                    pme->nkx, pme->nky, pme->nnodes_major,
 +                    pme->nky, pme->nkz, pme->nnodes_minor);
 +        }
 +    }
 +
 +    /* For non-divisible grid we need pme_order iso pme_order-1 */
 +    /* In sum_qgrid_dd x overlap is copied in place: take padding into account.
 +     * y is always copied through a buffer: we don't need padding in z,
 +     * but we do need the overlap in x because of the communication order.
 +     */
 +    init_overlap_comm(&pme->overlap[0], pme->pme_order,
 +#ifdef GMX_MPI
 +                      pme->mpi_comm_d[0],
 +#endif
 +                      pme->nnodes_major, pme->nodeid_major,
 +                      pme->nkx,
 +                      (div_round_up(pme->nky, pme->nnodes_minor)+pme->pme_order)*(pme->nkz+pme->pme_order-1));
 +
 +    /* Along overlap dim 1 we can send in multiple pulses in sum_fftgrid_dd.
 +     * We do this with an offset buffer of equal size, so we need to allocate
 +     * extra for the offset. That's what the (+1)*pme->nkz is for.
 +     */
 +    init_overlap_comm(&pme->overlap[1], pme->pme_order,
 +#ifdef GMX_MPI
 +                      pme->mpi_comm_d[1],
 +#endif
 +                      pme->nnodes_minor, pme->nodeid_minor,
 +                      pme->nky,
 +                      (div_round_up(pme->nkx, pme->nnodes_major)+pme->pme_order+1)*pme->nkz);
 +
 +    /* Double-check for a limitation of the (current) sum_fftgrid_dd code.
 +     * Note that gmx_pme_check_restrictions checked for this already.
 +     */
 +    if (pme->bUseThreads && pme->overlap[0].noverlap_nodes > 1)
 +    {
 +        gmx_incons("More than one communication pulse required for grid overlap communication along the major dimension while using threads");
 +    }
 +
 +    snew(pme->bsp_mod[XX], pme->nkx);
 +    snew(pme->bsp_mod[YY], pme->nky);
 +    snew(pme->bsp_mod[ZZ], pme->nkz);
 +
 +    /* The required size of the interpolation grid, including overlap.
 +     * The allocated size (pmegrid_n?) might be slightly larger.
 +     */
 +    pme->pmegrid_nx = pme->overlap[0].s2g1[pme->nodeid_major] -
 +        pme->overlap[0].s2g0[pme->nodeid_major];
 +    pme->pmegrid_ny = pme->overlap[1].s2g1[pme->nodeid_minor] -
 +        pme->overlap[1].s2g0[pme->nodeid_minor];
 +    pme->pmegrid_nz_base = pme->nkz;
 +    pme->pmegrid_nz      = pme->pmegrid_nz_base + pme->pme_order - 1;
 +    set_grid_alignment(&pme->pmegrid_nz, pme->pme_order);
 +
 +    pme->pmegrid_start_ix = pme->overlap[0].s2g0[pme->nodeid_major];
 +    pme->pmegrid_start_iy = pme->overlap[1].s2g0[pme->nodeid_minor];
 +    pme->pmegrid_start_iz = 0;
 +
 +    make_gridindex5_to_localindex(pme->nkx,
 +                                  pme->pmegrid_start_ix,
 +                                  pme->pmegrid_nx - (pme->pme_order-1),
 +                                  &pme->nnx, &pme->fshx);
 +    make_gridindex5_to_localindex(pme->nky,
 +                                  pme->pmegrid_start_iy,
 +                                  pme->pmegrid_ny - (pme->pme_order-1),
 +                                  &pme->nny, &pme->fshy);
 +    make_gridindex5_to_localindex(pme->nkz,
 +                                  pme->pmegrid_start_iz,
 +                                  pme->pmegrid_nz_base,
 +                                  &pme->nnz, &pme->fshz);
 +
 +    pme->spline_work = make_pme_spline_work(pme->pme_order);
 +
 +    ndata[0]    = pme->nkx;
 +    ndata[1]    = pme->nky;
 +    ndata[2]    = pme->nkz;
 +    /* It doesn't matter if we allocate too many grids here,
 +     * we only allocate and use the ones we need.
 +     */
 +    if (EVDW_PME(ir->vdwtype))
 +    {
 +        pme->ngrids = ((ir->ljpme_combination_rule == eljpmeLB) ? DO_Q_AND_LJ_LB : DO_Q_AND_LJ);
 +    }
 +    else
 +    {
 +        pme->ngrids = DO_Q;
 +    }
 +    snew(pme->fftgrid, pme->ngrids);
 +    snew(pme->cfftgrid, pme->ngrids);
 +    snew(pme->pfft_setup, pme->ngrids);
 +
 +    for (i = 0; i < pme->ngrids; ++i)
 +    {
 +        if ((i <  DO_Q && EEL_PME(ir->coulombtype) && (i == 0 ||
 +                                                       bFreeEnergy_q)) ||
 +            (i >= DO_Q && EVDW_PME(ir->vdwtype) && (i == 2 ||
 +                                                    bFreeEnergy_lj ||
 +                                                    ir->ljpme_combination_rule == eljpmeLB)))
 +        {
 +            pmegrids_init(&pme->pmegrid[i],
 +                          pme->pmegrid_nx, pme->pmegrid_ny, pme->pmegrid_nz,
 +                          pme->pmegrid_nz_base,
 +                          pme->pme_order,
 +                          pme->bUseThreads,
 +                          pme->nthread,
 +                          pme->overlap[0].s2g1[pme->nodeid_major]-pme->overlap[0].s2g0[pme->nodeid_major+1],
 +                          pme->overlap[1].s2g1[pme->nodeid_minor]-pme->overlap[1].s2g0[pme->nodeid_minor+1]);
 +            /* This routine will allocate the grid data to fit the FFTs */
 +            gmx_parallel_3dfft_init(&pme->pfft_setup[i], ndata,
 +                                    &pme->fftgrid[i], &pme->cfftgrid[i],
 +                                    pme->mpi_comm_d,
 +                                    bReproducible, pme->nthread);
 +
 +        }
 +    }
 +
 +    if (!pme->bP3M)
 +    {
 +        /* Use plain SPME B-spline interpolation */
 +        make_bspline_moduli(pme->bsp_mod, pme->nkx, pme->nky, pme->nkz, pme->pme_order);
 +    }
 +    else
 +    {
 +        /* Use the P3M grid-optimized influence function */
 +        make_p3m_bspline_moduli(pme->bsp_mod, pme->nkx, pme->nky, pme->nkz, pme->pme_order);
 +    }
 +
 +    /* Use atc[0] for spreading */
 +    init_atomcomm(pme, &pme->atc[0], nnodes_major > 1 ? 0 : 1, TRUE);
 +    if (pme->ndecompdim >= 2)
 +    {
 +        init_atomcomm(pme, &pme->atc[1], 1, FALSE);
 +    }
 +
 +    if (pme->nnodes == 1)
 +    {
 +        pme->atc[0].n = homenr;
 +        pme_realloc_atomcomm_things(&pme->atc[0]);
 +    }
 +
 +    pme->lb_buf1       = NULL;
 +    pme->lb_buf2       = NULL;
 +    pme->lb_buf_nalloc = 0;
 +
 +    {
 +        int thread;
 +
 +        /* Use fft5d, order after FFT is y major, z, x minor */
 +
 +        snew(pme->work, pme->nthread);
 +        for (thread = 0; thread < pme->nthread; thread++)
 +        {
 +            realloc_work(&pme->work[thread], pme->nkx);
 +        }
 +    }
 +
 +    *pmedata = pme;
 +
 +    return 0;
 +}
 +
 +static void reuse_pmegrids(const pmegrids_t *old, pmegrids_t *new)
 +{
 +    int d, t;
 +
 +    for (d = 0; d < DIM; d++)
 +    {
 +        if (new->grid.n[d] > old->grid.n[d])
 +        {
 +            return;
 +        }
 +    }
 +
 +    sfree_aligned(new->grid.grid);
 +    new->grid.grid = old->grid.grid;
 +
 +    if (new->grid_th != NULL && new->nthread == old->nthread)
 +    {
 +        sfree_aligned(new->grid_all);
 +        for (t = 0; t < new->nthread; t++)
 +        {
 +            new->grid_th[t].grid = old->grid_th[t].grid;
 +        }
 +    }
 +}
 +
 +int gmx_pme_reinit(gmx_pme_t *         pmedata,
 +                   t_commrec *         cr,
 +                   gmx_pme_t           pme_src,
 +                   const t_inputrec *  ir,
 +                   ivec                grid_size)
 +{
 +    t_inputrec irc;
 +    int homenr;
 +    int ret;
 +
 +    irc     = *ir;
 +    irc.nkx = grid_size[XX];
 +    irc.nky = grid_size[YY];
 +    irc.nkz = grid_size[ZZ];
 +
 +    if (pme_src->nnodes == 1)
 +    {
 +        homenr = pme_src->atc[0].n;
 +    }
 +    else
 +    {
 +        homenr = -1;
 +    }
 +
 +    ret = gmx_pme_init(pmedata, cr, pme_src->nnodes_major, pme_src->nnodes_minor,
 +                       &irc, homenr, pme_src->bFEP_q, pme_src->bFEP_lj, FALSE, pme_src->nthread);
 +
 +    if (ret == 0)
 +    {
 +        /* We can easily reuse the allocated pme grids in pme_src */
 +        reuse_pmegrids(&pme_src->pmegrid[PME_GRID_QA], &(*pmedata)->pmegrid[PME_GRID_QA]);
 +        /* We would like to reuse the fft grids, but that's harder */
 +    }
 +
 +    return ret;
 +}
 +
 +
 +static void copy_local_grid(gmx_pme_t pme, pmegrids_t *pmegrids,
 +                            int grid_index, int thread, real *fftgrid)
 +{
 +    ivec local_fft_ndata, local_fft_offset, local_fft_size;
 +    int  fft_my, fft_mz;
 +    int  nsx, nsy, nsz;
 +    ivec nf;
 +    int  offx, offy, offz, x, y, z, i0, i0t;
 +    int  d;
 +    pmegrid_t *pmegrid;
 +    real *grid_th;
 +
 +    gmx_parallel_3dfft_real_limits(pme->pfft_setup[grid_index],
 +                                   local_fft_ndata,
 +                                   local_fft_offset,
 +                                   local_fft_size);
 +    fft_my = local_fft_size[YY];
 +    fft_mz = local_fft_size[ZZ];
 +
 +    pmegrid = &pmegrids->grid_th[thread];
 +
 +    nsx = pmegrid->s[XX];
 +    nsy = pmegrid->s[YY];
 +    nsz = pmegrid->s[ZZ];
 +
 +    for (d = 0; d < DIM; d++)
 +    {
 +        nf[d] = min(pmegrid->n[d] - (pmegrid->order - 1),
 +                    local_fft_ndata[d] - pmegrid->offset[d]);
 +    }
 +
 +    offx = pmegrid->offset[XX];
 +    offy = pmegrid->offset[YY];
 +    offz = pmegrid->offset[ZZ];
 +
 +    /* Directly copy the non-overlapping parts of the local grids.
 +     * This also initializes the full grid.
 +     */
 +    grid_th = pmegrid->grid;
 +    for (x = 0; x < nf[XX]; x++)
 +    {
 +        for (y = 0; y < nf[YY]; y++)
 +        {
 +            i0  = ((offx + x)*fft_my + (offy + y))*fft_mz + offz;
 +            i0t = (x*nsy + y)*nsz;
 +            for (z = 0; z < nf[ZZ]; z++)
 +            {
 +                fftgrid[i0+z] = grid_th[i0t+z];
 +            }
 +        }
 +    }
 +}
 +
 +static void
 +reduce_threadgrid_overlap(gmx_pme_t pme,
 +                          const pmegrids_t *pmegrids, int thread,
 +                          real *fftgrid, real *commbuf_x, real *commbuf_y,
 +                          int grid_index)
 +{
 +    ivec local_fft_ndata, local_fft_offset, local_fft_size;
 +    int  fft_nx, fft_ny, fft_nz;
 +    int  fft_my, fft_mz;
 +    int  buf_my = -1;
 +    int  nsx, nsy, nsz;
 +    ivec ne;
 +    int  offx, offy, offz, x, y, z, i0, i0t;
 +    int  sx, sy, sz, fx, fy, fz, tx1, ty1, tz1, ox, oy, oz;
 +    gmx_bool bClearBufX, bClearBufY, bClearBufXY, bClearBuf;
 +    gmx_bool bCommX, bCommY;
 +    int  d;
 +    int  thread_f;
 +    const pmegrid_t *pmegrid, *pmegrid_g, *pmegrid_f;
 +    const real *grid_th;
 +    real *commbuf = NULL;
 +
 +    gmx_parallel_3dfft_real_limits(pme->pfft_setup[grid_index],
 +                                   local_fft_ndata,
 +                                   local_fft_offset,
 +                                   local_fft_size);
 +    fft_nx = local_fft_ndata[XX];
 +    fft_ny = local_fft_ndata[YY];
 +    fft_nz = local_fft_ndata[ZZ];
 +
 +    fft_my = local_fft_size[YY];
 +    fft_mz = local_fft_size[ZZ];
 +
 +    /* This routine is called when all thread have finished spreading.
 +     * Here each thread sums grid contributions calculated by other threads
 +     * to the thread local grid volume.
 +     * To minimize the number of grid copying operations,
 +     * this routines sums immediately from the pmegrid to the fftgrid.
 +     */
 +
 +    /* Determine which part of the full node grid we should operate on,
 +     * this is our thread local part of the full grid.
 +     */
 +    pmegrid = &pmegrids->grid_th[thread];
 +
 +    for (d = 0; d < DIM; d++)
 +    {
 +        ne[d] = min(pmegrid->offset[d]+pmegrid->n[d]-(pmegrid->order-1),
 +                    local_fft_ndata[d]);
 +    }
 +
 +    offx = pmegrid->offset[XX];
 +    offy = pmegrid->offset[YY];
 +    offz = pmegrid->offset[ZZ];
 +
 +
 +    bClearBufX  = TRUE;
 +    bClearBufY  = TRUE;
 +    bClearBufXY = TRUE;
 +
 +    /* Now loop over all the thread data blocks that contribute
 +     * to the grid region we (our thread) are operating on.
 +     */
 +    /* Note that fft_nx/y is equal to the number of grid points
 +     * between the first point of our node grid and the one of the next node.
 +     */
 +    for (sx = 0; sx >= -pmegrids->nthread_comm[XX]; sx--)
 +    {
 +        fx     = pmegrid->ci[XX] + sx;
 +        ox     = 0;
 +        bCommX = FALSE;
 +        if (fx < 0)
 +        {
 +            fx    += pmegrids->nc[XX];
 +            ox    -= fft_nx;
 +            bCommX = (pme->nnodes_major > 1);
 +        }
 +        pmegrid_g = &pmegrids->grid_th[fx*pmegrids->nc[YY]*pmegrids->nc[ZZ]];
 +        ox       += pmegrid_g->offset[XX];
 +        /* Determine the end of our part of the source grid */
 +        tx1 = min(ox + pmegrid_g->n[XX], ne[XX]);
 +
 +        for (sy = 0; sy >= -pmegrids->nthread_comm[YY]; sy--)
 +        {
 +            fy     = pmegrid->ci[YY] + sy;
 +            oy     = 0;
 +            bCommY = FALSE;
 +            if (fy < 0)
 +            {
 +                fy    += pmegrids->nc[YY];
 +                oy    -= fft_ny;
 +                bCommY = (pme->nnodes_minor > 1);
 +            }
 +            pmegrid_g = &pmegrids->grid_th[fy*pmegrids->nc[ZZ]];
 +            oy       += pmegrid_g->offset[YY];
 +            /* Determine the end of our part of the source grid */
 +            ty1 = min(oy + pmegrid_g->n[YY], ne[YY]);
 +
 +            for (sz = 0; sz >= -pmegrids->nthread_comm[ZZ]; sz--)
 +            {
 +                fz = pmegrid->ci[ZZ] + sz;
 +                oz = 0;
 +                if (fz < 0)
 +                {
 +                    fz += pmegrids->nc[ZZ];
 +                    oz -= fft_nz;
 +                }
 +                pmegrid_g = &pmegrids->grid_th[fz];
 +                oz       += pmegrid_g->offset[ZZ];
 +                tz1       = min(oz + pmegrid_g->n[ZZ], ne[ZZ]);
 +
 +                if (sx == 0 && sy == 0 && sz == 0)
 +                {
 +                    /* We have already added our local contribution
 +                     * before calling this routine, so skip it here.
 +                     */
 +                    continue;
 +                }
 +
 +                thread_f = (fx*pmegrids->nc[YY] + fy)*pmegrids->nc[ZZ] + fz;
 +
 +                pmegrid_f = &pmegrids->grid_th[thread_f];
 +
 +                grid_th = pmegrid_f->grid;
 +
 +                nsx = pmegrid_f->s[XX];
 +                nsy = pmegrid_f->s[YY];
 +                nsz = pmegrid_f->s[ZZ];
 +
 +#ifdef DEBUG_PME_REDUCE
 +                printf("n%d t%d add %d  %2d %2d %2d  %2d %2d %2d  %2d-%2d %2d-%2d, %2d-%2d %2d-%2d, %2d-%2d %2d-%2d\n",
 +                       pme->nodeid, thread, thread_f,
 +                       pme->pmegrid_start_ix,
 +                       pme->pmegrid_start_iy,
 +                       pme->pmegrid_start_iz,
 +                       sx, sy, sz,
 +                       offx-ox, tx1-ox, offx, tx1,
 +                       offy-oy, ty1-oy, offy, ty1,
 +                       offz-oz, tz1-oz, offz, tz1);
 +#endif
 +
 +                if (!(bCommX || bCommY))
 +                {
 +                    /* Copy from the thread local grid to the node grid */
 +                    for (x = offx; x < tx1; x++)
 +                    {
 +                        for (y = offy; y < ty1; y++)
 +                        {
 +                            i0  = (x*fft_my + y)*fft_mz;
 +                            i0t = ((x - ox)*nsy + (y - oy))*nsz - oz;
 +                            for (z = offz; z < tz1; z++)
 +                            {
 +                                fftgrid[i0+z] += grid_th[i0t+z];
 +                            }
 +                        }
 +                    }
 +                }
 +                else
 +                {
 +                    /* The order of this conditional decides
 +                     * where the corner volume gets stored with x+y decomp.
 +                     */
 +                    if (bCommY)
 +                    {
 +                        commbuf = commbuf_y;
++                        /* The y-size of the communication buffer is order-1 */
++                        buf_my  = pmegrid->order - 1;
 +                        if (bCommX)
 +                        {
 +                            /* We index commbuf modulo the local grid size */
 +                            commbuf += buf_my*fft_nx*fft_nz;
 +
 +                            bClearBuf   = bClearBufXY;
 +                            bClearBufXY = FALSE;
 +                        }
 +                        else
 +                        {
 +                            bClearBuf  = bClearBufY;
 +                            bClearBufY = FALSE;
 +                        }
 +                    }
 +                    else
 +                    {
 +                        commbuf    = commbuf_x;
 +                        buf_my     = fft_ny;
 +                        bClearBuf  = bClearBufX;
 +                        bClearBufX = FALSE;
 +                    }
 +
 +                    /* Copy to the communication buffer */
 +                    for (x = offx; x < tx1; x++)
 +                    {
 +                        for (y = offy; y < ty1; y++)
 +                        {
 +                            i0  = (x*buf_my + y)*fft_nz;
 +                            i0t = ((x - ox)*nsy + (y - oy))*nsz - oz;
 +
 +                            if (bClearBuf)
 +                            {
 +                                /* First access of commbuf, initialize it */
 +                                for (z = offz; z < tz1; z++)
 +                                {
 +                                    commbuf[i0+z]  = grid_th[i0t+z];
 +                                }
 +                            }
 +                            else
 +                            {
 +                                for (z = offz; z < tz1; z++)
 +                                {
 +                                    commbuf[i0+z] += grid_th[i0t+z];
 +                                }
 +                            }
 +                        }
 +                    }
 +                }
 +            }
 +        }
 +    }
 +}
 +
 +
 +static void sum_fftgrid_dd(gmx_pme_t pme, real *fftgrid, int grid_index)
 +{
 +    ivec local_fft_ndata, local_fft_offset, local_fft_size;
 +    pme_overlap_t *overlap;
 +    int  send_index0, send_nindex;
 +    int  recv_nindex;
 +#ifdef GMX_MPI
 +    MPI_Status stat;
 +#endif
 +    int  send_size_y, recv_size_y;
 +    int  ipulse, send_id, recv_id, datasize, gridsize, size_yx;
 +    real *sendptr, *recvptr;
 +    int  x, y, z, indg, indb;
 +
 +    /* Note that this routine is only used for forward communication.
 +     * Since the force gathering, unlike the coefficient spreading,
 +     * can be trivially parallelized over the particles,
 +     * the backwards process is much simpler and can use the "old"
 +     * communication setup.
 +     */
 +
 +    gmx_parallel_3dfft_real_limits(pme->pfft_setup[grid_index],
 +                                   local_fft_ndata,
 +                                   local_fft_offset,
 +                                   local_fft_size);
 +
 +    if (pme->nnodes_minor > 1)
 +    {
 +        /* Major dimension */
 +        overlap = &pme->overlap[1];
 +
 +        if (pme->nnodes_major > 1)
 +        {
 +            size_yx = pme->overlap[0].comm_data[0].send_nindex;
 +        }
 +        else
 +        {
 +            size_yx = 0;
 +        }
 +        datasize = (local_fft_ndata[XX] + size_yx)*local_fft_ndata[ZZ];
 +
 +        send_size_y = overlap->send_size;
 +
 +        for (ipulse = 0; ipulse < overlap->noverlap_nodes; ipulse++)
 +        {
 +            send_id       = overlap->send_id[ipulse];
 +            recv_id       = overlap->recv_id[ipulse];
 +            send_index0   =
 +                overlap->comm_data[ipulse].send_index0 -
 +                overlap->comm_data[0].send_index0;
 +            send_nindex   = overlap->comm_data[ipulse].send_nindex;
 +            /* We don't use recv_index0, as we always receive starting at 0 */
 +            recv_nindex   = overlap->comm_data[ipulse].recv_nindex;
 +            recv_size_y   = overlap->comm_data[ipulse].recv_size;
 +
 +            sendptr = overlap->sendbuf + send_index0*local_fft_ndata[ZZ];
 +            recvptr = overlap->recvbuf;
 +
 +#ifdef GMX_MPI
 +            MPI_Sendrecv(sendptr, send_size_y*datasize, GMX_MPI_REAL,
 +                         send_id, ipulse,
 +                         recvptr, recv_size_y*datasize, GMX_MPI_REAL,
 +                         recv_id, ipulse,
 +                         overlap->mpi_comm, &stat);
 +#endif
 +
 +            for (x = 0; x < local_fft_ndata[XX]; x++)
 +            {
 +                for (y = 0; y < recv_nindex; y++)
 +                {
 +                    indg = (x*local_fft_size[YY] + y)*local_fft_size[ZZ];
 +                    indb = (x*recv_size_y        + y)*local_fft_ndata[ZZ];
 +                    for (z = 0; z < local_fft_ndata[ZZ]; z++)
 +                    {
 +                        fftgrid[indg+z] += recvptr[indb+z];
 +                    }
 +                }
 +            }
 +
 +            if (pme->nnodes_major > 1)
 +            {
 +                /* Copy from the received buffer to the send buffer for dim 0 */
 +                sendptr = pme->overlap[0].sendbuf;
 +                for (x = 0; x < size_yx; x++)
 +                {
 +                    for (y = 0; y < recv_nindex; y++)
 +                    {
 +                        indg = (x*local_fft_ndata[YY] + y)*local_fft_ndata[ZZ];
 +                        indb = ((local_fft_ndata[XX] + x)*recv_size_y + y)*local_fft_ndata[ZZ];
 +                        for (z = 0; z < local_fft_ndata[ZZ]; z++)
 +                        {
 +                            sendptr[indg+z] += recvptr[indb+z];
 +                        }
 +                    }
 +                }
 +            }
 +        }
 +    }
 +
 +    /* We only support a single pulse here.
 +     * This is not a severe limitation, as this code is only used
 +     * with OpenMP and with OpenMP the (PME) domains can be larger.
 +     */
 +    if (pme->nnodes_major > 1)
 +    {
 +        /* Major dimension */
 +        overlap = &pme->overlap[0];
 +
 +        datasize = local_fft_ndata[YY]*local_fft_ndata[ZZ];
 +        gridsize = local_fft_size[YY] *local_fft_size[ZZ];
 +
 +        ipulse = 0;
 +
 +        send_id       = overlap->send_id[ipulse];
 +        recv_id       = overlap->recv_id[ipulse];
 +        send_nindex   = overlap->comm_data[ipulse].send_nindex;
 +        /* We don't use recv_index0, as we always receive starting at 0 */
 +        recv_nindex   = overlap->comm_data[ipulse].recv_nindex;
 +
 +        sendptr = overlap->sendbuf;
 +        recvptr = overlap->recvbuf;
 +
 +        if (debug != NULL)
 +        {
 +            fprintf(debug, "PME fftgrid comm %2d x %2d x %2d\n",
 +                    send_nindex, local_fft_ndata[YY], local_fft_ndata[ZZ]);
 +        }
 +
 +#ifdef GMX_MPI
 +        MPI_Sendrecv(sendptr, send_nindex*datasize, GMX_MPI_REAL,
 +                     send_id, ipulse,
 +                     recvptr, recv_nindex*datasize, GMX_MPI_REAL,
 +                     recv_id, ipulse,
 +                     overlap->mpi_comm, &stat);
 +#endif
 +
 +        for (x = 0; x < recv_nindex; x++)
 +        {
 +            for (y = 0; y < local_fft_ndata[YY]; y++)
 +            {
 +                indg = (x*local_fft_size[YY]  + y)*local_fft_size[ZZ];
 +                indb = (x*local_fft_ndata[YY] + y)*local_fft_ndata[ZZ];
 +                for (z = 0; z < local_fft_ndata[ZZ]; z++)
 +                {
 +                    fftgrid[indg+z] += recvptr[indb+z];
 +                }
 +            }
 +        }
 +    }
 +}
 +
 +
 +static void spread_on_grid(gmx_pme_t pme,
 +                           pme_atomcomm_t *atc, pmegrids_t *grids,
 +                           gmx_bool bCalcSplines, gmx_bool bSpread,
 +                           real *fftgrid, gmx_bool bDoSplines, int grid_index)
 +{
 +    int nthread, thread;
 +#ifdef PME_TIME_THREADS
 +    gmx_cycles_t c1, c2, c3, ct1a, ct1b, ct1c;
 +    static double cs1     = 0, cs2 = 0, cs3 = 0;
 +    static double cs1a[6] = {0, 0, 0, 0, 0, 0};
 +    static int cnt        = 0;
 +#endif
 +
 +    nthread = pme->nthread;
 +    assert(nthread > 0);
 +
 +#ifdef PME_TIME_THREADS
 +    c1 = omp_cyc_start();
 +#endif
 +    if (bCalcSplines)
 +    {
 +#pragma omp parallel for num_threads(nthread) schedule(static)
 +        for (thread = 0; thread < nthread; thread++)
 +        {
 +            int start, end;
 +
 +            start = atc->n* thread   /nthread;
 +            end   = atc->n*(thread+1)/nthread;
 +
 +            /* Compute fftgrid index for all atoms,
 +             * with help of some extra variables.
 +             */
 +            calc_interpolation_idx(pme, atc, start, grid_index, end, thread);
 +        }
 +    }
 +#ifdef PME_TIME_THREADS
 +    c1   = omp_cyc_end(c1);
 +    cs1 += (double)c1;
 +#endif
 +
 +#ifdef PME_TIME_THREADS
 +    c2 = omp_cyc_start();
 +#endif
 +#pragma omp parallel for num_threads(nthread) schedule(static)
 +    for (thread = 0; thread < nthread; thread++)
 +    {
 +        splinedata_t *spline;
 +        pmegrid_t *grid = NULL;
 +
 +        /* make local bsplines  */
 +        if (grids == NULL || !pme->bUseThreads)
 +        {
 +            spline = &atc->spline[0];
 +
 +            spline->n = atc->n;
 +
 +            if (bSpread)
 +            {
 +                grid = &grids->grid;
 +            }
 +        }
 +        else
 +        {
 +            spline = &atc->spline[thread];
 +
 +            if (grids->nthread == 1)
 +            {
 +                /* One thread, we operate on all coefficients */
 +                spline->n = atc->n;
 +            }
 +            else
 +            {
 +                /* Get the indices our thread should operate on */
 +                make_thread_local_ind(atc, thread, spline);
 +            }
 +
 +            grid = &grids->grid_th[thread];
 +        }
 +
 +        if (bCalcSplines)
 +        {
 +            make_bsplines(spline->theta, spline->dtheta, pme->pme_order,
 +                          atc->fractx, spline->n, spline->ind, atc->coefficient, bDoSplines);
 +        }
 +
 +        if (bSpread)
 +        {
 +            /* put local atoms on grid. */
 +#ifdef PME_TIME_SPREAD
 +            ct1a = omp_cyc_start();
 +#endif
 +            spread_coefficients_bsplines_thread(grid, atc, spline, pme->spline_work);
 +
 +            if (pme->bUseThreads)
 +            {
 +                copy_local_grid(pme, grids, grid_index, thread, fftgrid);
 +            }
 +#ifdef PME_TIME_SPREAD
 +            ct1a          = omp_cyc_end(ct1a);
 +            cs1a[thread] += (double)ct1a;
 +#endif
 +        }
 +    }
 +#ifdef PME_TIME_THREADS
 +    c2   = omp_cyc_end(c2);
 +    cs2 += (double)c2;
 +#endif
 +
 +    if (bSpread && pme->bUseThreads)
 +    {
 +#ifdef PME_TIME_THREADS
 +        c3 = omp_cyc_start();
 +#endif
 +#pragma omp parallel for num_threads(grids->nthread) schedule(static)
 +        for (thread = 0; thread < grids->nthread; thread++)
 +        {
 +            reduce_threadgrid_overlap(pme, grids, thread,
 +                                      fftgrid,
 +                                      pme->overlap[0].sendbuf,
 +                                      pme->overlap[1].sendbuf,
 +                                      grid_index);
 +        }
 +#ifdef PME_TIME_THREADS
 +        c3   = omp_cyc_end(c3);
 +        cs3 += (double)c3;
 +#endif
 +
 +        if (pme->nnodes > 1)
 +        {
 +            /* Communicate the overlapping part of the fftgrid.
 +             * For this communication call we need to check pme->bUseThreads
 +             * to have all ranks communicate here, regardless of pme->nthread.
 +             */
 +            sum_fftgrid_dd(pme, fftgrid, grid_index);
 +        }
 +    }
 +
 +#ifdef PME_TIME_THREADS
 +    cnt++;
 +    if (cnt % 20 == 0)
 +    {
 +        printf("idx %.2f spread %.2f red %.2f",
 +               cs1*1e-9, cs2*1e-9, cs3*1e-9);
 +#ifdef PME_TIME_SPREAD
 +        for (thread = 0; thread < nthread; thread++)
 +        {
 +            printf(" %.2f", cs1a[thread]*1e-9);
 +        }
 +#endif
 +        printf("\n");
 +    }
 +#endif
 +}
 +
 +
 +static void dump_grid(FILE *fp,
 +                      int sx, int sy, int sz, int nx, int ny, int nz,
 +                      int my, int mz, const real *g)
 +{
 +    int x, y, z;
 +
 +    for (x = 0; x < nx; x++)
 +    {
 +        for (y = 0; y < ny; y++)
 +        {
 +            for (z = 0; z < nz; z++)
 +            {
 +                fprintf(fp, "%2d %2d %2d %6.3f\n",
 +                        sx+x, sy+y, sz+z, g[(x*my + y)*mz + z]);
 +            }
 +        }
 +    }
 +}
 +
 +static void dump_local_fftgrid(gmx_pme_t pme, const real *fftgrid)
 +{
 +    ivec local_fft_ndata, local_fft_offset, local_fft_size;
 +
 +    gmx_parallel_3dfft_real_limits(pme->pfft_setup[PME_GRID_QA],
 +                                   local_fft_ndata,
 +                                   local_fft_offset,
 +                                   local_fft_size);
 +
 +    dump_grid(stderr,
 +              pme->pmegrid_start_ix,
 +              pme->pmegrid_start_iy,
 +              pme->pmegrid_start_iz,
 +              pme->pmegrid_nx-pme->pme_order+1,
 +              pme->pmegrid_ny-pme->pme_order+1,
 +              pme->pmegrid_nz-pme->pme_order+1,
 +              local_fft_size[YY],
 +              local_fft_size[ZZ],
 +              fftgrid);
 +}
 +
 +
 +void gmx_pme_calc_energy(gmx_pme_t pme, int n, rvec *x, real *q, real *V)
 +{
 +    pme_atomcomm_t *atc;
 +    pmegrids_t *grid;
 +
 +    if (pme->nnodes > 1)
 +    {
 +        gmx_incons("gmx_pme_calc_energy called in parallel");
 +    }
 +    if (pme->bFEP_q > 1)
 +    {
 +        gmx_incons("gmx_pme_calc_energy with free energy");
 +    }
 +
 +    atc            = &pme->atc_energy;
 +    atc->nthread   = 1;
 +    if (atc->spline == NULL)
 +    {
 +        snew(atc->spline, atc->nthread);
 +    }
 +    atc->nslab     = 1;
 +    atc->bSpread   = TRUE;
 +    atc->pme_order = pme->pme_order;
 +    atc->n         = n;
 +    pme_realloc_atomcomm_things(atc);
 +    atc->x           = x;
 +    atc->coefficient = q;
 +
 +    /* We only use the A-charges grid */
 +    grid = &pme->pmegrid[PME_GRID_QA];
 +
 +    /* Only calculate the spline coefficients, don't actually spread */
 +    spread_on_grid(pme, atc, NULL, TRUE, FALSE, pme->fftgrid[PME_GRID_QA], FALSE, PME_GRID_QA);
 +
 +    *V = gather_energy_bsplines(pme, grid->grid.grid, atc);
 +}
 +
 +
 +static void reset_pmeonly_counters(gmx_wallcycle_t wcycle,
 +                                   gmx_walltime_accounting_t walltime_accounting,
 +                                   t_nrnb *nrnb, t_inputrec *ir,
 +                                   gmx_int64_t step)
 +{
 +    /* Reset all the counters related to performance over the run */
 +    wallcycle_stop(wcycle, ewcRUN);
 +    wallcycle_reset_all(wcycle);
 +    init_nrnb(nrnb);
 +    if (ir->nsteps >= 0)
 +    {
 +        /* ir->nsteps is not used here, but we update it for consistency */
 +        ir->nsteps -= step - ir->init_step;
 +    }
 +    ir->init_step = step;
 +    wallcycle_start(wcycle, ewcRUN);
 +    walltime_accounting_start(walltime_accounting);
 +}
 +
 +
 +static void gmx_pmeonly_switch(int *npmedata, gmx_pme_t **pmedata,
 +                               ivec grid_size,
 +                               t_commrec *cr, t_inputrec *ir,
 +                               gmx_pme_t *pme_ret)
 +{
 +    int ind;
 +    gmx_pme_t pme = NULL;
 +
 +    ind = 0;
 +    while (ind < *npmedata)
 +    {
 +        pme = (*pmedata)[ind];
 +        if (pme->nkx == grid_size[XX] &&
 +            pme->nky == grid_size[YY] &&
 +            pme->nkz == grid_size[ZZ])
 +        {
 +            *pme_ret = pme;
 +
 +            return;
 +        }
 +
 +        ind++;
 +    }
 +
 +    (*npmedata)++;
 +    srenew(*pmedata, *npmedata);
 +
 +    /* Generate a new PME data structure, copying part of the old pointers */
 +    gmx_pme_reinit(&((*pmedata)[ind]), cr, pme, ir, grid_size);
 +
 +    *pme_ret = (*pmedata)[ind];
 +}
 +
 +int gmx_pmeonly(gmx_pme_t pme,
 +                t_commrec *cr,    t_nrnb *mynrnb,
 +                gmx_wallcycle_t wcycle,
 +                gmx_walltime_accounting_t walltime_accounting,
 +                real ewaldcoeff_q, real ewaldcoeff_lj,
 +                t_inputrec *ir)
 +{
 +    int npmedata;
 +    gmx_pme_t *pmedata;
 +    gmx_pme_pp_t pme_pp;
 +    int  ret;
 +    int  natoms;
 +    matrix box;
 +    rvec *x_pp      = NULL, *f_pp = NULL;
 +    real *chargeA   = NULL, *chargeB = NULL;
 +    real *c6A       = NULL, *c6B = NULL;
 +    real *sigmaA    = NULL, *sigmaB = NULL;
 +    real lambda_q   = 0;
 +    real lambda_lj  = 0;
 +    int  maxshift_x = 0, maxshift_y = 0;
 +    real energy_q, energy_lj, dvdlambda_q, dvdlambda_lj;
 +    matrix vir_q, vir_lj;
 +    float cycles;
 +    int  count;
 +    gmx_bool bEnerVir;
 +    int pme_flags;
 +    gmx_int64_t step, step_rel;
 +    ivec grid_switch;
 +
 +    /* This data will only use with PME tuning, i.e. switching PME grids */
 +    npmedata = 1;
 +    snew(pmedata, npmedata);
 +    pmedata[0] = pme;
 +
 +    pme_pp = gmx_pme_pp_init(cr);
 +
 +    init_nrnb(mynrnb);
 +
 +    count = 0;
 +    do /****** this is a quasi-loop over time steps! */
 +    {
 +        /* The reason for having a loop here is PME grid tuning/switching */
 +        do
 +        {
 +            /* Domain decomposition */
 +            ret = gmx_pme_recv_coeffs_coords(pme_pp,
 +                                             &natoms,
 +                                             &chargeA, &chargeB,
 +                                             &c6A, &c6B,
 +                                             &sigmaA, &sigmaB,
 +                                             box, &x_pp, &f_pp,
 +                                             &maxshift_x, &maxshift_y,
 +                                             &pme->bFEP_q, &pme->bFEP_lj,
 +                                             &lambda_q, &lambda_lj,
 +                                             &bEnerVir,
 +                                             &pme_flags,
 +                                             &step,
 +                                             grid_switch, &ewaldcoeff_q, &ewaldcoeff_lj);
 +
 +            if (ret == pmerecvqxSWITCHGRID)
 +            {
 +                /* Switch the PME grid to grid_switch */
 +                gmx_pmeonly_switch(&npmedata, &pmedata, grid_switch, cr, ir, &pme);
 +            }
 +
 +            if (ret == pmerecvqxRESETCOUNTERS)
 +            {
 +                /* Reset the cycle and flop counters */
 +                reset_pmeonly_counters(wcycle, walltime_accounting, mynrnb, ir, step);
 +            }
 +        }
 +        while (ret == pmerecvqxSWITCHGRID || ret == pmerecvqxRESETCOUNTERS);
 +
 +        if (ret == pmerecvqxFINISH)
 +        {
 +            /* We should stop: break out of the loop */
 +            break;
 +        }
 +
 +        step_rel = step - ir->init_step;
 +
 +        if (count == 0)
 +        {
 +            wallcycle_start(wcycle, ewcRUN);
 +            walltime_accounting_start(walltime_accounting);
 +        }
 +
 +        wallcycle_start(wcycle, ewcPMEMESH);
 +
 +        dvdlambda_q  = 0;
 +        dvdlambda_lj = 0;
 +        clear_mat(vir_q);
 +        clear_mat(vir_lj);
 +
 +        gmx_pme_do(pme, 0, natoms, x_pp, f_pp,
 +                   chargeA, chargeB, c6A, c6B, sigmaA, sigmaB, box,
 +                   cr, maxshift_x, maxshift_y, mynrnb, wcycle,
 +                   vir_q, ewaldcoeff_q, vir_lj, ewaldcoeff_lj,
 +                   &energy_q, &energy_lj, lambda_q, lambda_lj, &dvdlambda_q, &dvdlambda_lj,
 +                   pme_flags | GMX_PME_DO_ALL_F | (bEnerVir ? GMX_PME_CALC_ENER_VIR : 0));
 +
 +        cycles = wallcycle_stop(wcycle, ewcPMEMESH);
 +
 +        gmx_pme_send_force_vir_ener(pme_pp,
 +                                    f_pp, vir_q, energy_q, vir_lj, energy_lj,
 +                                    dvdlambda_q, dvdlambda_lj, cycles);
 +
 +        count++;
 +    } /***** end of quasi-loop, we stop with the break above */
 +    while (TRUE);
 +
 +    walltime_accounting_end(walltime_accounting);
 +
 +    return 0;
 +}
 +
 +static void
 +calc_initial_lb_coeffs(gmx_pme_t pme, real *local_c6, real *local_sigma)
 +{
 +    int  i;
 +
 +    for (i = 0; i < pme->atc[0].n; ++i)
 +    {
 +        real sigma4;
 +
 +        sigma4                     = local_sigma[i];
 +        sigma4                     = sigma4*sigma4;
 +        sigma4                     = sigma4*sigma4;
 +        pme->atc[0].coefficient[i] = local_c6[i] / sigma4;
 +    }
 +}
 +
 +static void
 +calc_next_lb_coeffs(gmx_pme_t pme, real *local_sigma)
 +{
 +    int  i;
 +
 +    for (i = 0; i < pme->atc[0].n; ++i)
 +    {
 +        pme->atc[0].coefficient[i] *= local_sigma[i];
 +    }
 +}
 +
 +static void
 +do_redist_pos_coeffs(gmx_pme_t pme, t_commrec *cr, int start, int homenr,
 +                     gmx_bool bFirst, rvec x[], real *data)
 +{
 +    int      d;
 +    pme_atomcomm_t *atc;
 +    atc = &pme->atc[0];
 +
 +    for (d = pme->ndecompdim - 1; d >= 0; d--)
 +    {
 +        int             n_d;
 +        rvec           *x_d;
 +        real           *param_d;
 +
 +        if (d == pme->ndecompdim - 1)
 +        {
 +            n_d     = homenr;
 +            x_d     = x + start;
 +            param_d = data;
 +        }
 +        else
 +        {
 +            n_d     = pme->atc[d + 1].n;
 +            x_d     = atc->x;
 +            param_d = atc->coefficient;
 +        }
 +        atc      = &pme->atc[d];
 +        atc->npd = n_d;
 +        if (atc->npd > atc->pd_nalloc)
 +        {
 +            atc->pd_nalloc = over_alloc_dd(atc->npd);
 +            srenew(atc->pd, atc->pd_nalloc);
 +        }
 +        pme_calc_pidx_wrapper(n_d, pme->recipbox, x_d, atc);
 +        where();
 +        /* Redistribute x (only once) and qA/c6A or qB/c6B */
 +        if (DOMAINDECOMP(cr))
 +        {
 +            dd_pmeredist_pos_coeffs(pme, n_d, bFirst, x_d, param_d, atc);
 +        }
 +    }
 +}
 +
 +int gmx_pme_do(gmx_pme_t pme,
 +               int start,       int homenr,
 +               rvec x[],        rvec f[],
 +               real *chargeA,   real *chargeB,
 +               real *c6A,       real *c6B,
 +               real *sigmaA,    real *sigmaB,
 +               matrix box, t_commrec *cr,
 +               int  maxshift_x, int maxshift_y,
 +               t_nrnb *nrnb,    gmx_wallcycle_t wcycle,
 +               matrix vir_q,      real ewaldcoeff_q,
 +               matrix vir_lj,   real ewaldcoeff_lj,
 +               real *energy_q,  real *energy_lj,
 +               real lambda_q, real lambda_lj,
 +               real *dvdlambda_q, real *dvdlambda_lj,
 +               int flags)
 +{
 +    int     d, i, j, k, ntot, npme, grid_index, max_grid_index;
 +    int     nx, ny, nz;
 +    int     n_d, local_ny;
 +    pme_atomcomm_t *atc = NULL;
 +    pmegrids_t *pmegrid = NULL;
 +    real    *grid       = NULL;
 +    real    *ptr;
 +    rvec    *x_d, *f_d;
 +    real    *coefficient = NULL;
 +    real    energy_AB[4];
 +    matrix  vir_AB[4];
 +    real    scale, lambda;
 +    gmx_bool bClearF;
 +    gmx_parallel_3dfft_t pfft_setup;
 +    real *  fftgrid;
 +    t_complex * cfftgrid;
 +    int     thread;
 +    gmx_bool bFirst, bDoSplines;
 +    int fep_state;
 +    int fep_states_lj           = pme->bFEP_lj ? 2 : 1;
 +    const gmx_bool bCalcEnerVir = flags & GMX_PME_CALC_ENER_VIR;
 +    const gmx_bool bCalcF       = flags & GMX_PME_CALC_F;
 +
 +    assert(pme->nnodes > 0);
 +    assert(pme->nnodes == 1 || pme->ndecompdim > 0);
 +
 +    if (pme->nnodes > 1)
 +    {
 +        atc      = &pme->atc[0];
 +        atc->npd = homenr;
 +        if (atc->npd > atc->pd_nalloc)
 +        {
 +            atc->pd_nalloc = over_alloc_dd(atc->npd);
 +            srenew(atc->pd, atc->pd_nalloc);
 +        }
 +        for (d = pme->ndecompdim-1; d >= 0; d--)
 +        {
 +            atc           = &pme->atc[d];
 +            atc->maxshift = (atc->dimind == 0 ? maxshift_x : maxshift_y);
 +        }
 +    }
 +    else
 +    {
 +        atc = &pme->atc[0];
 +        /* This could be necessary for TPI */
 +        pme->atc[0].n = homenr;
 +        if (DOMAINDECOMP(cr))
 +        {
 +            pme_realloc_atomcomm_things(atc);
 +        }
 +        atc->x = x;
 +        atc->f = f;
 +    }
 +
 +    m_inv_ur0(box, pme->recipbox);
 +    bFirst = TRUE;
 +
 +    /* For simplicity, we construct the splines for all particles if
 +     * more than one PME calculations is needed. Some optimization
 +     * could be done by keeping track of which atoms have splines
 +     * constructed, and construct new splines on each pass for atoms
 +     * that don't yet have them.
 +     */
 +
 +    bDoSplines = pme->bFEP || ((flags & GMX_PME_DO_COULOMB) && (flags & GMX_PME_DO_LJ));
 +
 +    /* We need a maximum of four separate PME calculations:
 +     * grid_index=0: Coulomb PME with charges from state A
 +     * grid_index=1: Coulomb PME with charges from state B
 +     * grid_index=2: LJ PME with C6 from state A
 +     * grid_index=3: LJ PME with C6 from state B
 +     * For Lorentz-Berthelot combination rules, a separate loop is used to
 +     * calculate all the terms
 +     */
 +
 +    /* If we are doing LJ-PME with LB, we only do Q here */
 +    max_grid_index = (pme->ljpme_combination_rule == eljpmeLB) ? DO_Q : DO_Q_AND_LJ;
 +
 +    for (grid_index = 0; grid_index < max_grid_index; ++grid_index)
 +    {
 +        /* Check if we should do calculations at this grid_index
 +         * If grid_index is odd we should be doing FEP
 +         * If grid_index < 2 we should be doing electrostatic PME
 +         * If grid_index >= 2 we should be doing LJ-PME
 +         */
 +        if ((grid_index <  DO_Q && (!(flags & GMX_PME_DO_COULOMB) ||
 +                                    (grid_index == 1 && !pme->bFEP_q))) ||
 +            (grid_index >= DO_Q && (!(flags & GMX_PME_DO_LJ) ||
 +                                    (grid_index == 3 && !pme->bFEP_lj))))
 +        {
 +            continue;
 +        }
 +        /* Unpack structure */
 +        pmegrid    = &pme->pmegrid[grid_index];
 +        fftgrid    = pme->fftgrid[grid_index];
 +        cfftgrid   = pme->cfftgrid[grid_index];
 +        pfft_setup = pme->pfft_setup[grid_index];
 +        switch (grid_index)
 +        {
 +            case 0: coefficient = chargeA + start; break;
 +            case 1: coefficient = chargeB + start; break;
 +            case 2: coefficient = c6A + start; break;
 +            case 3: coefficient = c6B + start; break;
 +        }
 +
 +        grid = pmegrid->grid.grid;
 +
 +        if (debug)
 +        {
 +            fprintf(debug, "PME: number of ranks = %d, rank = %d\n",
 +                    cr->nnodes, cr->nodeid);
 +            fprintf(debug, "Grid = %p\n", (void*)grid);
 +            if (grid == NULL)
 +            {
 +                gmx_fatal(FARGS, "No grid!");
 +            }
 +        }
 +        where();
 +
 +        if (pme->nnodes == 1)
 +        {
 +            atc->coefficient = coefficient;
 +        }
 +        else
 +        {
 +            wallcycle_start(wcycle, ewcPME_REDISTXF);
 +            do_redist_pos_coeffs(pme, cr, start, homenr, bFirst, x, coefficient);
 +            where();
 +
 +            wallcycle_stop(wcycle, ewcPME_REDISTXF);
 +        }
 +
 +        if (debug)
 +        {
 +            fprintf(debug, "Rank= %6d, pme local particles=%6d\n",
 +                    cr->nodeid, atc->n);
 +        }
 +
 +        if (flags & GMX_PME_SPREAD)
 +        {
 +            wallcycle_start(wcycle, ewcPME_SPREADGATHER);
 +
 +            /* Spread the coefficients on a grid */
 +            spread_on_grid(pme, &pme->atc[0], pmegrid, bFirst, TRUE, fftgrid, bDoSplines, grid_index);
 +
 +            if (bFirst)
 +            {
 +                inc_nrnb(nrnb, eNR_WEIGHTS, DIM*atc->n);
 +            }
 +            inc_nrnb(nrnb, eNR_SPREADBSP,
 +                     pme->pme_order*pme->pme_order*pme->pme_order*atc->n);
 +
 +            if (!pme->bUseThreads)
 +            {
 +                wrap_periodic_pmegrid(pme, grid);
 +
 +                /* sum contributions to local grid from other nodes */
 +#ifdef GMX_MPI
 +                if (pme->nnodes > 1)
 +                {
 +                    gmx_sum_qgrid_dd(pme, grid, GMX_SUM_GRID_FORWARD);
 +                    where();
 +                }
 +#endif
 +
 +                copy_pmegrid_to_fftgrid(pme, grid, fftgrid, grid_index);
 +            }
 +
 +            wallcycle_stop(wcycle, ewcPME_SPREADGATHER);
 +
 +            /*
 +               dump_local_fftgrid(pme,fftgrid);
 +               exit(0);
 +             */
 +        }
 +
 +        /* Here we start a large thread parallel region */
 +#pragma omp parallel num_threads(pme->nthread) private(thread)
 +        {
 +            thread = gmx_omp_get_thread_num();
 +            if (flags & GMX_PME_SOLVE)
 +            {
 +                int loop_count;
 +
 +                /* do 3d-fft */
 +                if (thread == 0)
 +                {
 +                    wallcycle_start(wcycle, ewcPME_FFT);
 +                }
 +                gmx_parallel_3dfft_execute(pfft_setup, GMX_FFT_REAL_TO_COMPLEX,
 +                                           thread, wcycle);
 +                if (thread == 0)
 +                {
 +                    wallcycle_stop(wcycle, ewcPME_FFT);
 +                }
 +                where();
 +
 +                /* solve in k-space for our local cells */
 +                if (thread == 0)
 +                {
 +                    wallcycle_start(wcycle, (grid_index < DO_Q ? ewcPME_SOLVE : ewcLJPME));
 +                }
 +                if (grid_index < DO_Q)
 +                {
 +                    loop_count =
 +                        solve_pme_yzx(pme, cfftgrid, ewaldcoeff_q,
 +                                      box[XX][XX]*box[YY][YY]*box[ZZ][ZZ],
 +                                      bCalcEnerVir,
 +                                      pme->nthread, thread);
 +                }
 +                else
 +                {
 +                    loop_count =
 +                        solve_pme_lj_yzx(pme, &cfftgrid, FALSE, ewaldcoeff_lj,
 +                                         box[XX][XX]*box[YY][YY]*box[ZZ][ZZ],
 +                                         bCalcEnerVir,
 +                                         pme->nthread, thread);
 +                }
 +
 +                if (thread == 0)
 +                {
 +                    wallcycle_stop(wcycle, (grid_index < DO_Q ? ewcPME_SOLVE : ewcLJPME));
 +                    where();
 +                    inc_nrnb(nrnb, eNR_SOLVEPME, loop_count);
 +                }
 +            }
 +
 +            if (bCalcF)
 +            {
 +                /* do 3d-invfft */
 +                if (thread == 0)
 +                {
 +                    where();
 +                    wallcycle_start(wcycle, ewcPME_FFT);
 +                }
 +                gmx_parallel_3dfft_execute(pfft_setup, GMX_FFT_COMPLEX_TO_REAL,
 +                                           thread, wcycle);
 +                if (thread == 0)
 +                {
 +                    wallcycle_stop(wcycle, ewcPME_FFT);
 +
 +                    where();
 +
 +                    if (pme->nodeid == 0)
 +                    {
 +                        ntot  = pme->nkx*pme->nky*pme->nkz;
 +                        npme  = ntot*log((real)ntot)/log(2.0);
 +                        inc_nrnb(nrnb, eNR_FFT, 2*npme);
 +                    }
 +
 +                    /* Note: this wallcycle region is closed below
 +                       outside an OpenMP region, so take care if
 +                       refactoring code here. */
 +                    wallcycle_start(wcycle, ewcPME_SPREADGATHER);
 +                }
 +
 +                copy_fftgrid_to_pmegrid(pme, fftgrid, grid, grid_index, pme->nthread, thread);
 +            }
 +        }
 +        /* End of thread parallel section.
 +         * With MPI we have to synchronize here before gmx_sum_qgrid_dd.
 +         */
 +
 +        if (bCalcF)
 +        {
 +            /* distribute local grid to all nodes */
 +#ifdef GMX_MPI
 +            if (pme->nnodes > 1)
 +            {
 +                gmx_sum_qgrid_dd(pme, grid, GMX_SUM_GRID_BACKWARD);
 +            }
 +#endif
 +            where();
 +
 +            unwrap_periodic_pmegrid(pme, grid);
 +
 +            /* interpolate forces for our local atoms */
 +
 +            where();
 +
 +            /* If we are running without parallelization,
 +             * atc->f is the actual force array, not a buffer,
 +             * therefore we should not clear it.
 +             */
 +            lambda  = grid_index < DO_Q ? lambda_q : lambda_lj;
 +            bClearF = (bFirst && PAR(cr));
 +#pragma omp parallel for num_threads(pme->nthread) schedule(static)
 +            for (thread = 0; thread < pme->nthread; thread++)
 +            {
 +                gather_f_bsplines(pme, grid, bClearF, atc,
 +                                  &atc->spline[thread],
 +                                  pme->bFEP ? (grid_index % 2 == 0 ? 1.0-lambda : lambda) : 1.0);
 +            }
 +
 +            where();
 +
 +            inc_nrnb(nrnb, eNR_GATHERFBSP,
 +                     pme->pme_order*pme->pme_order*pme->pme_order*pme->atc[0].n);
 +            /* Note: this wallcycle region is opened above inside an OpenMP
 +               region, so take care if refactoring code here. */
 +            wallcycle_stop(wcycle, ewcPME_SPREADGATHER);
 +        }
 +
 +        if (bCalcEnerVir)
 +        {
 +            /* This should only be called on the master thread
 +             * and after the threads have synchronized.
 +             */
 +            if (grid_index < 2)
 +            {
 +                get_pme_ener_vir_q(pme, pme->nthread, &energy_AB[grid_index], vir_AB[grid_index]);
 +            }
 +            else
 +            {
 +                get_pme_ener_vir_lj(pme, pme->nthread, &energy_AB[grid_index], vir_AB[grid_index]);
 +            }
 +        }
 +        bFirst = FALSE;
 +    } /* of grid_index-loop */
 +
 +    /* For Lorentz-Berthelot combination rules in LJ-PME, we need to calculate
 +     * seven terms. */
 +
 +    if ((flags & GMX_PME_DO_LJ) && pme->ljpme_combination_rule == eljpmeLB)
 +    {
 +        /* Loop over A- and B-state if we are doing FEP */
 +        for (fep_state = 0; fep_state < fep_states_lj; ++fep_state)
 +        {
 +            real *local_c6 = NULL, *local_sigma = NULL, *RedistC6 = NULL, *RedistSigma = NULL;
 +            if (pme->nnodes == 1)
 +            {
 +                if (pme->lb_buf1 == NULL)
 +                {
 +                    pme->lb_buf_nalloc = pme->atc[0].n;
 +                    snew(pme->lb_buf1, pme->lb_buf_nalloc);
 +                }
 +                pme->atc[0].coefficient = pme->lb_buf1;
 +                switch (fep_state)
 +                {
 +                    case 0:
 +                        local_c6      = c6A;
 +                        local_sigma   = sigmaA;
 +                        break;
 +                    case 1:
 +                        local_c6      = c6B;
 +                        local_sigma   = sigmaB;
 +                        break;
 +                    default:
 +                        gmx_incons("Trying to access wrong FEP-state in LJ-PME routine");
 +                }
 +            }
 +            else
 +            {
 +                atc = &pme->atc[0];
 +                switch (fep_state)
 +                {
 +                    case 0:
 +                        RedistC6      = c6A;
 +                        RedistSigma   = sigmaA;
 +                        break;
 +                    case 1:
 +                        RedistC6      = c6B;
 +                        RedistSigma   = sigmaB;
 +                        break;
 +                    default:
 +                        gmx_incons("Trying to access wrong FEP-state in LJ-PME routine");
 +                }
 +                wallcycle_start(wcycle, ewcPME_REDISTXF);
 +
 +                do_redist_pos_coeffs(pme, cr, start, homenr, bFirst, x, RedistC6);
 +                if (pme->lb_buf_nalloc < atc->n)
 +                {
 +                    pme->lb_buf_nalloc = atc->nalloc;
 +                    srenew(pme->lb_buf1, pme->lb_buf_nalloc);
 +                    srenew(pme->lb_buf2, pme->lb_buf_nalloc);
 +                }
 +                local_c6 = pme->lb_buf1;
 +                for (i = 0; i < atc->n; ++i)
 +                {
 +                    local_c6[i] = atc->coefficient[i];
 +                }
 +                where();
 +
 +                do_redist_pos_coeffs(pme, cr, start, homenr, FALSE, x, RedistSigma);
 +                local_sigma = pme->lb_buf2;
 +                for (i = 0; i < atc->n; ++i)
 +                {
 +                    local_sigma[i] = atc->coefficient[i];
 +                }
 +                where();
 +
 +                wallcycle_stop(wcycle, ewcPME_REDISTXF);
 +            }
 +            calc_initial_lb_coeffs(pme, local_c6, local_sigma);
 +
 +            /*Seven terms in LJ-PME with LB, grid_index < 2 reserved for electrostatics*/
 +            for (grid_index = 2; grid_index < 9; ++grid_index)
 +            {
 +                /* Unpack structure */
 +                pmegrid    = &pme->pmegrid[grid_index];
 +                fftgrid    = pme->fftgrid[grid_index];
 +                cfftgrid   = pme->cfftgrid[grid_index];
 +                pfft_setup = pme->pfft_setup[grid_index];
 +                calc_next_lb_coeffs(pme, local_sigma);
 +                grid = pmegrid->grid.grid;
 +                where();
 +
 +                if (flags & GMX_PME_SPREAD)
 +                {
 +                    wallcycle_start(wcycle, ewcPME_SPREADGATHER);
 +                    /* Spread the c6 on a grid */
 +                    spread_on_grid(pme, &pme->atc[0], pmegrid, bFirst, TRUE, fftgrid, bDoSplines, grid_index);
 +
 +                    if (bFirst)
 +                    {
 +                        inc_nrnb(nrnb, eNR_WEIGHTS, DIM*atc->n);
 +                    }
 +
 +                    inc_nrnb(nrnb, eNR_SPREADBSP,
 +                             pme->pme_order*pme->pme_order*pme->pme_order*atc->n);
 +                    if (pme->nthread == 1)
 +                    {
 +                        wrap_periodic_pmegrid(pme, grid);
 +                        /* sum contributions to local grid from other nodes */
 +#ifdef GMX_MPI
 +                        if (pme->nnodes > 1)
 +                        {
 +                            gmx_sum_qgrid_dd(pme, grid, GMX_SUM_GRID_FORWARD);
 +                            where();
 +                        }
 +#endif
 +                        copy_pmegrid_to_fftgrid(pme, grid, fftgrid, grid_index);
 +                    }
 +                    wallcycle_stop(wcycle, ewcPME_SPREADGATHER);
 +                }
 +                /*Here we start a large thread parallel region*/
 +#pragma omp parallel num_threads(pme->nthread) private(thread)
 +                {
 +                    thread = gmx_omp_get_thread_num();
 +                    if (flags & GMX_PME_SOLVE)
 +                    {
 +                        /* do 3d-fft */
 +                        if (thread == 0)
 +                        {
 +                            wallcycle_start(wcycle, ewcPME_FFT);
 +                        }
 +
 +                        gmx_parallel_3dfft_execute(pfft_setup, GMX_FFT_REAL_TO_COMPLEX,
 +                                                   thread, wcycle);
 +                        if (thread == 0)
 +                        {
 +                            wallcycle_stop(wcycle, ewcPME_FFT);
 +                        }
 +                        where();
 +                    }
 +                }
 +                bFirst = FALSE;
 +            }
 +            if (flags & GMX_PME_SOLVE)
 +            {
 +                /* solve in k-space for our local cells */
 +#pragma omp parallel num_threads(pme->nthread) private(thread)
 +                {
 +                    int loop_count;
 +                    thread = gmx_omp_get_thread_num();
 +                    if (thread == 0)
 +                    {
 +                        wallcycle_start(wcycle, ewcLJPME);
 +                    }
 +
 +                    loop_count =
 +                        solve_pme_lj_yzx(pme, &pme->cfftgrid[2], TRUE, ewaldcoeff_lj,
 +                                         box[XX][XX]*box[YY][YY]*box[ZZ][ZZ],
 +                                         bCalcEnerVir,
 +                                         pme->nthread, thread);
 +                    if (thread == 0)
 +                    {
 +                        wallcycle_stop(wcycle, ewcLJPME);
 +                        where();
 +                        inc_nrnb(nrnb, eNR_SOLVEPME, loop_count);
 +                    }
 +                }
 +            }
 +
 +            if (bCalcEnerVir)
 +            {
 +                /* This should only be called on the master thread and
 +                 * after the threads have synchronized.
 +                 */
 +                get_pme_ener_vir_lj(pme, pme->nthread, &energy_AB[2+fep_state], vir_AB[2+fep_state]);
 +            }
 +
 +            if (bCalcF)
 +            {
 +                bFirst = !(flags & GMX_PME_DO_COULOMB);
 +                calc_initial_lb_coeffs(pme, local_c6, local_sigma);
 +                for (grid_index = 8; grid_index >= 2; --grid_index)
 +                {
 +                    /* Unpack structure */
 +                    pmegrid    = &pme->pmegrid[grid_index];
 +                    fftgrid    = pme->fftgrid[grid_index];
 +                    cfftgrid   = pme->cfftgrid[grid_index];
 +                    pfft_setup = pme->pfft_setup[grid_index];
 +                    grid       = pmegrid->grid.grid;
 +                    calc_next_lb_coeffs(pme, local_sigma);
 +                    where();
 +#pragma omp parallel num_threads(pme->nthread) private(thread)
 +                    {
 +                        thread = gmx_omp_get_thread_num();
 +                        /* do 3d-invfft */
 +                        if (thread == 0)
 +                        {
 +                            where();
 +                            wallcycle_start(wcycle, ewcPME_FFT);
 +                        }
 +
 +                        gmx_parallel_3dfft_execute(pfft_setup, GMX_FFT_COMPLEX_TO_REAL,
 +                                                   thread, wcycle);
 +                        if (thread == 0)
 +                        {
 +                            wallcycle_stop(wcycle, ewcPME_FFT);
 +
 +                            where();
 +
 +                            if (pme->nodeid == 0)
 +                            {
 +                                ntot  = pme->nkx*pme->nky*pme->nkz;
 +                                npme  = ntot*log((real)ntot)/log(2.0);
 +                                inc_nrnb(nrnb, eNR_FFT, 2*npme);
 +                            }
 +                            wallcycle_start(wcycle, ewcPME_SPREADGATHER);
 +                        }
 +
 +                        copy_fftgrid_to_pmegrid(pme, fftgrid, grid, grid_index, pme->nthread, thread);
 +
 +                    } /*#pragma omp parallel*/
 +
 +                    /* distribute local grid to all nodes */
 +#ifdef GMX_MPI
 +                    if (pme->nnodes > 1)
 +                    {
 +                        gmx_sum_qgrid_dd(pme, grid, GMX_SUM_GRID_BACKWARD);
 +                    }
 +#endif
 +                    where();
 +
 +                    unwrap_periodic_pmegrid(pme, grid);
 +
 +                    /* interpolate forces for our local atoms */
 +                    where();
 +                    bClearF = (bFirst && PAR(cr));
 +                    scale   = pme->bFEP ? (fep_state < 1 ? 1.0-lambda_lj : lambda_lj) : 1.0;
 +                    scale  *= lb_scale_factor[grid_index-2];
 +#pragma omp parallel for num_threads(pme->nthread) schedule(static)
 +                    for (thread = 0; thread < pme->nthread; thread++)
 +                    {
 +                        gather_f_bsplines(pme, grid, bClearF, &pme->atc[0],
 +                                          &pme->atc[0].spline[thread],
 +                                          scale);
 +                    }
 +                    where();
 +
 +                    inc_nrnb(nrnb, eNR_GATHERFBSP,
 +                             pme->pme_order*pme->pme_order*pme->pme_order*pme->atc[0].n);
 +                    wallcycle_stop(wcycle, ewcPME_SPREADGATHER);
 +
 +                    bFirst = FALSE;
 +                } /* for (grid_index = 8; grid_index >= 2; --grid_index) */
 +            }     /* if (bCalcF) */
 +        }         /* for (fep_state = 0; fep_state < fep_states_lj; ++fep_state) */
 +    }             /* if ((flags & GMX_PME_DO_LJ) && pme->ljpme_combination_rule == eljpmeLB) */
 +
 +    if (bCalcF && pme->nnodes > 1)
 +    {
 +        wallcycle_start(wcycle, ewcPME_REDISTXF);
 +        for (d = 0; d < pme->ndecompdim; d++)
 +        {
 +            atc = &pme->atc[d];
 +            if (d == pme->ndecompdim - 1)
 +            {
 +                n_d = homenr;
 +                f_d = f + start;
 +            }
 +            else
 +            {
 +                n_d = pme->atc[d+1].n;
 +                f_d = pme->atc[d+1].f;
 +            }
 +            if (DOMAINDECOMP(cr))
 +            {
 +                dd_pmeredist_f(pme, atc, n_d, f_d,
 +                               d == pme->ndecompdim-1 && pme->bPPnode);
 +            }
 +        }
 +
 +        wallcycle_stop(wcycle, ewcPME_REDISTXF);
 +    }
 +    where();
 +
 +    if (bCalcEnerVir)
 +    {
 +        if (flags & GMX_PME_DO_COULOMB)
 +        {
 +            if (!pme->bFEP_q)
 +            {
 +                *energy_q = energy_AB[0];
 +                m_add(vir_q, vir_AB[0], vir_q);
 +            }
 +            else
 +            {
 +                *energy_q       = (1.0-lambda_q)*energy_AB[0] + lambda_q*energy_AB[1];
 +                *dvdlambda_q   += energy_AB[1] - energy_AB[0];
 +                for (i = 0; i < DIM; i++)
 +                {
 +                    for (j = 0; j < DIM; j++)
 +                    {
 +                        vir_q[i][j] += (1.0-lambda_q)*vir_AB[0][i][j] +
 +                            lambda_q*vir_AB[1][i][j];
 +                    }
 +                }
 +            }
 +            if (debug)
 +            {
 +                fprintf(debug, "Electrostatic PME mesh energy: %g\n", *energy_q);
 +            }
 +        }
 +        else
 +        {
 +            *energy_q = 0;
 +        }
 +
 +        if (flags & GMX_PME_DO_LJ)
 +        {
 +            if (!pme->bFEP_lj)
 +            {
 +                *energy_lj = energy_AB[2];
 +                m_add(vir_lj, vir_AB[2], vir_lj);
 +            }
 +            else
 +            {
 +                *energy_lj     = (1.0-lambda_lj)*energy_AB[2] + lambda_lj*energy_AB[3];
 +                *dvdlambda_lj += energy_AB[3] - energy_AB[2];
 +                for (i = 0; i < DIM; i++)
 +                {
 +                    for (j = 0; j < DIM; j++)
 +                    {
 +                        vir_lj[i][j] += (1.0-lambda_lj)*vir_AB[2][i][j] + lambda_lj*vir_AB[3][i][j];
 +                    }
 +                }
 +            }
 +            if (debug)
 +            {
 +                fprintf(debug, "Lennard-Jones PME mesh energy: %g\n", *energy_lj);
 +            }
 +        }
 +        else
 +        {
 +            *energy_lj = 0;
 +        }
 +    }
 +    return 0;
 +}