Free-energy now works with the Verlet scheme
authorBerk Hess <hess@kth.se>
Tue, 26 Nov 2013 07:52:16 +0000 (08:52 +0100)
committerGerrit Code Review <gerrit@gerrit.gromacs.org>
Wed, 26 Feb 2014 18:10:35 +0000 (19:10 +0100)
Implemented perturbed non-bonded interactions with the Verlet
by masking them from the nbnxn pair lists and storing them in an
old-fashioned group neighbor list. This way we keep a single
free energy kernel.
The free energy kernel uses OpenMP atomic for reductions.

Also fixed grompp setting nstcalcenergy=0 with nstenergy=0.

Change-Id: I5a6a7e84b46e06250d141e2e08cb3a11077cddab

21 files changed:
src/gromacs/gmxlib/nonbonded/nb_free_energy.c
src/gromacs/gmxpreprocess/readir.c
src/gromacs/legacyheaders/nonbonded.h
src/gromacs/legacyheaders/ns.h
src/gromacs/legacyheaders/types/enums.h
src/gromacs/legacyheaders/types/forcerec.h
src/gromacs/legacyheaders/types/nblist.h
src/gromacs/legacyheaders/types/nbnxn_pairlist.h
src/gromacs/mdlib/force.c
src/gromacs/mdlib/forcerec.c
src/gromacs/mdlib/genborn.c
src/gromacs/mdlib/nbnxn_atomdata.c
src/gromacs/mdlib/nbnxn_consts.h
src/gromacs/mdlib/nbnxn_internal.h
src/gromacs/mdlib/nbnxn_search.c
src/gromacs/mdlib/nbnxn_search.h
src/gromacs/mdlib/ns.c
src/gromacs/mdlib/sim_util.c
src/programs/mdrun/md.c
src/programs/mdrun/pme_loadbal.c
src/programs/mdrun/runner.c

index 491b128c34c7dc0ce7a1f80045aa4c96b17c8d2e..cb6f5c26a82a9e2d0154a97d1c7e80f05caabb37 100644 (file)
@@ -3,7 +3,7 @@
  *
  * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
  * Copyright (c) 2001-2004, The GROMACS development team.
- * Copyright (c) 2013, by the GROMACS development team, led by
+ * Copyright (c) 2013,2014, by the GROMACS development team, led by
  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
  * and including many others, as listed in the AUTHORS file in the
  * top-level source directory and at http://www.gromacs.org.
@@ -45,6 +45,7 @@
 #include "nonbonded.h"
 #include "nb_kernel.h"
 #include "nrnb.h"
+#include "macros.h"
 #include "nb_free_energy.h"
 
 void
@@ -94,8 +95,8 @@ gmx_nb_free_energy_kernel(const t_nblist * gmx_restrict    nlist,
     const real *  shiftvec;
     real          dvdl_part;
     real *        fshift;
-    real          tabscale;
-    const real *  VFtab;
+    real          tabscale = 0;
+    const real *  VFtab    = NULL;
     const real *  x;
     real *        f;
     real          facel, krf, crf;
@@ -107,9 +108,11 @@ gmx_nb_free_energy_kernel(const t_nblist * gmx_restrict    nlist,
     real *        dvdl;
     real *        Vv;
     real *        Vc;
-    gmx_bool      bDoForces;
-    real          rcoulomb, rvdw, sh_invrc6;
-    gmx_bool      bExactElecCutoff, bExactVdwCutoff;
+    gmx_bool      bDoForces, bDoShiftForces, bDoPotential;
+    real          rcoulomb, sh_ewald;
+    real          rvdw, sh_invrc6;
+    gmx_bool      bExactElecCutoff, bExactVdwCutoff, bExactCutoffAll, bEwald;
+    real          rcutoff_max2;
     real          rcutoff, rcutoff2, rswitch, d, d2, swV3, swV4, swV5, swF2, swF3, swF4, sw, dsw, rinvcorr;
     const real *  tab_ewald_F;
     const real *  tab_ewald_V;
@@ -142,8 +145,6 @@ gmx_nb_free_energy_kernel(const t_nblist * gmx_restrict    nlist,
     ntype               = fr->ntype;
     nbfp                = fr->nbfp;
     Vv                  = kernel_data->energygrp_vdw;
-    tabscale            = kernel_data->table_elec_vdw->scale;
-    VFtab               = kernel_data->table_elec_vdw->data;
     lambda_coul         = kernel_data->lambda[efptCOUL];
     lambda_vdw          = kernel_data->lambda[efptVDW];
     dvdl                = kernel_data->dvdl;
@@ -154,8 +155,11 @@ gmx_nb_free_energy_kernel(const t_nblist * gmx_restrict    nlist,
     sigma6_def          = fr->sc_sigma6_def;
     sigma6_min          = fr->sc_sigma6_min;
     bDoForces           = kernel_data->flags & GMX_NONBONDED_DO_FORCE;
+    bDoShiftForces      = kernel_data->flags & GMX_NONBONDED_DO_SHIFTFORCE;
+    bDoPotential        = kernel_data->flags & GMX_NONBONDED_DO_POTENTIAL;
 
     rcoulomb            = fr->rcoulomb;
+    sh_ewald            = fr->ic->sh_ewald;
     rvdw                = fr->rvdw;
     sh_invrc6           = fr->ic->sh_invrc6;
 
@@ -190,8 +194,41 @@ gmx_nb_free_energy_kernel(const t_nblist * gmx_restrict    nlist,
         swF4            = 0.0;
     }
 
-    bExactElecCutoff    = (fr->coulomb_modifier != eintmodNONE) || fr->eeltype == eelRF_ZERO;
-    bExactVdwCutoff     = (fr->vdw_modifier != eintmodNONE);
+    if (fr->cutoff_scheme == ecutsVERLET)
+    {
+        const interaction_const_t *ic;
+
+        ic = fr->ic;
+
+        ivdw             = GMX_NBKERNEL_VDW_LENNARDJONES;
+
+        if (ic->eeltype == eelCUT || EEL_RF(ic->eeltype))
+        {
+            icoul        = GMX_NBKERNEL_ELEC_REACTIONFIELD;
+        }
+        else if (EEL_PME_EWALD(ic->eeltype))
+        {
+            icoul        = GMX_NBKERNEL_ELEC_EWALD;
+        }
+        else
+        {
+            gmx_incons("Unsupported eeltype with Verlet and free-energy");
+        }
+
+        bExactElecCutoff = TRUE;
+        bExactVdwCutoff  = TRUE;
+    }
+    else
+    {
+        bExactElecCutoff = (fr->coulomb_modifier != eintmodNONE) || fr->eeltype == eelRF_ZERO;
+        bExactVdwCutoff  = (fr->vdw_modifier != eintmodNONE);
+    }
+
+    bExactCutoffAll = (bExactElecCutoff && bExactVdwCutoff);
+    rcutoff_max2    = max(fr->rcoulomb, fr->rvdw);
+    rcutoff_max2    = rcutoff_max2*rcutoff_max2;
+
+    bEwald          = (icoul == GMX_NBKERNEL_ELEC_EWALD);
 
     /* fix compiler warnings */
     nj1   = 0;
@@ -229,12 +266,20 @@ gmx_nb_free_energy_kernel(const t_nblist * gmx_restrict    nlist,
 
     do_tab = (icoul == GMX_NBKERNEL_ELEC_CUBICSPLINETABLE ||
               ivdw == GMX_NBKERNEL_VDW_CUBICSPLINETABLE);
-
-    /* we always use the combined table here */
-    tab_elemsize = 12;
+    if (do_tab)
+    {
+        tabscale         = kernel_data->table_elec_vdw->scale;
+        VFtab            = kernel_data->table_elec_vdw->data;
+        /* we always use the combined table here */
+        tab_elemsize     = 12;
+    }
 
     for (n = 0; (n < nri); n++)
     {
+        int npair_within_cutoff;
+
+        npair_within_cutoff = 0;
+
         is3              = 3*shift[n];
         shX              = shiftvec[is3];
         shY              = shiftvec[is3+1];
@@ -263,9 +308,34 @@ gmx_nb_free_energy_kernel(const t_nblist * gmx_restrict    nlist,
             dx               = ix - x[j3];
             dy               = iy - x[j3+1];
             dz               = iz - x[j3+2];
-            rsq              = dx*dx+dy*dy+dz*dz;
-            rinv             = gmx_invsqrt(rsq);
-            r                = rsq*rinv;
+            rsq              = dx*dx + dy*dy + dz*dz;
+
+            if (bExactCutoffAll && rsq >= rcutoff_max2)
+            {
+                /* We save significant time by skipping all code below.
+                 * Note that with soft-core interactions, the actual cut-off
+                 * check might be different. But since the soft-core distance
+                 * is always larger than r, checking on r here is safe.
+                 */
+                continue;
+            }
+            npair_within_cutoff++;
+
+            if (rsq > 0)
+            {
+                rinv         = gmx_invsqrt(rsq);
+                r            = rsq*rinv;
+            }
+            else
+            {
+                /* The force at r=0 is zero, because of symmetry.
+                 * But note that the potential is in general non-zero,
+                 * since the soft-cored r will be non-zero.
+                 */
+                rinv         = 0;
+                r            = 0;
+            }
+
             if (sc_r_power == 6.0)
             {
                 rpm2             = rsq*rsq;  /* r4 */
@@ -285,261 +355,304 @@ gmx_nb_free_energy_kernel(const t_nblist * gmx_restrict    nlist,
                 rpm2           = rp/rsq;
             }
 
-            tj[STATE_A]      = ntiA+2*typeA[jnr];
-            tj[STATE_B]      = ntiB+2*typeB[jnr];
+            Fscal = 0;
+
             qq[STATE_A]      = iqA*chargeA[jnr];
             qq[STATE_B]      = iqB*chargeB[jnr];
 
-            for (i = 0; i < NSTATES; i++)
+            if (nlist->excl_fep == NULL || nlist->excl_fep[k])
             {
+                tj[STATE_A]      = ntiA+2*typeA[jnr];
+                tj[STATE_B]      = ntiB+2*typeB[jnr];
 
-                c6[i]              = nbfp[tj[i]];
-                c12[i]             = nbfp[tj[i]+1];
-                if ((c6[i] > 0) && (c12[i] > 0))
+                for (i = 0; i < NSTATES; i++)
                 {
-                    /* c12 is stored scaled with 12.0 and c6 is scaled with 6.0 - correct for this */
-                    sigma6[i]       = 0.5*c12[i]/c6[i];
-                    sigma2[i]       = pow(sigma6[i], 1.0/3.0);
-                    /* should be able to get rid of this ^^^ internal pow call eventually.  Will require agreement on
-                       what data to store externally.  Can't be fixed without larger scale changes, so not 4.6 */
-                    if (sigma6[i] < sigma6_min)   /* for disappearing coul and vdw with soft core at the same time */
+
+                    c6[i]              = nbfp[tj[i]];
+                    c12[i]             = nbfp[tj[i]+1];
+                    if ((c6[i] > 0) && (c12[i] > 0))
+                    {
+                        /* c12 is stored scaled with 12.0 and c6 is scaled with 6.0 - correct for this */
+                        sigma6[i]       = 0.5*c12[i]/c6[i];
+                        sigma2[i]       = pow(sigma6[i], 1.0/3.0);
+                        /* should be able to get rid of this ^^^ internal pow call eventually.  Will require agreement on
+                           what data to store externally.  Can't be fixed without larger scale changes, so not 4.6 */
+                        if (sigma6[i] < sigma6_min)   /* for disappearing coul and vdw with soft core at the same time */
+                        {
+                            sigma6[i] = sigma6_min;
+                            sigma2[i] = sigma2_min;
+                        }
+                    }
+                    else
                     {
-                        sigma6[i] = sigma6_min;
-                        sigma2[i] = sigma2_min;
+                        sigma6[i]       = sigma6_def;
+                        sigma2[i]       = sigma2_def;
+                    }
+                    if (sc_r_power == 6.0)
+                    {
+                        sigma_pow[i]    = sigma6[i];
+                        sigma_powm2[i]  = sigma6[i]/sigma2[i];
+                    }
+                    else if (sc_r_power == 48.0)
+                    {
+                        sigma_pow[i]    = sigma6[i]*sigma6[i];       /* sigma^12 */
+                        sigma_pow[i]    = sigma_pow[i]*sigma_pow[i]; /* sigma^24 */
+                        sigma_pow[i]    = sigma_pow[i]*sigma_pow[i]; /* sigma^48 */
+                        sigma_powm2[i]  = sigma_pow[i]/sigma2[i];
+                    }
+                    else
+                    {    /* not really supported as input, but in here for testing the general case*/
+                        sigma_pow[i]    = pow(sigma2[i], sc_r_power/2);
+                        sigma_powm2[i]  = sigma_pow[i]/(sigma2[i]);
                     }
                 }
-                else
-                {
-                    sigma6[i]       = sigma6_def;
-                    sigma2[i]       = sigma2_def;
-                }
-                if (sc_r_power == 6.0)
-                {
-                    sigma_pow[i]    = sigma6[i];
-                    sigma_powm2[i]  = sigma6[i]/sigma2[i];
-                }
-                else if (sc_r_power == 48.0)
+
+                /* only use softcore if one of the states has a zero endstate - softcore is for avoiding infinities!*/
+                if ((c12[STATE_A] > 0) && (c12[STATE_B] > 0))
                 {
-                    sigma_pow[i]    = sigma6[i]*sigma6[i];       /* sigma^12 */
-                    sigma_pow[i]    = sigma_pow[i]*sigma_pow[i]; /* sigma^24 */
-                    sigma_pow[i]    = sigma_pow[i]*sigma_pow[i]; /* sigma^48 */
-                    sigma_powm2[i]  = sigma_pow[i]/sigma2[i];
+                    alpha_vdw_eff    = 0;
+                    alpha_coul_eff   = 0;
                 }
                 else
-                {    /* not really supported as input, but in here for testing the general case*/
-                    sigma_pow[i]    = pow(sigma2[i], sc_r_power/2);
-                    sigma_powm2[i]  = sigma_pow[i]/(sigma2[i]);
+                {
+                    alpha_vdw_eff    = alpha_vdw;
+                    alpha_coul_eff   = alpha_coul;
                 }
-            }
 
-            /* only use softcore if one of the states has a zero endstate - softcore is for avoiding infinities!*/
-            if ((c12[STATE_A] > 0) && (c12[STATE_B] > 0))
-            {
-                alpha_vdw_eff    = 0;
-                alpha_coul_eff   = 0;
-            }
-            else
-            {
-                alpha_vdw_eff    = alpha_vdw;
-                alpha_coul_eff   = alpha_coul;
-            }
-
-            for (i = 0; i < NSTATES; i++)
-            {
-                FscalC[i]    = 0;
-                FscalV[i]    = 0;
-                Vcoul[i]     = 0;
-                Vvdw[i]      = 0;
-
-                /* Only spend time on A or B state if it is non-zero */
-                if ( (qq[i] != 0) || (c6[i] != 0) || (c12[i] != 0) )
+                for (i = 0; i < NSTATES; i++)
                 {
+                    FscalC[i]    = 0;
+                    FscalV[i]    = 0;
+                    Vcoul[i]     = 0;
+                    Vvdw[i]      = 0;
 
-                    /* this section has to be inside the loop becaue of the dependence on sigma_pow */
-                    rpinvC         = 1.0/(alpha_coul_eff*lfac_coul[i]*sigma_pow[i]+rp);
-                    rinvC          = pow(rpinvC, 1.0/sc_r_power);
-                    rC             = 1.0/rinvC;
-
-                    rpinvV         = 1.0/(alpha_vdw_eff*lfac_vdw[i]*sigma_pow[i]+rp);
-                    rinvV          = pow(rpinvV, 1.0/sc_r_power);
-                    rV             = 1.0/rinvV;
-
-                    if (do_tab)
+                    /* Only spend time on A or B state if it is non-zero */
+                    if ( (qq[i] != 0) || (c6[i] != 0) || (c12[i] != 0) )
                     {
-                        rtC        = rC*tabscale;
-                        n0         = rtC;
-                        epsC       = rtC-n0;
-                        eps2C      = epsC*epsC;
-                        n1C        = tab_elemsize*n0;
-
-                        rtV        = rV*tabscale;
-                        n0         = rtV;
-                        epsV       = rtV-n0;
-                        eps2V      = epsV*epsV;
-                        n1V        = tab_elemsize*n0;
-                    }
+                        /* this section has to be inside the loop because of the dependence on sigma_pow */
+                        rpinvC         = 1.0/(alpha_coul_eff*lfac_coul[i]*sigma_pow[i]+rp);
+                        rinvC          = pow(rpinvC, 1.0/sc_r_power);
+                        rC             = 1.0/rinvC;
 
-                    /* With Ewald and soft-core we should put the cut-off on r,
-                     * not on the soft-cored rC, as the real-space and
-                     * reciprocal space contributions should (almost) cancel.
-                     */
-                    if (qq[i] != 0 &&
-                        !(bExactElecCutoff &&
-                          ((icoul != GMX_NBKERNEL_ELEC_EWALD && rC >= rcoulomb) ||
-                           (icoul == GMX_NBKERNEL_ELEC_EWALD && r >= rcoulomb))))
-                    {
-                        switch (icoul)
+                        rpinvV         = 1.0/(alpha_vdw_eff*lfac_vdw[i]*sigma_pow[i]+rp);
+                        rinvV          = pow(rpinvV, 1.0/sc_r_power);
+                        rV             = 1.0/rinvV;
+
+                        if (do_tab)
                         {
-                            case GMX_NBKERNEL_ELEC_COULOMB:
-                            case GMX_NBKERNEL_ELEC_EWALD:
-                                /* simple cutoff (yes, ewald is done all on direct space for free energy) */
-                                Vcoul[i]   = qq[i]*rinvC;
-                                FscalC[i]  = Vcoul[i];
-                                break;
-
-                            case GMX_NBKERNEL_ELEC_REACTIONFIELD:
-                                /* reaction-field */
-                                Vcoul[i]   = qq[i]*(rinvC + krf*rC*rC-crf);
-                                FscalC[i]  = qq[i]*(rinvC - 2.0*krf*rC*rC);
-                                break;
-
-                            case GMX_NBKERNEL_ELEC_CUBICSPLINETABLE:
-                                /* non-Ewald tabulated coulomb */
-                                nnn        = n1C;
-                                Y          = VFtab[nnn];
-                                F          = VFtab[nnn+1];
-                                Geps       = epsC*VFtab[nnn+2];
-                                Heps2      = eps2C*VFtab[nnn+3];
-                                Fp         = F+Geps+Heps2;
-                                VV         = Y+epsC*Fp;
-                                FF         = Fp+Geps+2.0*Heps2;
-                                Vcoul[i]   = qq[i]*VV;
-                                FscalC[i]  = -qq[i]*tabscale*FF*rC;
-                                break;
-
-                            case GMX_NBKERNEL_ELEC_GENERALIZEDBORN:
-                                gmx_fatal(FARGS, "Free energy and GB not implemented.\n");
-                                break;
-
-                            case GMX_NBKERNEL_ELEC_NONE:
-                                FscalC[i]  = 0.0;
-                                Vcoul[i]   = 0.0;
-                                break;
-
-                            default:
-                                gmx_incons("Invalid icoul in free energy kernel");
-                                break;
+                            rtC        = rC*tabscale;
+                            n0         = rtC;
+                            epsC       = rtC-n0;
+                            eps2C      = epsC*epsC;
+                            n1C        = tab_elemsize*n0;
+
+                            rtV        = rV*tabscale;
+                            n0         = rtV;
+                            epsV       = rtV-n0;
+                            eps2V      = epsV*epsV;
+                            n1V        = tab_elemsize*n0;
                         }
 
-                        if (fr->coulomb_modifier == eintmodPOTSWITCH)
+                        /* With Ewald and soft-core we should put the cut-off on r,
+                         * not on the soft-cored rC, as the real-space and
+                         * reciprocal space contributions should (almost) cancel.
+                         */
+                        if (qq[i] != 0 &&
+                            !(bExactElecCutoff &&
+                              ((!bEwald && rC >= rcoulomb) ||
+                               (bEwald && r >= rcoulomb))))
                         {
-                            d                = rC-rswitch;
-                            d                = (d > 0.0) ? d : 0.0;
-                            d2               = d*d;
-                            sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
-                            dsw              = d2*(swF2+d*(swF3+d*swF4));
-
-                            Vcoul[i]        *= sw;
-                            FscalC[i]        = FscalC[i]*sw + Vcoul[i]*dsw;
+                            switch (icoul)
+                            {
+                                case GMX_NBKERNEL_ELEC_COULOMB:
+                                    /* simple cutoff */
+                                    Vcoul[i]   = qq[i]*rinvC;
+                                    FscalC[i]  = Vcoul[i];
+                                    break;
+
+                                case GMX_NBKERNEL_ELEC_EWALD:
+                                    /* Ewald FEP is done only on the 1/r part */
+                                    Vcoul[i]   = qq[i]*(rinvC - sh_ewald);
+                                    FscalC[i]  = Vcoul[i];
+                                    break;
+
+                                case GMX_NBKERNEL_ELEC_REACTIONFIELD:
+                                    /* reaction-field */
+                                    Vcoul[i]   = qq[i]*(rinvC + krf*rC*rC-crf);
+                                    FscalC[i]  = qq[i]*(rinvC - 2.0*krf*rC*rC);
+                                    break;
+
+                                case GMX_NBKERNEL_ELEC_CUBICSPLINETABLE:
+                                    /* non-Ewald tabulated coulomb */
+                                    nnn        = n1C;
+                                    Y          = VFtab[nnn];
+                                    F          = VFtab[nnn+1];
+                                    Geps       = epsC*VFtab[nnn+2];
+                                    Heps2      = eps2C*VFtab[nnn+3];
+                                    Fp         = F+Geps+Heps2;
+                                    VV         = Y+epsC*Fp;
+                                    FF         = Fp+Geps+2.0*Heps2;
+                                    Vcoul[i]   = qq[i]*VV;
+                                    FscalC[i]  = -qq[i]*tabscale*FF*rC;
+                                    break;
+
+                                case GMX_NBKERNEL_ELEC_GENERALIZEDBORN:
+                                    gmx_fatal(FARGS, "Free energy and GB not implemented.\n");
+                                    break;
+
+                                case GMX_NBKERNEL_ELEC_NONE:
+                                    FscalC[i]  = 0.0;
+                                    Vcoul[i]   = 0.0;
+                                    break;
+
+                                default:
+                                    gmx_incons("Invalid icoul in free energy kernel");
+                                    break;
+                            }
+
+                            if (fr->coulomb_modifier == eintmodPOTSWITCH)
+                            {
+                                d                = rC-rswitch;
+                                d                = (d > 0.0) ? d : 0.0;
+                                d2               = d*d;
+                                sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
+                                dsw              = d2*(swF2+d*(swF3+d*swF4));
+
+                                Vcoul[i]  *= sw;
+                                FscalC[i]  = FscalC[i]*sw + Vcoul[i]*dsw;
+                            }
                         }
-                    }
 
-                    if ((c6[i] != 0 || c12[i] != 0) &&
-                        !(bExactVdwCutoff && rV >= rvdw))
-                    {
-                        switch (ivdw)
+                        if ((c6[i] != 0 || c12[i] != 0) &&
+                            !(bExactVdwCutoff && rV >= rvdw))
                         {
-                            case GMX_NBKERNEL_VDW_LENNARDJONES:
-                                /* cutoff LJ */
-                                if (sc_r_power == 6.0)
-                                {
-                                    rinv6            = rpinvV;
-                                }
-                                else
-                                {
-                                    rinv6            = pow(rinvV, 6.0);
-                                }
-                                Vvdw6            = c6[i]*rinv6;
-                                Vvdw12           = c12[i]*rinv6*rinv6;
-                                if (fr->vdw_modifier == eintmodPOTSHIFT)
-                                {
-                                    Vvdw[i]          = ( (Vvdw12-c12[i]*sh_invrc6*sh_invrc6)*(1.0/12.0)
-                                                         -(Vvdw6-c6[i]*sh_invrc6)*(1.0/6.0));
-                                }
-                                else
-                                {
-                                    Vvdw[i]          = Vvdw12*(1.0/12.0) - Vvdw6*(1.0/6.0);
-                                }
-                                FscalV[i]        = Vvdw12 - Vvdw6;
-                                break;
-
-                            case GMX_NBKERNEL_VDW_BUCKINGHAM:
-                                gmx_fatal(FARGS, "Buckingham free energy not supported.");
-                                break;
-
-                            case GMX_NBKERNEL_VDW_CUBICSPLINETABLE:
-                                /* Table LJ */
-                                nnn = n1V+4;
-                                /* dispersion */
-                                Y          = VFtab[nnn];
-                                F          = VFtab[nnn+1];
-                                Geps       = epsV*VFtab[nnn+2];
-                                Heps2      = eps2V*VFtab[nnn+3];
-                                Fp         = F+Geps+Heps2;
-                                VV         = Y+epsV*Fp;
-                                FF         = Fp+Geps+2.0*Heps2;
-                                Vvdw[i]   += c6[i]*VV;
-                                FscalV[i] -= c6[i]*tabscale*FF*rV;
-
-                                /* repulsion */
-                                Y          = VFtab[nnn+4];
-                                F          = VFtab[nnn+5];
-                                Geps       = epsV*VFtab[nnn+6];
-                                Heps2      = eps2V*VFtab[nnn+7];
-                                Fp         = F+Geps+Heps2;
-                                VV         = Y+epsV*Fp;
-                                FF         = Fp+Geps+2.0*Heps2;
-                                Vvdw[i]   += c12[i]*VV;
-                                FscalV[i] -= c12[i]*tabscale*FF*rV;
-                                break;
-
-                            case GMX_NBKERNEL_VDW_NONE:
-                                Vvdw[i]    = 0.0;
-                                FscalV[i]  = 0.0;
-                                break;
-
-                            default:
-                                gmx_incons("Invalid ivdw in free energy kernel");
-                                break;
+                            switch (ivdw)
+                            {
+                                case GMX_NBKERNEL_VDW_LENNARDJONES:
+                                    /* cutoff LJ */
+                                    if (sc_r_power == 6.0)
+                                    {
+                                        rinv6            = rpinvV;
+                                    }
+                                    else
+                                    {
+                                        rinv6            = pow(rinvV, 6.0);
+                                    }
+                                    Vvdw6            = c6[i]*rinv6;
+                                    Vvdw12           = c12[i]*rinv6*rinv6;
+                                    if (fr->vdw_modifier == eintmodPOTSHIFT)
+                                    {
+                                        Vvdw[i]          = ( (Vvdw12-c12[i]*sh_invrc6*sh_invrc6)*(1.0/12.0)
+                                                             -(Vvdw6-c6[i]*sh_invrc6)*(1.0/6.0));
+                                    }
+                                    else
+                                    {
+                                        Vvdw[i]          = Vvdw12*(1.0/12.0) - Vvdw6*(1.0/6.0);
+                                    }
+                                    FscalV[i]        = Vvdw12 - Vvdw6;
+                                    break;
+
+                                case GMX_NBKERNEL_VDW_BUCKINGHAM:
+                                    gmx_fatal(FARGS, "Buckingham free energy not supported.");
+                                    break;
+
+                                case GMX_NBKERNEL_VDW_CUBICSPLINETABLE:
+                                    /* Table LJ */
+                                    nnn = n1V+4;
+                                    /* dispersion */
+                                    Y          = VFtab[nnn];
+                                    F          = VFtab[nnn+1];
+                                    Geps       = epsV*VFtab[nnn+2];
+                                    Heps2      = eps2V*VFtab[nnn+3];
+                                    Fp         = F+Geps+Heps2;
+                                    VV         = Y+epsV*Fp;
+                                    FF         = Fp+Geps+2.0*Heps2;
+                                    Vvdw[i]   += c6[i]*VV;
+                                    FscalV[i] -= c6[i]*tabscale*FF*rV;
+
+                                    /* repulsion */
+                                    Y          = VFtab[nnn+4];
+                                    F          = VFtab[nnn+5];
+                                    Geps       = epsV*VFtab[nnn+6];
+                                    Heps2      = eps2V*VFtab[nnn+7];
+                                    Fp         = F+Geps+Heps2;
+                                    VV         = Y+epsV*Fp;
+                                    FF         = Fp+Geps+2.0*Heps2;
+                                    Vvdw[i]   += c12[i]*VV;
+                                    FscalV[i] -= c12[i]*tabscale*FF*rV;
+                                    break;
+
+                                case GMX_NBKERNEL_VDW_NONE:
+                                    Vvdw[i]    = 0.0;
+                                    FscalV[i]  = 0.0;
+                                    break;
+
+                                default:
+                                    gmx_incons("Invalid ivdw in free energy kernel");
+                                    break;
+                            }
+
+                            if (fr->vdw_modifier == eintmodPOTSWITCH)
+                            {
+                                d          = rV-rswitch;
+                                d          = (d > 0.0) ? d : 0.0;
+                                d2         = d*d;
+                                sw         = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
+                                dsw        = d2*(swF2+d*(swF3+d*swF4));
+
+                                Vvdw[i]   *= sw;
+                                FscalV[i]  = FscalV[i]*sw + Vvdw[i]*dsw;
+
+                                FscalV[i]  = (rV < rvdw) ? FscalV[i] : 0.0;
+                                Vvdw[i]    = (rV < rvdw) ? Vvdw[i] : 0.0;
+                            }
                         }
 
-                        if (fr->vdw_modifier == eintmodPOTSWITCH)
-                        {
-                            d                = rV-rswitch;
-                            d                = (d > 0.0) ? d : 0.0;
-                            d2               = d*d;
-                            sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
-                            dsw              = d2*(swF2+d*(swF3+d*swF4));
+                        /* FscalC (and FscalV) now contain: dV/drC * rC
+                         * Now we multiply by rC^-p, so it will be: dV/drC * rC^1-p
+                         * Further down we first multiply by r^p-2 and then by
+                         * the vector r, which in total gives: dV/drC * (r/rC)^1-p
+                         */
+                        FscalC[i] *= rpinvC;
+                        FscalV[i] *= rpinvV;
+                    }
+                }
 
-                            Vvdw[i]         *= sw;
-                            FscalV[i]        = FscalV[i]*sw + Vvdw[i]*dsw;
+                /* Assemble A and B states */
+                for (i = 0; i < NSTATES; i++)
+                {
+                    vctot         += LFC[i]*Vcoul[i];
+                    vvtot         += LFV[i]*Vvdw[i];
 
-                            FscalV[i]        = (rV < rvdw) ? FscalV[i] : 0.0;
-                            Vvdw[i]          = (rV < rvdw) ? Vvdw[i] : 0.0;
-                        }
-                    }
+                    Fscal         += LFC[i]*FscalC[i]*rpm2;
+                    Fscal         += LFV[i]*FscalV[i]*rpm2;
 
-                    /* FscalC (and FscalV) now contain: dV/drC * rC
-                     * Now we multiply by rC^-p, so it will be: dV/drC * rC^1-p
-                     * Further down we first multiply by r^p-2 and then by
-                     * the vector r, which in total gives: dV/drC * (r/rC)^1-p
-                     */
-                    FscalC[i] *= rpinvC;
-                    FscalV[i] *= rpinvV;
+                    dvdl_coul     += Vcoul[i]*DLF[i] + LFC[i]*alpha_coul_eff*dlfac_coul[i]*FscalC[i]*sigma_pow[i];
+                    dvdl_vdw      += Vvdw[i]*DLF[i] + LFV[i]*alpha_vdw_eff*dlfac_vdw[i]*FscalV[i]*sigma_pow[i];
                 }
             }
+            else if (icoul == GMX_NBKERNEL_ELEC_REACTIONFIELD)
+            {
+                /* For excluded pairs, which are only in this pair list when
+                 * using the Verlet scheme, we don't use soft-core.
+                 * The group scheme also doesn't soft-core for these.
+                 * As there is no singularity, there is no need for soft-core.
+                 */
+                VV = krf*rsq - crf;
+                FF = -2.0*krf;
 
-            Fscal = 0;
+                if (ii == jnr)
+                {
+                    VV *= 0.5;
+                }
+
+                for (i = 0; i < NSTATES; i++)
+                {
+                    vctot      += LFC[i]*qq[i]*VV;
+                    Fscal      += LFC[i]*qq[i]*FF;
+                    dvdl_coul  += DLF[i]*qq[i]*VV;
+                }
+            }
 
             if (icoul == GMX_NBKERNEL_ELEC_EWALD &&
                 !(bExactElecCutoff && r >= rcoulomb))
@@ -559,6 +672,11 @@ gmx_nb_free_energy_kernel(const t_nblist * gmx_restrict    nlist,
                 FF     = f_lr*rinv;
                 VV     = tab_ewald_V[ri] - tab_ewald_halfsp*frac*(tab_ewald_F[ri] + f_lr);
 
+                if (ii == jnr)
+                {
+                    VV   *= 0.5;
+                }
+
                 for (i = 0; i < NSTATES; i++)
                 {
                     vctot      -= LFC[i]*qq[i]*VV;
@@ -567,19 +685,6 @@ gmx_nb_free_energy_kernel(const t_nblist * gmx_restrict    nlist,
                 }
             }
 
-            /* Assemble A and B states */
-            for (i = 0; i < NSTATES; i++)
-            {
-                vctot         += LFC[i]*Vcoul[i];
-                vvtot         += LFV[i]*Vvdw[i];
-
-                Fscal         += LFC[i]*FscalC[i]*rpm2;
-                Fscal         += LFV[i]*FscalV[i]*rpm2;
-
-                dvdl_coul     += Vcoul[i]*DLF[i] + LFC[i]*alpha_coul_eff*dlfac_coul[i]*FscalC[i]*sigma_pow[i];
-                dvdl_vdw      += Vvdw[i]*DLF[i] + LFV[i]*alpha_vdw_eff*dlfac_vdw[i]*FscalV[i]*sigma_pow[i];
-            }
-
             if (bDoForces)
             {
                 tx         = Fscal*dx;
@@ -588,27 +693,58 @@ gmx_nb_free_energy_kernel(const t_nblist * gmx_restrict    nlist,
                 fix        = fix + tx;
                 fiy        = fiy + ty;
                 fiz        = fiz + tz;
-                f[j3]      = f[j3]   - tx;
-                f[j3+1]    = f[j3+1] - ty;
-                f[j3+2]    = f[j3+2] - tz;
+                /* OpenMP atomics are expensive, but this kernels is also
+                 * expensive, so we can take this hit, instead of using
+                 * thread-local output buffers and extra reduction.
+                 */
+#pragma omp atomic
+                f[j3]     -= tx;
+#pragma omp atomic
+                f[j3+1]   -= ty;
+#pragma omp atomic
+                f[j3+2]   -= tz;
             }
         }
 
-        if (bDoForces)
+        /* The atomics below are expensive with many OpenMP threads.
+         * Here unperturbed i-particles will usually only have a few
+         * (perturbed) j-particles in the list. Thus with a buffered list
+         * we can skip a significant number of i-reductions with a check.
+         */
+        if (npair_within_cutoff > 0)
         {
-            f[ii3]         = f[ii3]        + fix;
-            f[ii3+1]       = f[ii3+1]      + fiy;
-            f[ii3+2]       = f[ii3+2]      + fiz;
-            fshift[is3]    = fshift[is3]   + fix;
-            fshift[is3+1]  = fshift[is3+1] + fiy;
-            fshift[is3+2]  = fshift[is3+2] + fiz;
+            if (bDoForces)
+            {
+#pragma omp atomic
+                f[ii3]        += fix;
+#pragma omp atomic
+                f[ii3+1]      += fiy;
+#pragma omp atomic
+                f[ii3+2]      += fiz;
+            }
+            if (bDoShiftForces)
+            {
+#pragma omp atomic
+                fshift[is3]   += fix;
+#pragma omp atomic
+                fshift[is3+1] += fiy;
+#pragma omp atomic
+                fshift[is3+2] += fiz;
+            }
+            if (bDoPotential)
+            {
+                ggid               = gid[n];
+#pragma omp atomic
+                Vc[ggid]          += vctot;
+#pragma omp atomic
+                Vv[ggid]          += vvtot;
+            }
         }
-        ggid               = gid[n];
-        Vc[ggid]           = Vc[ggid] + vctot;
-        Vv[ggid]           = Vv[ggid] + vvtot;
     }
 
+#pragma omp atomic
     dvdl[efptCOUL]     += dvdl_coul;
+ #pragma omp atomic
     dvdl[efptVDW]      += dvdl_vdw;
 
     /* Estimate flops, average for free energy stuff:
@@ -672,7 +808,7 @@ nb_free_energy_evaluate_single(real r2, real sc_r_power, real alpha_coul, real a
             sigma6[i]       = 0.5*c12[i]/c6[i];
             sigma2[i]       = pow(0.5*c12[i]/c6[i], 1.0/3.0);
             /* should be able to get rid of this ^^^ internal pow call eventually.  Will require agreement on
-               what data to store externally.  Can't be fixed without larger scale changes, so not 4.6 */
+               what data to store externally.  Can't be fixed without larger scale changes, so not 5.0 */
             if (sigma6[i] < sigma6_min)   /* for disappearing coul and vdw with soft core at the same time */
             {
                 sigma6[i] = sigma6_min;
index b63b5fc843c8a3d3603eee0514a3d94d56690811..472c517b0450f79b540ba86ccfd4f0092e8261d6 100644 (file)
@@ -498,7 +498,7 @@ void check_ir(const char *mdparin, t_inputrec *ir, t_gromppopts *opts,
 
             /* find the smallest of ( nstenergy, nstdhdl ) */
             if (ir->efep != efepNO && ir->fepvals->nstdhdl > 0 &&
-                (ir->fepvals->nstdhdl < ir->nstenergy) )
+                (ir->nstenergy == 0 || ir->fepvals->nstdhdl < ir->nstenergy))
             {
                 min_nst  = ir->fepvals->nstdhdl;
                 min_name = nstdh;
index d92cfd006451d430afe3ccf9b009239ab2ceb573..6176d60631c116ebfc441988703f8d59d45958a3 100644 (file)
@@ -3,7 +3,7 @@
  *
  * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
  * Copyright (c) 2001-2004, The GROMACS development team.
- * Copyright (c) 2013, by the GROMACS development team, led by
+ * Copyright (c) 2013,2014, by the GROMACS development team, led by
  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
  * and including many others, as listed in the AUTHORS file in the
  * top-level source directory and at http://www.gromacs.org.
@@ -69,9 +69,10 @@ gmx_nonbonded_set_kernel_pointers(FILE *       fplog,
 
 #define GMX_NONBONDED_DO_LR             (1<<0)
 #define GMX_NONBONDED_DO_FORCE          (1<<1)
-#define GMX_NONBONDED_DO_FOREIGNLAMBDA  (1<<2)
-#define GMX_NONBONDED_DO_POTENTIAL      (1<<3)
-#define GMX_NONBONDED_DO_SR             (1<<4)
+#define GMX_NONBONDED_DO_SHIFTFORCE     (1<<2)
+#define GMX_NONBONDED_DO_FOREIGNLAMBDA  (1<<3)
+#define GMX_NONBONDED_DO_POTENTIAL      (1<<4)
+#define GMX_NONBONDED_DO_SR             (1<<5)
 
 void
 do_nonbonded(t_forcerec *fr,
index 7c65628aa36fb216725444d0e7bb5bd9c6cdcb07..dafbfa9f6e7fe64e68da0df51d58d87663095ede 100644 (file)
@@ -3,7 +3,7 @@
  *
  * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
  * Copyright (c) 2001-2004, The GROMACS development team.
- * Copyright (c) 2013, by the GROMACS development team, led by
+ * Copyright (c) 2013,2014, by the GROMACS development team, led by
  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
  * and including many others, as listed in the AUTHORS file in the
  * top-level source directory and at http://www.gromacs.org.
@@ -100,6 +100,9 @@ int natoms_beyond_ns_buffer(t_inputrec *ir, t_forcerec *fr, t_block *cgs,
                             matrix scale_tot, rvec *x);
 /* Returns the number of atoms that moved beyond the ns buffer */
 
+void reallocate_nblist(t_nblist *nl);
+/* List reallocation, only exported for Verlet scheme use with FEP */
+
 #ifdef __cplusplus
 }
 #endif
index 5133ea4b73d529c50a03faae0c270cd286fdf71d..01e4da7b28a342ce0c4da2fe91bf2b2f6a54be92 100644 (file)
@@ -112,8 +112,9 @@ enum {
 #define EEL_RF(e) ((e) == eelRF || (e) == eelGRF || (e) == eelRF_NEC || (e) == eelRF_ZERO )
 
 #define EEL_PME(e)  ((e) == eelPME || (e) == eelPMESWITCH || (e) == eelPMEUSER || (e) == eelPMEUSERSWITCH || (e) == eelP3M_AD)
-#define EEL_EWALD(e)  (EEL_PME(e) || (e) == eelEWALD)
-#define EEL_FULL(e) (EEL_PME(e) || (e) == eelPOISSON || (e) == eelEWALD)
+#define EEL_PME_EWALD(e) (EEL_PME(e) || (e) == eelEWALD)
+#define EEL_FULL(e) (EEL_PME_EWALD(e) || (e) == eelPOISSON)
+
 #define EEL_USER(e) ((e) == eelUSER || (e) == eelPMEUSER || (e) == (eelPMEUSERSWITCH))
 
 enum {
index e1cf22ff95ae60a37857b9745bc8ae9f2f1dfff5..aa0a976ae4ed87343869c8fe08159721a5f26e0c 100644 (file)
@@ -90,20 +90,26 @@ typedef struct
     t_nblist nlist_lr[eNL_NR];
 } t_nblists;
 
-/* macros for the cginfo data in forcerec */
-/* The maximum cg size in cginfo is 63
+/* macros for the cginfo data in forcerec
+ *
+ * Since the tpx format support max 256 energy groups, we do the same here.
+ * Note that we thus have bits 8-14 still unused.
+ *
+ * The maximum cg size in cginfo is 63
  * because we only have space for 6 bits in cginfo,
  * this cg size entry is actually only read with domain decomposition.
  * But there is a smaller limit due to the t_excl data structure
  * which is defined in nblist.h.
  */
-#define SET_CGINFO_GID(cgi, gid)      (cgi) = (((cgi)  &  ~65535)  |  (gid)   )
-#define GET_CGINFO_GID(cgi)        ( (cgi)            &   65535)
+#define SET_CGINFO_GID(cgi, gid)     (cgi) = (((cgi)  &  ~255) | (gid))
+#define GET_CGINFO_GID(cgi)        ( (cgi)            &   255)
+#define SET_CGINFO_FEP(cgi)          (cgi) =  ((cgi)  |  (1<<15))
+#define GET_CGINFO_FEP(cgi)        ( (cgi)            &  (1<<15))
 #define SET_CGINFO_EXCL_INTRA(cgi)   (cgi) =  ((cgi)  |  (1<<16))
 #define GET_CGINFO_EXCL_INTRA(cgi) ( (cgi)            &  (1<<16))
 #define SET_CGINFO_EXCL_INTER(cgi)   (cgi) =  ((cgi)  |  (1<<17))
 #define GET_CGINFO_EXCL_INTER(cgi) ( (cgi)            &  (1<<17))
-#define SET_CGINFO_SOLOPT(cgi, opt)   (cgi) = (((cgi)  & ~(3<<18)) | ((opt)<<18))
+#define SET_CGINFO_SOLOPT(cgi, opt)  (cgi) = (((cgi)  & ~(3<<18)) | ((opt)<<18))
 #define GET_CGINFO_SOLOPT(cgi)     (((cgi)>>18)       &   3)
 #define SET_CGINFO_CONSTR(cgi)       (cgi) =  ((cgi)  |  (1<<20))
 #define GET_CGINFO_CONSTR(cgi)     ( (cgi)            &  (1<<20))
@@ -116,7 +122,7 @@ typedef struct
 #define GET_CGINFO_HAS_VDW(cgi)    ( (cgi)            &  (1<<23))
 #define SET_CGINFO_HAS_Q(cgi)        (cgi) =  ((cgi)  |  (1<<24))
 #define GET_CGINFO_HAS_Q(cgi)      ( (cgi)            &  (1<<24))
-#define SET_CGINFO_NATOMS(cgi, opt)   (cgi) = (((cgi)  & ~(63<<25)) | ((opt)<<25))
+#define SET_CGINFO_NATOMS(cgi, opt)  (cgi) = (((cgi)  & ~(63<<25)) | ((opt)<<25))
 #define GET_CGINFO_NATOMS(cgi)     (((cgi)>>25)       &   63)
 
 
index 540ab77a16b212ecc93552077e4e13a361ed9147..df4b290ba183cc376c44eca0a6de50f80ef6deed 100644 (file)
@@ -3,7 +3,7 @@
  *
  * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
  * Copyright (c) 2001-2004, The GROMACS development team.
- * Copyright (c) 2012, by the GROMACS development team, led by
+ * Copyright (c) 2012,2014, by the GROMACS development team, led by
  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
  * and including many others, as listed in the AUTHORS file in the
  * top-level source directory and at http://www.gromacs.org.
@@ -66,7 +66,6 @@ typedef struct
 
     int             nri, maxnri;  /* Current/max number of i particles    */
     int             nrj, maxnrj;  /* Current/max number of j particles    */
-    int             maxlen;       /* maxnr of j atoms for a single i atom  */
     int *           iinr;         /* The i-elements                        */
     int *           iinr_end;     /* The end atom, only with enlistCG      */
     int *           gid;          /* Index in energy arrays                */
@@ -74,6 +73,7 @@ typedef struct
     int *           jindex;       /* Index in jjnr                         */
     int *           jjnr;         /* The j-atom list                       */
     int *           jjnr_end;     /* The end atom, only with enltypeCG     */
+    char *          excl_fep;     /* Exclusions for FEP with Verlet scheme */
     t_excl *        excl;         /* Exclusions, only with enltypeCG       */
 
     /* We use separate pointers for kernels that compute both potential
index 2de1dde4eae454e22b33dfe3412059af64f2fc60..0748804c37ab05671a51f55ae024933af087bf89 100644 (file)
@@ -37,8 +37,9 @@
 #define _nbnxn_pairlist_h
 
 #ifdef HAVE_CONFIG_H
-#  include <config.h>
+#include <config.h>
 #endif
+#include "nblist.h"
 
 #include "../thread_mpi/atomic.h"
 
@@ -77,11 +78,11 @@ typedef void nbnxn_free_t (void *ptr);
  * is found, all subsequent j-entries in the i-entry also have full masks.
  */
 typedef struct {
-    int      cj;    /* The j-cluster                    */
-    unsigned excl;  /* The exclusion (interaction) bits */
+    int          cj;    /* The j-cluster                    */
+    unsigned int excl;  /* The exclusion (interaction) bits */
 #ifdef GMX_SIMD_IBM_QPX
     /* Indices into the arrays of SIMD interaction masks. */
-    char     interaction_mask_indices[4];
+    char         interaction_mask_indices[4];
 #endif
 } nbnxn_cj_t;
 
@@ -115,8 +116,8 @@ typedef struct {
 } nbnxn_sci_t;
 
 typedef struct {
-    unsigned imask;        /* The i-cluster interactions mask for 1 warp  */
-    int      excl_ind;     /* Index into the exclusion array for 1 warp   */
+    unsigned int imask;    /* The i-cluster interactions mask for 1 warp  */
+    int          excl_ind; /* Index into the exclusion array for 1 warp   */
 } nbnxn_im_ei_t;
 
 typedef struct {
@@ -125,7 +126,7 @@ typedef struct {
 } nbnxn_cj4_t;
 
 typedef struct {
-    unsigned pair[32];     /* Topology exclusion interaction bits for one warp,
+    unsigned int pair[32]; /* Topology exclusion interaction bits for one warp,
                             * each unsigned has bitS for 4*8 i clusters
                             */
 } nbnxn_excl_t;
@@ -176,6 +177,7 @@ typedef struct {
     int                natpair_ljq; /* Total number of atom pairs for LJ+Q kernel */
     int                natpair_lj;  /* Total number of atom pairs for LJ kernel   */
     int                natpair_q;   /* Total number of atom pairs for Q kernel    */
+    t_nblist         **nbl_fep;
 } nbnxn_pairlist_set_t;
 
 enum {
@@ -217,9 +219,9 @@ typedef struct {
 
 /* Flags for telling if threads write to force output buffers */
 typedef struct {
-    int       nflag;       /* The number of flag blocks                         */
-    unsigned *flag;        /* Bit i is set when thread i writes to a cell-block */
-    int       flag_nalloc; /* Allocation size of cxy_flag                       */
+    int           nflag;       /* The number of flag blocks                         */
+    unsigned int *flag;        /* Bit i is set when thread i writes to a cell-block */
+    int           flag_nalloc; /* Allocation size of cxy_flag                       */
 } nbnxn_buffer_flags_t;
 
 /* LJ combination rules: geometric, Lorentz-Berthelot, none */
@@ -262,8 +264,8 @@ typedef struct {
     /* Filters for topology exclusion masks for the SIMD kernels.
      * filter2 is the same as filter1, but with each element duplicated.
      */
-    unsigned                *simd_exclusion_filter1;
-    unsigned                *simd_exclusion_filter2;
+    unsigned int            *simd_exclusion_filter1;
+    unsigned int            *simd_exclusion_filter2;
 #ifdef GMX_SIMD_IBM_QPX
     real                    *simd_interaction_array; /* Array of masks needed for exclusions on QPX */
 #endif
index 93a9d06936c649aff40d47f1fde1826d4730ba7e..3001236712a22d7217ade74c72de5f3ff0274538 100644 (file)
@@ -261,10 +261,15 @@ void do_force_lowlevel(FILE       *fplog,   gmx_int64_t step,
         /* Add short-range interactions */
         donb_flags |= GMX_NONBONDED_DO_SR;
 
+        /* Currently all group scheme kernels always calculate (shift-)forces */
         if (flags & GMX_FORCE_FORCES)
         {
             donb_flags |= GMX_NONBONDED_DO_FORCE;
         }
+        if (flags & GMX_FORCE_VIRIAL)
+        {
+            donb_flags |= GMX_NONBONDED_DO_SHIFTFORCE;
+        }
         if (flags & GMX_FORCE_ENERGY)
         {
             donb_flags |= GMX_NONBONDED_DO_POTENTIAL;
@@ -469,7 +474,7 @@ void do_force_lowlevel(FILE       *fplog,   gmx_int64_t step,
         real dvdl_long_range_q = 0, dvdl_long_range_lj = 0;
         int  status            = 0;
 
-        if (EEL_EWALD(fr->eeltype) || EVDW_PME(fr->vdwtype))
+        if (EEL_PME_EWALD(fr->eeltype) || EVDW_PME(fr->vdwtype))
         {
             real dvdl_long_range_correction_q   = 0;
             real dvdl_long_range_correction_lj  = 0;
@@ -561,7 +566,7 @@ void do_force_lowlevel(FILE       *fplog,   gmx_int64_t step,
                 wallcycle_sub_stop(wcycle, ewcsEWALD_CORRECTION);
             }
 
-            if (EEL_EWALD(fr->eeltype) && fr->n_tpi == 0)
+            if (EEL_PME_EWALD(fr->eeltype) && fr->n_tpi == 0)
             {
                 Vcorr_q += ewald_charge_correction(cr, fr, lambda[efptCOUL], box,
                                                    &dvdl_long_range_correction_q,
@@ -657,7 +662,7 @@ void do_force_lowlevel(FILE       *fplog,   gmx_int64_t step,
             }
         }
 
-        if (!EEL_PME(fr->eeltype) && EEL_EWALD(fr->eeltype))
+        if (!EEL_PME(fr->eeltype) && EEL_PME_EWALD(fr->eeltype))
         {
             Vlr_q = do_ewald(ir, x, fr->f_novirsum,
                              md->chargeA, md->chargeB,
index 8d18cb7a249fe54facacb4a37c29d9d14995f49f..954c6a714a4a5b43fb75a96efc1397400cb77a4e 100644 (file)
@@ -591,6 +591,7 @@ enum {
 
 static cginfo_mb_t *init_cginfo_mb(FILE *fplog, const gmx_mtop_t *mtop,
                                    t_forcerec *fr, gmx_bool bNoSolvOpt,
+                                   gmx_bool *bFEP_NonBonded,
                                    gmx_bool *bExcl_IntraCGAll_InterCGNone)
 {
     const t_block        *cgs;
@@ -605,7 +606,7 @@ static cginfo_mb_t *init_cginfo_mb(FILE *fplog, const gmx_mtop_t *mtop,
     int                  *a_con;
     int                   ftype;
     int                   ia;
-    gmx_bool              bId, *bExcl, bExclIntraAll, bExclInter, bHaveVDW, bHaveQ;
+    gmx_bool              bId, *bExcl, bExclIntraAll, bExclInter, bHaveVDW, bHaveQ, bFEP;
 
     ncg_tot = ncg_mtop(mtop);
     snew(cginfo_mb, mtop->nmolblock);
@@ -623,6 +624,7 @@ static cginfo_mb_t *init_cginfo_mb(FILE *fplog, const gmx_mtop_t *mtop,
         }
     }
 
+    *bFEP_NonBonded               = FALSE;
     *bExcl_IntraCGAll_InterCGNone = TRUE;
 
     excl_nalloc = 10;
@@ -722,6 +724,7 @@ static cginfo_mb_t *init_cginfo_mb(FILE *fplog, const gmx_mtop_t *mtop,
                 bExclInter    = FALSE;
                 bHaveVDW      = FALSE;
                 bHaveQ        = FALSE;
+                bFEP          = FALSE;
                 for (ai = a0; ai < a1; ai++)
                 {
                     /* Check VDW and electrostatic interactions */
@@ -730,6 +733,8 @@ static cginfo_mb_t *init_cginfo_mb(FILE *fplog, const gmx_mtop_t *mtop,
                     bHaveQ  = bHaveQ    || (molt->atoms.atom[ai].q != 0 ||
                                             molt->atoms.atom[ai].qB != 0);
 
+                    bFEP    = bFEP || (PERTURBED(molt->atoms.atom[ai]) != 0);
+
                     /* Clear the exclusion list for atom ai */
                     for (aj = a0; aj < a1; aj++)
                     {
@@ -790,6 +795,11 @@ static cginfo_mb_t *init_cginfo_mb(FILE *fplog, const gmx_mtop_t *mtop,
                 {
                     SET_CGINFO_HAS_Q(cginfo[cgm+cg]);
                 }
+                if (bFEP)
+                {
+                    SET_CGINFO_FEP(cginfo[cgm+cg]);
+                    *bFEP_NonBonded = TRUE;
+                }
                 /* Store the charge group size */
                 SET_CGINFO_NATOMS(cginfo[cgm+cg], a1-a0);
 
@@ -1592,7 +1602,7 @@ static void pick_nbnxn_kernel_cpu(const t_inputrec gmx_unused *ir,
         *kernel_type = nbnxnk4xN_SIMD_4xN;
 
 #ifndef GMX_SIMD_HAVE_FMA
-        if (EEL_PME(ir->coulombtype) || EEL_EWALD(ir->coulombtype) ||
+        if (EEL_PME_EWALD(ir->coulombtype) ||
             EVDW_PME(ir->vdwtype))
         {
             /* We have Ewald kernels without FMA (Intel Sandy/Ivy Bridge).
@@ -2080,6 +2090,7 @@ init_interaction_const(FILE                       *fp,
 
 static void init_nb_verlet(FILE                *fp,
                            nonbonded_verlet_t **nb_verlet,
+                           gmx_bool             bFEP_NonBonded,
                            const t_inputrec    *ir,
                            const t_forcerec    *fr,
                            const t_commrec     *cr,
@@ -2185,6 +2196,7 @@ static void init_nb_verlet(FILE                *fp,
     nbnxn_init_search(&nbv->nbs,
                       DOMAINDECOMP(cr) ? &cr->dd->nc : NULL,
                       DOMAINDECOMP(cr) ? domdec_zones(cr->dd) : NULL,
+                      bFEP_NonBonded,
                       gmx_omp_nthreads_get(emntNonbonded));
 
     for (i = 0; i < nbv->ngrp; i++)
@@ -2278,6 +2290,7 @@ void init_forcerec(FILE              *fp,
     const t_block *cgs;
     gmx_bool       bGenericKernelOnly;
     gmx_bool       bMakeTables, bMakeSeparate14Table, bSomeNormalNbListsAreInUse;
+    gmx_bool       bFEP_NonBonded;
     t_nblists     *nbl;
     int           *nm_ind, egp_flags;
 
@@ -3098,6 +3111,7 @@ void init_forcerec(FILE              *fp,
 
     /* Set all the static charge group info */
     fr->cginfo_mb = init_cginfo_mb(fp, mtop, fr, bNoSolvOpt,
+                                   &bFEP_NonBonded,
                                    &fr->bExcl_IntraCGAll_InterCGNone);
     if (DOMAINDECOMP(cr))
     {
@@ -3148,7 +3162,7 @@ void init_forcerec(FILE              *fp,
             gmx_fatal(FARGS, "With Verlet lists rcoulomb and rvdw should be identical");
         }
 
-        init_nb_verlet(fp, &fr->nbv, ir, fr, cr, nbpu_opt);
+        init_nb_verlet(fp, &fr->nbv, bFEP_NonBonded, ir, fr, cr, nbpu_opt);
     }
 
     /* fr->ic is used both by verlet and group kernels (to some extent) now */
index 7c33afa186969b212c3d221334af03d153fcc022..ff228f9529f0eb08a30ad86bec88262d6ae8fca4 100644 (file)
@@ -107,7 +107,6 @@ static int init_gb_nblist(int natoms, t_nblist *nl)
 {
     nl->maxnri      = natoms*4;
     nl->maxnrj      = 0;
-    nl->maxlen      = 0;
     nl->nri         = 0;
     nl->nrj         = 0;
     nl->iinr        = NULL;
index 2d9e10559dd132bdd7f568d68f35507d830b8fef..ba0b9a5bbcb3aa426ce67924d8431fcc7a68a6a5 100644 (file)
@@ -941,6 +941,67 @@ static void nbnxn_atomdata_set_charges(nbnxn_atomdata_t    *nbat,
     }
 }
 
+/* Set the charges of perturbed atoms in nbnxn_atomdata_t to 0.
+ * This is to automatically remove the RF/PME self term in the nbnxn kernels.
+ * Part of the zero interactions are still calculated in the normal kernels.
+ * All perturbed interactions are calculated in the free energy kernel,
+ * using the original charge and LJ data, not nbnxn_atomdata_t.
+ */
+static void nbnxn_atomdata_mask_fep(nbnxn_atomdata_t    *nbat,
+                                    int                  ngrid,
+                                    const nbnxn_search_t nbs)
+{
+    real               *q;
+    int                 stride_q, g, nsubc, c_offset, c, subc, i, ind;
+    const nbnxn_grid_t *grid;
+
+    if (nbat->XFormat == nbatXYZQ)
+    {
+        q        = nbat->x + ZZ + 1;
+        stride_q = STRIDE_XYZQ;
+    }
+    else
+    {
+        q        = nbat->q;
+        stride_q = 1;
+    }
+
+    for (g = 0; g < ngrid; g++)
+    {
+        grid = &nbs->grid[g];
+        if (grid->bSimple)
+        {
+            nsubc = 1;
+        }
+        else
+        {
+            nsubc = GPU_NSUBCELL;
+        }
+
+        c_offset = grid->cell0*grid->na_sc;
+
+        /* Loop over all columns and copy and fill */
+        for (c = 0; c < grid->nc*nsubc; c++)
+        {
+            /* Does this cluster contain perturbed particles? */
+            if (grid->fep[c] != 0)
+            {
+                for (i = 0; i < grid->na_c; i++)
+                {
+                    /* Is this a perturbed particle? */
+                    if (grid->fep[c] & (1 << i))
+                    {
+                        ind = c_offset + c*grid->na_c + i;
+                        /* Set atom type and charge to non-interacting */
+                        nbat->type[ind] = nbat->ntype - 1;
+                        q[ind*stride_q] = 0;
+                    }
+                }
+            }
+        }
+    }
+}
+
 /* Copies the energy group indices to a reordered and packed array */
 static void copy_egp_to_nbat_egps(const int *a, int na, int na_round,
                                   int na_c, int bit_shift,
@@ -980,6 +1041,11 @@ static void nbnxn_atomdata_set_energygroups(nbnxn_atomdata_t    *nbat,
     int                 g, i, ncz, ash;
     const nbnxn_grid_t *grid;
 
+    if (nbat->nenergrp == 1)
+    {
+        return;
+    }
+
     for (g = 0; g < ngrid; g++)
     {
         grid = &nbs->grid[g];
@@ -1019,10 +1085,12 @@ void nbnxn_atomdata_set(nbnxn_atomdata_t    *nbat,
 
     nbnxn_atomdata_set_charges(nbat, ngrid, nbs, mdatoms->chargeA);
 
-    if (nbat->nenergrp > 1)
+    if (nbs->bFEP)
     {
-        nbnxn_atomdata_set_energygroups(nbat, ngrid, nbs, atinfo);
+        nbnxn_atomdata_mask_fep(nbat, ngrid, nbs);
     }
+
+    nbnxn_atomdata_set_energygroups(nbat, ngrid, nbs, atinfo);
 }
 
 /* Copies the shift vector array to nbnxn_atomdata_t */
index 4c790a42f480221f7ac6b5cf2bc15a1bd035ae77..f5bd3d01ab096ef770fb074dcf9e6af423111ac9 100644 (file)
@@ -1,7 +1,7 @@
 /*
  * This file is part of the GROMACS molecular simulation package.
  *
- * Copyright (c) 2012,2013, by the GROMACS development team, led by
+ * Copyright (c) 2012,2013,2014 by the GROMACS development team, led by
  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
  * and including many others, as listed in the AUTHORS file in the
  * top-level source directory and at http://www.gromacs.org.
@@ -102,15 +102,15 @@ extern "C" {
  * Bit i*CJ_SIZE + j tells if atom i and j interact.
  */
 /* All interaction mask is the same for all kernels */
-#define NBNXN_INTERACTION_MASK_ALL        0xffffffff
+static const unsigned int NBNXN_INTERACTION_MASK_ALL       = 0xffffffffU;
 /* 4x4 kernel diagonal mask */
-#define NBNXN_INTERACTION_MASK_DIAG       0x08ce
+static const unsigned int NBNXN_INTERACTION_MASK_DIAG      = 0x08ceU;
 /* 4x2 kernel diagonal masks */
-#define NBNXN_INTERACTION_MASK_DIAG_J2_0  0x0002
-#define NBNXN_INTERACTION_MASK_DIAG_J2_1  0x002F
+static const unsigned int NBNXN_INTERACTION_MASK_DIAG_J2_0 = 0x0002U;
+static const unsigned int NBNXN_INTERACTION_MASK_DIAG_J2_1 = 0x002fU;
 /* 4x8 kernel diagonal masks */
-#define NBNXN_INTERACTION_MASK_DIAG_J8_0  0xf0f8fcfe
-#define NBNXN_INTERACTION_MASK_DIAG_J8_1  0x0080c0e0
+static const unsigned int NBNXN_INTERACTION_MASK_DIAG_J8_0 = 0xf0f8fcfeU;
+static const unsigned int NBNXN_INTERACTION_MASK_DIAG_J8_1 = 0x0080c0e0U;
 
 
 #ifdef __cplusplus
index 8c366ee8cb65faf256490f1cc3437f41fca980f0..fc42e6093566bca679cda924585feaff2fece613 100644 (file)
@@ -95,46 +95,47 @@ typedef struct {
 
 /* A pair-search grid struct for one domain decomposition zone */
 typedef struct {
-    rvec        c0;               /* The lower corner of the (local) grid        */
-    rvec        c1;               /* The upper corner of the (local) grid        */
-    real        atom_density;     /* The atom number density for the local grid  */
-
-    gmx_bool    bSimple;          /* Is this grid simple or super/sub            */
-    int         na_c;             /* Number of atoms per cluster                 */
-    int         na_cj;            /* Number of atoms for list j-clusters         */
-    int         na_sc;            /* Number of atoms per super-cluster           */
-    int         na_c_2log;        /* 2log of na_c                                */
-
-    int         ncx;              /* Number of (super-)cells along x             */
-    int         ncy;              /* Number of (super-)cells along y             */
-    int         nc;               /* Total number of (super-)cells               */
-
-    real        sx;               /* x-size of a (super-)cell                    */
-    real        sy;               /* y-size of a (super-)cell                    */
-    real        inv_sx;           /* 1/sx                                        */
-    real        inv_sy;           /* 1/sy                                        */
-
-    int         cell0;            /* Index in nbs->cell corresponding to cell 0  */
-
-    int        *cxy_na;           /* The number of atoms for each column in x,y  */
-    int        *cxy_ind;          /* Grid (super)cell index, offset from cell0   */
-    int         cxy_nalloc;       /* Allocation size for cxy_na and cxy_ind      */
-
-    int        *nsubc;            /* The number of sub cells for each super cell */
-    float      *bbcz;             /* Bounding boxes in z for the super cells     */
-    nbnxn_bb_t *bb;               /* 3D bounding boxes for the sub cells         */
-    nbnxn_bb_t *bbj;              /* 3D j-bounding boxes for the case where      *
-                                   * the i- and j-cluster sizes are different    */
-    float      *pbb;              /* 3D b. boxes in xxxx format per super cell   */
-    int        *flags;            /* Flag for the super cells                    */
-    int         nc_nalloc;        /* Allocation size for the pointers above      */
-
-    float      *bbcz_simple;      /* bbcz for simple grid converted from super   */
-    nbnxn_bb_t *bb_simple;        /* bb for simple grid converted from super     */
-    int        *flags_simple;     /* flags for simple grid converted from super  */
-    int         nc_nalloc_simple; /* Allocation size for the pointers above   */
-
-    int         nsubc_tot;        /* Total number of subcell, used for printing  */
+    rvec          c0;               /* The lower corner of the (local) grid        */
+    rvec          c1;               /* The upper corner of the (local) grid        */
+    real          atom_density;     /* The atom number density for the local grid  */
+
+    gmx_bool      bSimple;          /* Is this grid simple or super/sub            */
+    int           na_c;             /* Number of atoms per cluster                 */
+    int           na_cj;            /* Number of atoms for list j-clusters         */
+    int           na_sc;            /* Number of atoms per super-cluster           */
+    int           na_c_2log;        /* 2log of na_c                                */
+
+    int           ncx;              /* Number of (super-)cells along x             */
+    int           ncy;              /* Number of (super-)cells along y             */
+    int           nc;               /* Total number of (super-)cells               */
+
+    real          sx;               /* x-size of a (super-)cell                    */
+    real          sy;               /* y-size of a (super-)cell                    */
+    real          inv_sx;           /* 1/sx                                        */
+    real          inv_sy;           /* 1/sy                                        */
+
+    int           cell0;            /* Index in nbs->cell corresponding to cell 0  */
+
+    int          *cxy_na;           /* The number of atoms for each column in x,y  */
+    int          *cxy_ind;          /* Grid (super)cell index, offset from cell0   */
+    int           cxy_nalloc;       /* Allocation size for cxy_na and cxy_ind      */
+
+    int          *nsubc;            /* The number of sub cells for each super cell */
+    float        *bbcz;             /* Bounding boxes in z for the super cells     */
+    nbnxn_bb_t   *bb;               /* 3D bounding boxes for the sub cells         */
+    nbnxn_bb_t   *bbj;              /* 3D j-bounding boxes for the case where      *
+                                     * the i- and j-cluster sizes are different    */
+    float        *pbb;              /* 3D b. boxes in xxxx format per super cell   */
+    int          *flags;            /* Flag for the super cells                    */
+    unsigned int *fep;              /* FEP signal bits for sub cells               */
+    int           nc_nalloc;        /* Allocation size for the pointers above      */
+
+    float        *bbcz_simple;      /* bbcz for simple grid converted from super   */
+    nbnxn_bb_t   *bb_simple;        /* bb for simple grid converted from super     */
+    int          *flags_simple;     /* flags for simple grid converted from super  */
+    int           nc_nalloc_simple; /* Allocation size for the pointers above   */
+
+    int           nsubc_tot;        /* Total number of subcell, used for printing  */
 } nbnxn_grid_t;
 
 #ifdef GMX_NBNXN_SIMD
@@ -230,6 +231,8 @@ typedef struct {
 
     int                  ndistc;       /* Number of distance checks for flop counting */
 
+    t_nblist            *nbl_fep;      /* Temporary FEP list for load balancing */
+
     nbnxn_cycle_t        cc[enbsCCnr];
 
     gmx_cache_protect_t  cp1;
@@ -237,6 +240,7 @@ typedef struct {
 
 /* Main pair-search struct, contains the grid(s), not the pair-list(s) */
 typedef struct nbnxn_search {
+    gmx_bool            bFEP;            /* Do we have perturbed atoms? */
     int                 ePBC;            /* PBC type enum                              */
     matrix              box;             /* The periodic unit-cell                     */
 
index 2f93f3036cfcb8b151579576f955cff11f58aed0..4f52448ee0551e17b9bc9347132a9729e51a3093 100644 (file)
@@ -39,6 +39,8 @@
 
 #include <math.h>
 #include <string.h>
+#include <assert.h>
+
 #include "sysstuff.h"
 #include "smalloc.h"
 #include "macros.h"
@@ -55,6 +57,7 @@
 #include "nbnxn_search.h"
 #include "gmx_omp_nthreads.h"
 #include "nrnb.h"
+#include "ns.h"
 
 #include "gromacs/fileio/gmxfio.h"
 
@@ -319,9 +322,34 @@ gmx_bool nbnxn_kernel_pairlist_simple(int nb_kernel_type)
     }
 }
 
+/* Initializes a single nbnxn_pairlist_t data structure */
+static void nbnxn_init_pairlist_fep(t_nblist *nl)
+{
+    nl->type        = GMX_NBLIST_INTERACTION_FREE_ENERGY;
+    nl->igeometry   = GMX_NBLIST_GEOMETRY_PARTICLE_PARTICLE;
+    /* The interaction functions are set in the free energy kernel fuction */
+    nl->ivdw        = -1;
+    nl->ivdwmod     = -1;
+    nl->ielec       = -1;
+    nl->ielecmod    = -1;
+
+    nl->maxnri      = 0;
+    nl->maxnrj      = 0;
+    nl->nri         = 0;
+    nl->nrj         = 0;
+    nl->iinr        = NULL;
+    nl->gid         = NULL;
+    nl->shift       = NULL;
+    nl->jindex      = NULL;
+    nl->jjnr        = NULL;
+    nl->excl_fep    = NULL;
+
+}
+
 void nbnxn_init_search(nbnxn_search_t    * nbs_ptr,
                        ivec               *n_dd_cells,
                        gmx_domdec_zones_t *zones,
+                       gmx_bool            bFEP,
                        int                 nthread_max)
 {
     nbnxn_search_t nbs;
@@ -330,6 +358,8 @@ void nbnxn_init_search(nbnxn_search_t    * nbs_ptr,
     snew(nbs, 1);
     *nbs_ptr = nbs;
 
+    nbs->bFEP   = bFEP;
+
     nbs->DomDec = (n_dd_cells != NULL);
 
     clear_ivec(nbs->dd_dim);
@@ -369,6 +399,9 @@ void nbnxn_init_search(nbnxn_search_t    * nbs_ptr,
         nbs->work[t].cxy_na_nalloc    = 0;
         nbs->work[t].sort_work        = NULL;
         nbs->work[t].sort_work_nalloc = 0;
+
+        snew(nbs->work[t].nbl_fep, 1);
+        nbnxn_init_pairlist_fep(nbs->work[t].nbl_fep);
     }
 
     /* Initialize detailed nbsearch cycle counting */
@@ -521,6 +554,10 @@ static int set_grid_size_xy(const nbnxn_search_t nbs,
         }
 
         srenew(grid->flags, grid->nc_nalloc);
+        if (nbs->bFEP)
+        {
+            srenew(grid->fep, grid->nc_nalloc*grid->na_sc/grid->na_c);
+        }
     }
 
     copy_rvec(corner0, grid->c0);
@@ -1052,7 +1089,7 @@ void sort_on_lj(int na_c,
     int      subc, s, a, n1, n2, a_lj_max, i, j;
     int      sort1[NBNXN_NA_SC_MAX/GPU_NSUBCELL];
     int      sort2[NBNXN_NA_SC_MAX/GPU_NSUBCELL];
-    gmx_bool haveQ;
+    gmx_bool haveQ, bFEP;
 
     *flags = 0;
 
@@ -1079,7 +1116,7 @@ void sort_on_lj(int na_c,
             }
         }
 
-        /* If we don't have atom with LJ, there's nothing to sort */
+        /* If we don't have atoms with LJ, there's nothing to sort */
         if (n1 > 0)
         {
             *flags |= NBNXN_CI_DO_LJ(subc);
@@ -1140,6 +1177,23 @@ void fill_cell(const nbnxn_search_t nbs,
                    grid->flags+(a0>>grid->na_c_2log)-grid->cell0);
     }
 
+    if (nbs->bFEP)
+    {
+        /* Set the fep flag for perturbed atoms in this (sub-)cell */
+        int c, at;
+
+        /* The grid-local cluster/(sub-)cell index */
+        c            = (a0 >> grid->na_c_2log) - grid->cell0*(grid->bSimple ? 1 : GPU_NSUBCELL);
+        grid->fep[c] = 0;
+        for (at = a0; at < a1; at++)
+        {
+            if (nbs->a[at] >= 0 && GET_CGINFO_FEP(atinfo[nbs->a[at]]))
+            {
+                grid->fep[c] |= (1 << (at - a0));
+            }
+        }
+    }
+
     /* Now we have sorted the atoms, set the cell indices */
     for (a = a0; a < a1; a++)
     {
@@ -2323,7 +2377,7 @@ static int nbl_cj(const nbnxn_pairlist_t *nbl, int cj_ind)
 }
 
 /* Returns the i-interaction mask of the j sub-cell for index cj_ind */
-static unsigned nbl_imask0(const nbnxn_pairlist_t *nbl, int cj_ind)
+static unsigned int nbl_imask0(const nbnxn_pairlist_t *nbl, int cj_ind)
 {
     return nbl->cj4[cj_ind >> NBNXN_GPU_JGROUP_SIZE_2LOG].imei[0].imask;
 }
@@ -2506,6 +2560,7 @@ void nbnxn_init_pairlist_set(nbnxn_pairlist_set_t *nbl_list,
     }
 
     snew(nbl_list->nbl, nbl_list->nnbl);
+    snew(nbl_list->nbl_fep, nbl_list->nnbl);
     /* Execute in order to avoid memory interleaving between threads */
 #pragma omp parallel for num_threads(nbl_list->nnbl) schedule(static)
     for (i = 0; i < nbl_list->nnbl; i++)
@@ -2524,6 +2579,9 @@ void nbnxn_init_pairlist_set(nbnxn_pairlist_set_t *nbl_list,
         {
             nbnxn_init_pairlist(nbl_list->nbl[i], nbl_list->bSimple, NULL, NULL);
         }
+
+        snew(nbl_list->nbl_fep[i], 1);
+        nbnxn_init_pairlist_fep(nbl_list->nbl_fep[i]);
     }
 }
 
@@ -2650,7 +2708,7 @@ static void low_get_nbl_exclusions(nbnxn_pairlist_t *nbl, int cj4,
 }
 
 /* Returns a pointer to the exclusion mask for cj4-unit cj4, warp warp,
- * allocates extra memory, if necessary.
+ * generates a new element and allocates extra memory, if necessary.
  */
 static void get_nbl_exclusions_1(nbnxn_pairlist_t *nbl, int cj4,
                                  int warp, nbnxn_excl_t **excl)
@@ -2664,7 +2722,7 @@ static void get_nbl_exclusions_1(nbnxn_pairlist_t *nbl, int cj4,
 }
 
 /* Returns pointers to the exclusion mask for cj4-unit cj4 for both warps,
- * allocates extra memory, if necessary.
+ * generates a new element and allocates extra memory, if necessary.
  */
 static void get_nbl_exclusions_2(nbnxn_pairlist_t *nbl, int cj4,
                                  nbnxn_excl_t **excl_w0,
@@ -2887,7 +2945,7 @@ static void make_cluster_list_supersub(const nbnxn_grid_t *gridi,
     int               npair;
     int               cjo, ci1, ci, cj, cj_gl;
     int               cj4_ind, cj_offset;
-    unsigned          imask;
+    unsigned int      imask;
     nbnxn_cj4_t      *cj4;
 #ifdef NBNXN_BBXXXX
     const float      *pbb_ci;
@@ -3193,6 +3251,398 @@ static void set_ci_top_excls(const nbnxn_search_t nbs,
     }
 }
 
+/* Add a new i-entry to the FEP list and copy the i-properties */
+static gmx_inline void fep_list_new_nri_copy(t_nblist *nlist)
+{
+    /* Add a new i-entry */
+    nlist->nri++;
+
+    assert(nlist->nri < nlist->maxnri);
+
+    /* Duplicate the last i-entry, except for jindex, which continues */
+    nlist->iinr[nlist->nri]   = nlist->iinr[nlist->nri-1];
+    nlist->shift[nlist->nri]  = nlist->shift[nlist->nri-1];
+    nlist->gid[nlist->nri]    = nlist->gid[nlist->nri-1];
+    nlist->jindex[nlist->nri] = nlist->nrj;
+}
+
+/* For load balancing of the free-energy lists over threads, we set
+ * the maximum nrj size of an i-entry to 40. This leads to good
+ * load balancing in the worst case scenario of a single perturbed
+ * particle on 16 threads, while not introducing significant overhead.
+ * Note that half of the perturbed pairs will anyhow end up in very small lists,
+ * since non perturbed i-particles will see few perturbed j-particles).
+ */
+const int max_nrj_fep = 40;
+
+/* Exclude the perturbed pairs from the Verlet list. This is only done to avoid
+ * singularities for overlapping particles (0/0), since the charges and
+ * LJ parameters have been zeroed in the nbnxn data structure.
+ * Simultaneously make a group pair list for the perturbed pairs.
+ */
+static void make_fep_list(const nbnxn_search_t    nbs,
+                          const nbnxn_atomdata_t *nbat,
+                          nbnxn_pairlist_t       *nbl,
+                          gmx_bool                bDiagRemoved,
+                          nbnxn_ci_t             *nbl_ci,
+                          const nbnxn_grid_t     *gridi,
+                          const nbnxn_grid_t     *gridj,
+                          t_nblist               *nlist)
+{
+    int      ci, cj_ind_start, cj_ind_end, cj_ind, cja, cjr;
+    int      nri_max;
+    int      ngid, gid_i = 0, gid_j, gid;
+    int      egp_shift, egp_mask;
+    int      gid_cj = 0;
+    int      i, j, ind_i, ind_j, ai, aj;
+    int      nri;
+    gmx_bool bFEP_i, bFEP_i_all;
+
+    if (nbl_ci->cj_ind_end == nbl_ci->cj_ind_start)
+    {
+        /* Empty list */
+        return;
+    }
+
+    ci = nbl_ci->ci;
+
+    cj_ind_start = nbl_ci->cj_ind_start;
+    cj_ind_end   = nbl_ci->cj_ind_end;
+
+    /* In worst case we have alternating energy groups and create npair lists */
+    nri_max = nbl->na_ci*(cj_ind_end - cj_ind_start);
+    if (nlist->nri + nri_max > nlist->maxnri)
+    {
+        nlist->maxnri = over_alloc_large(nlist->nri + nri_max);
+        reallocate_nblist(nlist);
+    }
+
+    ngid = nbat->nenergrp;
+
+    if (ngid*gridj->na_cj > sizeof(gid_cj)*8)
+    {
+        gmx_fatal(FARGS, "The Verlet scheme with %dx%d kernels and free-energy only supports up to %d energy groups",
+                  gridi->na_c, gridj->na_cj, (sizeof(gid_cj)*8)/gridj->na_cj);
+    }
+
+    egp_shift = nbat->neg_2log;
+    egp_mask  = (1<<nbat->neg_2log) - 1;
+
+    /* Loop over the atoms in the i sub-cell */
+    bFEP_i_all = TRUE;
+    for (i = 0; i < nbl->na_ci; i++)
+    {
+        ind_i = ci*nbl->na_ci + i;
+        ai    = nbs->a[ind_i];
+        if (ai >= 0)
+        {
+            nri                  = nlist->nri;
+            nlist->jindex[nri+1] = nlist->jindex[nri];
+            nlist->iinr[nri]     = ai;
+            /* The actual energy group pair index is set later */
+            nlist->gid[nri]      = 0;
+            nlist->shift[nri]    = nbl_ci->shift & NBNXN_CI_SHIFT;
+
+            bFEP_i = gridi->fep[ci - gridi->cell0] & (1 << i);
+
+            bFEP_i_all = bFEP_i_all && bFEP_i;
+
+            if ((nlist->nrj + cj_ind_end - cj_ind_start)*nbl->na_cj > nlist->maxnrj)
+            {
+                nlist->maxnrj = over_alloc_small((nlist->nrj + cj_ind_end - cj_ind_start)*nbl->na_cj);
+                srenew(nlist->jjnr,     nlist->maxnrj);
+                srenew(nlist->excl_fep, nlist->maxnrj);
+            }
+
+            if (ngid > 1)
+            {
+                gid_i = (nbat->energrp[ci] >> (egp_shift*i)) & egp_mask;
+            }
+
+            for (cj_ind = cj_ind_start; cj_ind < cj_ind_end; cj_ind++)
+            {
+                unsigned int fep_cj;
+
+                cja = nbl->cj[cj_ind].cj;
+
+                if (gridj->na_cj == gridj->na_c)
+                {
+                    cjr    = cja - gridj->cell0;
+                    fep_cj = gridj->fep[cjr];
+                    if (ngid > 1)
+                    {
+                        gid_cj = nbat->energrp[cja];
+                    }
+                }
+                else if (2*gridj->na_cj == gridj->na_c)
+                {
+                    cjr    = cja - gridj->cell0*2;
+                    /* Extract half of the ci fep/energrp mask */
+                    fep_cj = (gridj->fep[cjr>>1] >> ((cjr&1)*gridj->na_cj)) & ((1<<gridj->na_cj) - 1);
+                    if (ngid > 1)
+                    {
+                        gid_cj = nbat->energrp[cja>>1] >> ((cja&1)*gridj->na_cj*egp_shift) & ((1<<(gridj->na_cj*egp_shift)) - 1);
+                    }
+                }
+                else
+                {
+                    cjr    = cja - (gridj->cell0>>1);
+                    /* Combine two ci fep masks/energrp */
+                    fep_cj = gridj->fep[cjr*2] + (gridj->fep[cjr*2+1] << gridj->na_c);
+                    if (ngid > 1)
+                    {
+                        gid_cj = nbat->energrp[cja*2] + (nbat->energrp[cja*2+1] << (gridj->na_c*egp_shift));
+                    }
+                }
+
+                if (bFEP_i || fep_cj != 0)
+                {
+                    for (j = 0; j < nbl->na_cj; j++)
+                    {
+                        /* Is this interaction perturbed and not excluded? */
+                        ind_j = cja*nbl->na_cj + j;
+                        aj    = nbs->a[ind_j];
+                        if (aj >= 0 &&
+                            (bFEP_i || (fep_cj & (1 << j))) &&
+                            (!bDiagRemoved || ind_j >= ind_i))
+                        {
+                            if (ngid > 1)
+                            {
+                                gid_j = (gid_cj >> (j*egp_shift)) & egp_mask;
+                                gid   = GID(gid_i, gid_j, ngid);
+
+                                if (nlist->nrj > nlist->jindex[nri] &&
+                                    nlist->gid[nri] != gid)
+                                {
+                                    /* Energy group pair changed: new list */
+                                    fep_list_new_nri_copy(nlist);
+                                    nri = nlist->nri;
+                                }
+                                nlist->gid[nri] = gid;
+                            }
+
+                            if (nlist->nrj - nlist->jindex[nri] >= max_nrj_fep)
+                            {
+                                fep_list_new_nri_copy(nlist);
+                                nri = nlist->nri;
+                            }
+
+                            /* Add it to the FEP list */
+                            nlist->jjnr[nlist->nrj]     = aj;
+                            nlist->excl_fep[nlist->nrj] = (nbl->cj[cj_ind].excl >> (i*nbl->na_cj + j)) & 1;
+                            nlist->nrj++;
+
+                            /* Exclude it from the normal list.
+                             * Note that the charge has been set to zero,
+                             * but we need to avoid 0/0, as perturbed atoms
+                             * can be on top of each other.
+                             * (and the LJ parameters have not been zeroed)
+                             */
+                            nbl->cj[cj_ind].excl &= ~(1U << (i*nbl->na_cj + j));
+                        }
+                    }
+                }
+            }
+
+            if (nlist->nrj > nlist->jindex[nri])
+            {
+                nlist->nri++;
+                nlist->jindex[nlist->nri] = nlist->nrj;
+            }
+        }
+    }
+
+    if (bFEP_i_all)
+    {
+        /* All interactions are perturbed, we can skip this entry */
+        nbl_ci->cj_ind_end = cj_ind_start;
+    }
+}
+
+/* Return the index of atom a within a cluster */
+static gmx_inline int cj_mod_cj4(int cj)
+{
+    return cj & (NBNXN_GPU_JGROUP_SIZE - 1);
+}
+
+/* Convert a j-cluster to a cj4 group */
+static gmx_inline int cj_to_cj4(int cj)
+{
+    return cj >> NBNXN_GPU_JGROUP_SIZE_2LOG;
+}
+
+/* Return the index of an j-atom within a warp */
+static gmx_inline int a_mod_wj(int a)
+{
+    return a & (NBNXN_GPU_CLUSTER_SIZE/2 - 1);
+}
+
+/* As make_fep_list above, but for super/sub lists. */
+static void make_fep_list_supersub(const nbnxn_search_t    nbs,
+                                   const nbnxn_atomdata_t *nbat,
+                                   nbnxn_pairlist_t       *nbl,
+                                   gmx_bool                bDiagRemoved,
+                                   const nbnxn_sci_t      *nbl_sci,
+                                   real                    shx,
+                                   real                    shy,
+                                   real                    shz,
+                                   real                    rlist_fep2,
+                                   const nbnxn_grid_t     *gridi,
+                                   const nbnxn_grid_t     *gridj,
+                                   t_nblist               *nlist)
+{
+    int                sci, cj4_ind_start, cj4_ind_end, cj4_ind, gcj, cjr;
+    int                nri_max;
+    int                c, c_abs;
+    int                i, j, ind_i, ind_j, ai, aj;
+    int                nri;
+    gmx_bool           bFEP_i;
+    real               xi, yi, zi;
+    const nbnxn_cj4_t *cj4;
+
+    if (nbl_sci->cj4_ind_end == nbl_sci->cj4_ind_start)
+    {
+        /* Empty list */
+        return;
+    }
+
+    sci = nbl_sci->sci;
+
+    cj4_ind_start = nbl_sci->cj4_ind_start;
+    cj4_ind_end   = nbl_sci->cj4_ind_end;
+
+    /* No energy groups (yet), so we split lists in max_nrj_fep pairs */
+    nri_max = nbl->na_sc*(1 + ((cj4_ind_end - cj4_ind_start)*NBNXN_GPU_JGROUP_SIZE)/max_nrj_fep);
+    if (nlist->nri + nri_max > nlist->maxnri)
+    {
+        nlist->maxnri = over_alloc_large(nlist->nri + nri_max);
+        reallocate_nblist(nlist);
+    }
+
+    /* Loop over the atoms in the i super-cluster */
+    for (c = 0; c < GPU_NSUBCELL; c++)
+    {
+        c_abs = sci*GPU_NSUBCELL + c;
+
+        for (i = 0; i < nbl->na_ci; i++)
+        {
+            ind_i = c_abs*nbl->na_ci + i;
+            ai    = nbs->a[ind_i];
+            if (ai >= 0)
+            {
+                nri                  = nlist->nri;
+                nlist->jindex[nri+1] = nlist->jindex[nri];
+                nlist->iinr[nri]     = ai;
+                /* With GPUs, energy groups are not supported */
+                nlist->gid[nri]      = 0;
+                nlist->shift[nri]    = nbl_sci->shift & NBNXN_CI_SHIFT;
+
+                bFEP_i = (gridi->fep[c_abs - gridi->cell0] & (1 << i));
+
+                xi = nbat->x[ind_i*nbat->xstride+XX] + shx;
+                yi = nbat->x[ind_i*nbat->xstride+YY] + shy;
+                zi = nbat->x[ind_i*nbat->xstride+ZZ] + shz;
+
+                if ((nlist->nrj + cj4_ind_end - cj4_ind_start)*NBNXN_GPU_JGROUP_SIZE*nbl->na_cj > nlist->maxnrj)
+                {
+                    nlist->maxnrj = over_alloc_small((nlist->nrj + cj4_ind_end - cj4_ind_start)*NBNXN_GPU_JGROUP_SIZE*nbl->na_cj);
+                    srenew(nlist->jjnr,     nlist->maxnrj);
+                    srenew(nlist->excl_fep, nlist->maxnrj);
+                }
+
+                for (cj4_ind = cj4_ind_start; cj4_ind < cj4_ind_end; cj4_ind++)
+                {
+                    cj4 = &nbl->cj4[cj4_ind];
+
+                    for (gcj = 0; gcj < NBNXN_GPU_JGROUP_SIZE; gcj++)
+                    {
+                        unsigned int fep_cj;
+
+                        if ((cj4->imei[0].imask & (1U << (gcj*GPU_NSUBCELL + c))) == 0)
+                        {
+                            /* Skip this ci for this cj */
+                            continue;
+                        }
+
+                        cjr = cj4->cj[gcj] - gridj->cell0*GPU_NSUBCELL;
+
+                        fep_cj = gridj->fep[cjr];
+
+                        if (bFEP_i || fep_cj != 0)
+                        {
+                            for (j = 0; j < nbl->na_cj; j++)
+                            {
+                                /* Is this interaction perturbed and not excluded? */
+                                ind_j = (gridj->cell0*GPU_NSUBCELL + cjr)*nbl->na_cj + j;
+                                aj    = nbs->a[ind_j];
+                                if (aj >= 0 &&
+                                    (bFEP_i || (fep_cj & (1 << j))) &&
+                                    (!bDiagRemoved || ind_j >= ind_i))
+                                {
+                                    nbnxn_excl_t *excl;
+                                    int           excl_pair;
+                                    unsigned int  excl_bit;
+                                    real          dx, dy, dz;
+
+                                    get_nbl_exclusions_1(nbl, cj4_ind, j>>2, &excl);
+
+                                    excl_pair = a_mod_wj(j)*nbl->na_ci + i;
+                                    excl_bit  = (1U << (gcj*GPU_NSUBCELL + c));
+
+                                    dx = nbat->x[ind_j*nbat->xstride+XX] - xi;
+                                    dy = nbat->x[ind_j*nbat->xstride+YY] - yi;
+                                    dz = nbat->x[ind_j*nbat->xstride+ZZ] - zi;
+
+                                    /* The unpruned GPU list has more than 2/3
+                                     * of the atom pairs beyond rlist. Using
+                                     * this list will cause a lot of overhead
+                                     * in the CPU FEP kernels, especially
+                                     * relative to the fast GPU kernels.
+                                     * So we prune the FEP list here.
+                                     */
+                                    if (dx*dx + dy*dy + dz*dz < rlist_fep2)
+                                    {
+                                        if (nlist->nrj - nlist->jindex[nri] >= max_nrj_fep)
+                                        {
+                                            fep_list_new_nri_copy(nlist);
+                                            nri = nlist->nri;
+                                        }
+
+                                        /* Add it to the FEP list */
+                                        nlist->jjnr[nlist->nrj]     = aj;
+                                        nlist->excl_fep[nlist->nrj] = (excl->pair[excl_pair] & excl_bit) ? 1 : 0;
+                                        nlist->nrj++;
+                                    }
+
+                                    /* Exclude it from the normal list.
+                                     * Note that the charge and LJ parameters have
+                                     * been set to zero, but we need to avoid 0/0,
+                                     * as perturbed atoms can be on top of each other.
+                                     */
+                                    excl->pair[excl_pair] &= ~excl_bit;
+                                }
+                            }
+
+                            /* Note that we could mask out this pair in imask
+                             * if all i- and/or all j-particles are perturbed.
+                             * But since the perturbed pairs on the CPU will
+                             * take an order of magnitude more time, the GPU
+                             * will finish before the CPU and there is no gain.
+                             */
+                        }
+                    }
+                }
+
+                if (nlist->nrj > nlist->jindex[nri])
+                {
+                    nlist->nri++;
+                    nlist->jindex[nlist->nri] = nlist->nrj;
+                }
+            }
+        }
+    }
+}
+
 /* Set all atom-pair exclusions from the topology stored in excl
  * as masks in the pair-list for i-super-cell entry nbl_sci
  */
@@ -3316,26 +3766,15 @@ static void set_sci_top_excls(const nbnxn_search_t nbs,
                         inner_i = i  - si*na_c;
                         inner_e = ge - se*na_c;
 
-/* Macro for getting the index of atom a within a cluster */
-#define AMODCJ4(a)  ((a) & (NBNXN_GPU_JGROUP_SIZE - 1))
-/* Macro for converting an atom number to a cluster number */
-#define A2CJ4(a)    ((a) >> NBNXN_GPU_JGROUP_SIZE_2LOG)
-/* Macro for getting the index of an i-atom within a warp */
-#define AMODWI(a)   ((a) & (NBNXN_GPU_CLUSTER_SIZE/2 - 1))
-
-                        if (nbl_imask0(nbl, found) & (1U << (AMODCJ4(found)*GPU_NSUBCELL + si)))
+                        if (nbl_imask0(nbl, found) & (1U << (cj_mod_cj4(found)*GPU_NSUBCELL + si)))
                         {
                             w       = (inner_e >> 2);
 
-                            get_nbl_exclusions_1(nbl, A2CJ4(found), w, &nbl_excl);
+                            get_nbl_exclusions_1(nbl, cj_to_cj4(found), w, &nbl_excl);
 
-                            nbl_excl->pair[AMODWI(inner_e)*nbl->na_ci+inner_i] &=
-                                ~(1U << (AMODCJ4(found)*GPU_NSUBCELL + si));
+                            nbl_excl->pair[a_mod_wj(inner_e)*nbl->na_ci+inner_i] &=
+                                ~(1U << (cj_mod_cj4(found)*GPU_NSUBCELL + si));
                         }
-
-#undef AMODCJ4
-#undef A2CJ4
-#undef AMODWI
                     }
                 }
             }
@@ -3615,6 +4054,18 @@ static void clear_pairlist(nbnxn_pairlist_t *nbl)
     nbl->work->ncj_hlj = 0;
 }
 
+/* Clears a group scheme pair list */
+static void clear_pairlist_fep(t_nblist *nl)
+{
+    nl->nri = 0;
+    nl->nrj = 0;
+    if (nl->jindex == NULL)
+    {
+        snew(nl->jindex, 1);
+    }
+    nl->jindex[0] = 0;
+}
+
 /* Sets a simple list i-cell bounding box, including PBC shift */
 static gmx_inline void set_icell_bb_simple(const nbnxn_bb_t *bb, int ci,
                                            real shx, real shy, real shz,
@@ -3693,7 +4144,7 @@ static void icell_set_x_supersub(int ci,
                                  int stride, const real *x,
                                  nbnxn_list_work_t *work)
 {
-    int  ia, i;
+    int   ia, i;
     real *x_ci;
 
     x_ci = work->x_ci;
@@ -3715,7 +4166,7 @@ static void icell_set_x_supersub_simd4(int ci,
                                        int stride, const real *x,
                                        nbnxn_list_work_t *work)
 {
-    int  si, io, ia, i, j;
+    int   si, io, ia, i, j;
     real *x_ci;
 
     x_ci = work->x_ci;
@@ -3737,6 +4188,44 @@ static void icell_set_x_supersub_simd4(int ci,
 }
 #endif
 
+static real minimum_subgrid_size_xy(const nbnxn_grid_t *grid)
+{
+    if (grid->bSimple)
+    {
+        return min(grid->sx, grid->sy);
+    }
+    else
+    {
+        return min(grid->sx/GPU_NSUBCELL_X, grid->sy/GPU_NSUBCELL_Y);
+    }
+}
+
+static real effective_buffer_1x1_vs_MxN(const nbnxn_grid_t *gridi,
+                                        const nbnxn_grid_t *gridj)
+{
+    const real eff_1x1_buffer_fac_overest = 0.1;
+
+    /* Determine an atom-pair list cut-off buffer size for atom pairs,
+     * to be added to rlist (including buffer) used for MxN.
+     * This is for converting an MxN list to a 1x1 list. This means we can't
+     * use the normal buffer estimate, as we have an MxN list in which
+     * some atom pairs beyond rlist are missing. We want to capture
+     * the beneficial effect of buffering by extra pairs just outside rlist,
+     * while removing the useless pairs that are further away from rlist.
+     * (Also the buffer could have been set manually not using the estimate.)
+     * This buffer size is an overestimate.
+     * We add 10% of the smallest grid sub-cell dimensions.
+     * Note that the z-size differs per cell and we don't use this,
+     * so we overestimate.
+     * With PME, the 10% value gives a buffer that is somewhat larger
+     * than the effective buffer with a tolerance of 0.005 kJ/mol/ps.
+     * Smaller tolerances or using RF lead to a smaller effective buffer,
+     * so 10% gives a safe overestimate.
+     */
+    return eff_1x1_buffer_fac_overest*(minimum_subgrid_size_xy(gridi) +
+                                       minimum_subgrid_size_xy(gridj));
+}
+
 /* Clusters at the cut-off only increase rlist by 60% of their size */
 static real nbnxn_rlist_inc_outside_fac = 0.6;
 
@@ -3814,9 +4303,9 @@ static int get_nsubpair_max(const nbnxn_search_t nbs,
                             int                  min_ci_balanced)
 {
     const nbnxn_grid_t *grid;
-    rvec ls;
-    real xy_diag2, r_eff_sup, vol_est, nsp_est, nsp_est_nl;
-    int  nsubpair_max;
+    rvec                ls;
+    real                xy_diag2, r_eff_sup, vol_est, nsp_est, nsp_est_nl;
+    int                 nsubpair_max;
 
     grid = &nbs->grid[0];
 
@@ -3998,11 +4487,11 @@ static void combine_nblists(int nnbl, nbnxn_pairlist_t **nbl,
 #pragma omp parallel for num_threads(gmx_omp_nthreads_get(emntPairsearch)) schedule(static)
     for (n = 0; n < nnbl; n++)
     {
-        int sci_offset;
-        int cj4_offset;
-        int ci_offset;
-        int excl_offset;
-        int i, j4;
+        int                     sci_offset;
+        int                     cj4_offset;
+        int                     ci_offset;
+        int                     excl_offset;
+        int                     i, j4;
         const nbnxn_pairlist_t *nbli;
 
         /* Determine the offset in the combined data for our thread */
@@ -4050,6 +4539,121 @@ static void combine_nblists(int nnbl, nbnxn_pairlist_t **nbl,
     }
 }
 
+static void balance_fep_lists(const nbnxn_search_t  nbs,
+                              nbnxn_pairlist_set_t *nbl_lists)
+{
+    int       nnbl, th;
+    int       nri_tot, nrj_tot, nrj_target;
+    int       th_dest;
+    t_nblist *nbld;
+
+    nnbl = nbl_lists->nnbl;
+
+    if (nnbl == 1)
+    {
+        /* Nothing to balance */
+        return;
+    }
+
+    /* Count the total i-lists and pairs */
+    nri_tot = 0;
+    nrj_tot = 0;
+    for (th = 0; th < nnbl; th++)
+    {
+        nri_tot += nbl_lists->nbl_fep[th]->nri;
+        nrj_tot += nbl_lists->nbl_fep[th]->nrj;
+    }
+
+    nrj_target = (nrj_tot + nnbl - 1)/nnbl;
+
+    assert(gmx_omp_nthreads_get(emntNonbonded) == nnbl);
+
+#pragma omp parallel for schedule(static) num_threads(nnbl)
+    for (th = 0; th < nnbl; th++)
+    {
+        t_nblist *nbl;
+
+        nbl = nbs->work[th].nbl_fep;
+
+        /* Note that here we allocate for the total size, instead of
+         * a per-thread esimate (which is hard to obtain).
+         */
+        if (nri_tot > nbl->maxnri)
+        {
+            nbl->maxnri = over_alloc_large(nri_tot);
+            reallocate_nblist(nbl);
+        }
+        if (nri_tot > nbl->maxnri || nrj_tot > nbl->maxnrj)
+        {
+            nbl->maxnrj = over_alloc_small(nrj_tot);
+            srenew(nbl->jjnr, nbl->maxnrj);
+            srenew(nbl->excl_fep, nbl->maxnrj);
+        }
+
+        clear_pairlist_fep(nbl);
+    }
+
+    /* Loop over the source lists and assign and copy i-entries */
+    th_dest = 0;
+    nbld    = nbs->work[th_dest].nbl_fep;
+    for (th = 0; th < nnbl; th++)
+    {
+        t_nblist *nbls;
+        int       i, j;
+
+        nbls = nbl_lists->nbl_fep[th];
+
+        for (i = 0; i < nbls->nri; i++)
+        {
+            int nrj;
+
+            /* The number of pairs in this i-entry */
+            nrj = nbls->jindex[i+1] - nbls->jindex[i];
+
+            /* Decide if list th_dest is too large and we should procede
+             * to the next destination list.
+             */
+            if (th_dest+1 < nnbl && nbld->nrj > 0 &&
+                nbld->nrj + nrj - nrj_target > nrj_target - nbld->nrj)
+            {
+                th_dest++;
+                nbld = nbs->work[th_dest].nbl_fep;
+            }
+
+            nbld->iinr[nbld->nri]  = nbls->iinr[i];
+            nbld->gid[nbld->nri]   = nbls->gid[i];
+            nbld->shift[nbld->nri] = nbls->shift[i];
+
+            for (j = nbls->jindex[i]; j < nbls->jindex[i+1]; j++)
+            {
+                nbld->jjnr[nbld->nrj]     = nbls->jjnr[j];
+                nbld->excl_fep[nbld->nrj] = nbls->excl_fep[j];
+                nbld->nrj++;
+            }
+            nbld->nri++;
+            nbld->jindex[nbld->nri] = nbld->nrj;
+        }
+    }
+
+    /* Swap the list pointers */
+    for (th = 0; th < nnbl; th++)
+    {
+        t_nblist *nbl_tmp;
+
+        nbl_tmp                = nbl_lists->nbl_fep[th];
+        nbl_lists->nbl_fep[th] = nbs->work[th].nbl_fep;
+        nbs->work[th].nbl_fep  = nbl_tmp;
+
+        if (debug)
+        {
+            fprintf(debug, "nbl_fep[%d] nri %4d nrj %4d\n",
+                    th,
+                    nbl_lists->nbl_fep[th]->nri,
+                    nbl_lists->nbl_fep[th]->nrj);
+        }
+    }
+}
+
 /* Returns the next ci to be processes by our thread */
 static gmx_bool next_ci(const nbnxn_grid_t *grid,
                         int conv,
@@ -4132,7 +4736,7 @@ static int get_ci_block_size(const nbnxn_grid_t *gridi,
     const int ci_block_enum      = 5;
     const int ci_block_denom     = 11;
     const int ci_block_min_atoms = 16;
-    int ci_block;
+    int       ci_block;
 
     /* Here we decide how to distribute the blocks over the threads.
      * We use prime numbers to try to avoid that the grid size becomes
@@ -4179,37 +4783,38 @@ static void nbnxn_make_pairlist_part(const nbnxn_search_t nbs,
                                      gmx_bool progBal,
                                      int min_ci_balanced,
                                      int th, int nth,
-                                     nbnxn_pairlist_t *nbl)
+                                     nbnxn_pairlist_t *nbl,
+                                     t_nblist *nbl_fep)
 {
-    int  na_cj_2log;
-    matrix box;
-    real rl2;
-    float rbb2;
-    int  d;
-    int  ci_b, ci, ci_x, ci_y, ci_xy, cj;
-    ivec shp;
-    int  tx, ty, tz;
-    int  shift;
-    gmx_bool bMakeList;
-    real shx, shy, shz;
-    int  conv_i, cell0_i;
+    int               na_cj_2log;
+    matrix            box;
+    real              rl2, rl_fep2 = 0;
+    float             rbb2;
+    int               d;
+    int               ci_b, ci, ci_x, ci_y, ci_xy, cj;
+    ivec              shp;
+    int               tx, ty, tz;
+    int               shift;
+    gmx_bool          bMakeList;
+    real              shx, shy, shz;
+    int               conv_i, cell0_i;
     const nbnxn_bb_t *bb_i = NULL;
 #ifdef NBNXN_BBXXXX
-    const float *pbb_i = NULL;
+    const float      *pbb_i = NULL;
 #endif
-    const float *bbcz_i, *bbcz_j;
-    const int *flags_i;
-    real bx0, bx1, by0, by1, bz0, bz1;
-    real bz1_frac;
-    real d2cx, d2z, d2z_cx, d2z_cy, d2zx, d2zxy, d2xy;
-    int  cxf, cxl, cyf, cyf_x, cyl;
-    int  cx, cy;
-    int  c0, c1, cs, cf, cl;
-    int  ndistc;
-    int  ncpcheck;
-    int  gridi_flag_shift = 0, gridj_flag_shift = 0;
-    unsigned *gridj_flag  = NULL;
-    int  ncj_old_i, ncj_old_j;
+    const float      *bbcz_i, *bbcz_j;
+    const int        *flags_i;
+    real              bx0, bx1, by0, by1, bz0, bz1;
+    real              bz1_frac;
+    real              d2cx, d2z, d2z_cx, d2z_cy, d2zx, d2zxy, d2xy;
+    int               cxf, cxl, cyf, cyf_x, cyl;
+    int               cx, cy;
+    int               c0, c1, cs, cf, cl;
+    int               ndistc;
+    int               ncpcheck;
+    int               gridi_flag_shift = 0, gridj_flag_shift = 0;
+    unsigned int     *gridj_flag       = NULL;
+    int               ncj_old_i, ncj_old_j;
 
     nbs_cycle_start(&work->cc[enbsCCsearch]);
 
@@ -4247,6 +4852,23 @@ static void nbnxn_make_pairlist_part(const nbnxn_search_t nbs,
 
     rl2 = nbl->rlist*nbl->rlist;
 
+    if (nbs->bFEP && !nbl->bSimple)
+    {
+        /* Determine an atom-pair list cut-off distance for FEP atom pairs.
+         * We should not simply use rlist, since then we would not have
+         * the small, effective buffering of the NxN lists.
+         * The buffer is on overestimate, but the resulting cost for pairs
+         * beyond rlist is neglible compared to the FEP pairs within rlist.
+         */
+        rl_fep2 = nbl->rlist + effective_buffer_1x1_vs_MxN(gridi, gridj);
+
+        if (debug)
+        {
+            fprintf(debug, "nbl_fep atom-pair rlist %f\n", rl_fep2);
+        }
+        rl_fep2 = rl_fep2*rl_fep2;
+    }
+
     rbb2 = boundingbox_only_distance2(gridi, gridj, nbl->rlist, nbl->bSimple);
 
     if (debug)
@@ -4715,6 +5337,14 @@ static void nbnxn_make_pairlist_part(const nbnxn_search_t nbs,
                                          na_cj_2log,
                                          &(nbl->ci[nbl->nci]),
                                          excl);
+
+                        if (nbs->bFEP)
+                        {
+                            make_fep_list(nbs, nbat, nbl,
+                                          shift == CENTRAL && gridi == gridj,
+                                          &(nbl->ci[nbl->nci]),
+                                          gridi, gridj, nbl_fep);
+                        }
                     }
                     else
                     {
@@ -4724,6 +5354,16 @@ static void nbnxn_make_pairlist_part(const nbnxn_search_t nbs,
                                           gridj->na_c_2log,
                                           &(nbl->sci[nbl->nsci]),
                                           excl);
+
+                        if (nbs->bFEP)
+                        {
+                            make_fep_list_supersub(nbs, nbat, nbl,
+                                                   shift == CENTRAL && gridi == gridj,
+                                                   &(nbl->sci[nbl->nsci]),
+                                                   shx, shy, shz,
+                                                   rl_fep2,
+                                                   gridi, gridj, nbl_fep);
+                        }
                     }
 
                     /* Close this ci list */
@@ -4767,6 +5407,10 @@ static void nbnxn_make_pairlist_part(const nbnxn_search_t nbs,
             print_nblist_statistics_supersub(debug, nbl, nbs, rlist);
         }
 
+        if (nbs->bFEP)
+        {
+            fprintf(debug, "nbl FEP list pairs: %d\n", nbl_fep->nrj);
+        }
     }
 }
 
@@ -4774,8 +5418,8 @@ static void reduce_buffer_flags(const nbnxn_search_t        nbs,
                                 int                         nsrc,
                                 const nbnxn_buffer_flags_t *dest)
 {
-    int s, b;
-    const unsigned *flag;
+    int                 s, b;
+    const unsigned int *flag;
 
     for (s = 0; s < nsrc; s++)
     {
@@ -4920,17 +5564,17 @@ void nbnxn_make_pairlist(const nbnxn_search_t  nbs,
                          int                   nb_kernel_type,
                          t_nrnb               *nrnb)
 {
-    nbnxn_grid_t *gridi, *gridj;
-    gmx_bool bGPUCPU;
-    int nzi, zi, zj0, zj1, zj;
-    int nsubpair_max;
-    int th;
-    int nnbl;
+    nbnxn_grid_t      *gridi, *gridj;
+    gmx_bool           bGPUCPU;
+    int                nzi, zi, zj0, zj1, zj;
+    int                nsubpair_max;
+    int                th;
+    int                nnbl;
     nbnxn_pairlist_t **nbl;
-    int ci_block;
-    gmx_bool CombineNBLists;
-    gmx_bool progBal;
-    int np_tot, np_noq, np_hlj, nap;
+    int                ci_block;
+    gmx_bool           CombineNBLists;
+    gmx_bool           progBal;
+    int                np_tot, np_noq, np_hlj, nap;
 
     /* Check if we are running hybrid GPU + CPU nbnxn mode */
     bGPUCPU = (!nbs->grid[0].bSimple && nbl_list->bSimple);
@@ -5004,6 +5648,11 @@ void nbnxn_make_pairlist(const nbnxn_search_t  nbs,
     for (th = 0; th < nnbl; th++)
     {
         clear_pairlist(nbl[th]);
+
+        if (nbs->bFEP)
+        {
+            clear_pairlist_fep(nbl_list->nbl_fep[th]);
+        }
     }
 
     for (zi = 0; zi < nzi; zi++)
@@ -5072,7 +5721,8 @@ void nbnxn_make_pairlist(const nbnxn_search_t  nbs,
                                          nsubpair_max,
                                          progBal, min_ci_balanced,
                                          th, nnbl,
-                                         nbl[th]);
+                                         nbl[th],
+                                         nbl_list->nbl_fep[th]);
             }
             nbs_cycle_stop(&nbs->cc[enbsCCsearch]);
 
@@ -5133,6 +5783,12 @@ void nbnxn_make_pairlist(const nbnxn_search_t  nbs,
         reduce_buffer_flags(nbs, nnbl, &nbat->buffer_flags);
     }
 
+    if (nbs->bFEP)
+    {
+        /* Balance the free-energy lists over all the threads */
+        balance_fep_lists(nbs, nbl_list);
+    }
+
     /* Special performance logging stuff (env.var. GMX_NBNXN_CYCLE) */
     if (LOCAL_I(iloc))
     {
index ebb142cf27711e6ccaaa75c057e9c28024b18d48..12576a096c94e4f235fc01abc1359478753613fa 100644 (file)
@@ -1,7 +1,7 @@
 /*
  * This file is part of the GROMACS molecular simulation package.
  *
- * Copyright (c) 2012,2013, by the GROMACS development team, led by
+ * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
  * and including many others, as listed in the AUTHORS file in the
  * top-level source directory and at http://www.gromacs.org.
@@ -59,6 +59,7 @@ real nbnxn_get_rlist_effective_inc(int cluster_size, real atom_density);
 void nbnxn_init_search(nbnxn_search_t    * nbs_ptr,
                        ivec               *n_dd_cells,
                        gmx_domdec_zones_t *zones,
+                       gmx_bool            bFEP,
                        int                 nthread_max);
 
 /* Put the atoms on the pair search grid.
@@ -117,6 +118,7 @@ void nbnxn_init_pairlist_set(nbnxn_pairlist_set_t *nbl_list,
  * number or roughly equally sized ci blocks in nbl.
  * When set >0 ci lists will be chopped up when the estimate
  * for the number of equally sized lists is below min_ci_balanced.
+ * With perturbed particles, also a group scheme style nbl_fep list is made.
  */
 void nbnxn_make_pairlist(const nbnxn_search_t  nbs,
                          nbnxn_atomdata_t     *nbat,
index 6cfb7d2936b04be67466fe260b9b339dcf2d8806..ff66fe8471b744657229a641743105a2387b9901 100644 (file)
@@ -104,7 +104,7 @@ round_up_to_simd_width(int length, int simd_width)
  *
  ************************************************/
 
-static void reallocate_nblist(t_nblist *nl)
+void reallocate_nblist(t_nblist *nl)
 {
     if (gmx_debug_at)
     {
@@ -169,13 +169,14 @@ static void init_nblist(FILE *log, t_nblist *nl_sr, t_nblist *nl_lr,
          */
         nl->maxnri      = homenr*4;
         nl->maxnrj      = 0;
-        nl->maxlen      = 0;
         nl->nri         = -1;
         nl->nrj         = 0;
         nl->iinr        = NULL;
         nl->gid         = NULL;
         nl->shift       = NULL;
         nl->jindex      = NULL;
+        nl->jjnr        = NULL;
+        nl->excl_fep    = NULL;
         reallocate_nblist(nl);
         nl->jindex[0] = 0;
 
@@ -332,7 +333,6 @@ static void reset_nblist(t_nblist *nl)
 {
     nl->nri       = -1;
     nl->nrj       = 0;
-    nl->maxlen    = 0;
     if (nl->jindex)
     {
         nl->jindex[0] = 0;
@@ -434,14 +434,6 @@ static inline void close_i_nblist(t_nblist *nlist)
         nlist->jindex[nri+1] = nlist->nrj;
 
         len = nlist->nrj -  nlist->jindex[nri];
-
-        /* nlist length for water i molecules is treated statically
-         * in the innerloops
-         */
-        if (len > nlist->maxlen)
-        {
-            nlist->maxlen = len;
-        }
     }
 }
 
index e154f2eba2887560b9ce184715fcc276ca6c1372..52ab9568fd4eb5002f0cf18404af51af047c231e 100644 (file)
@@ -43,6 +43,8 @@
 #include <sys/time.h>
 #endif
 #include <math.h>
+#include <assert.h>
+
 #include "typedefs.h"
 #include "string2.h"
 #include "smalloc.h"
@@ -77,6 +79,9 @@
 #include "nbnxn_kernels/simd_4xn/nbnxn_kernel_simd_4xn.h"
 #include "nbnxn_kernels/simd_2xnn/nbnxn_kernel_simd_2xnn.h"
 #include "nbnxn_kernels/nbnxn_kernel_gpu_ref.h"
+#include "nonbonded.h"
+#include "../gmxlib/nonbonded/nb_kernel.h"
+#include "../gmxlib/nonbonded/nb_free_energy.h"
 
 #include "gromacs/timing/wallcycle.h"
 #include "gromacs/timing/walltime_accounting.h"
@@ -88,6 +93,8 @@
 #include "adress.h"
 #include "qmmm.h"
 
+#include "gmx_omp_nthreads.h"
+
 #include "nbnxn_cuda_data_mgmt.h"
 #include "nbnxn_cuda/nbnxn_cuda.h"
 
@@ -686,6 +693,114 @@ static void do_nb_verlet(t_forcerec *fr,
     }
 }
 
+static void do_nb_verlet_fep(nbnxn_pairlist_set_t *nbl_lists,
+                             t_forcerec           *fr,
+                             rvec                  x[],
+                             rvec                  f[],
+                             t_mdatoms            *mdatoms,
+                             t_lambda             *fepvals,
+                             real                 *lambda,
+                             gmx_enerdata_t       *enerd,
+                             int                   flags,
+                             t_nrnb               *nrnb,
+                             gmx_wallcycle_t       wcycle)
+{
+    int              donb_flags;
+    nb_kernel_data_t kernel_data;
+    real             lam_i[efptNR];
+    real             dvdl_nb[efptNR];
+    int              th;
+    int              i, j;
+
+    donb_flags = 0;
+    /* Add short-range interactions */
+    donb_flags |= GMX_NONBONDED_DO_SR;
+
+    /* Currently all group scheme kernels always calculate (shift-)forces */
+    if (flags & GMX_FORCE_FORCES)
+    {
+        donb_flags |= GMX_NONBONDED_DO_FORCE;
+    }
+    if (flags & GMX_FORCE_VIRIAL)
+    {
+        donb_flags |= GMX_NONBONDED_DO_SHIFTFORCE;
+    }
+    if (flags & GMX_FORCE_ENERGY)
+    {
+        donb_flags |= GMX_NONBONDED_DO_POTENTIAL;
+    }
+    if (flags & GMX_FORCE_DO_LR)
+    {
+        donb_flags |= GMX_NONBONDED_DO_LR;
+    }
+
+    kernel_data.flags  = donb_flags;
+    kernel_data.lambda = lambda;
+    kernel_data.dvdl   = dvdl_nb;
+
+    kernel_data.energygrp_elec = enerd->grpp.ener[egCOULSR];
+    kernel_data.energygrp_vdw  = enerd->grpp.ener[egLJSR];
+
+    /* reset free energy components */
+    for (i = 0; i < efptNR; i++)
+    {
+        dvdl_nb[i]  = 0;
+    }
+
+    assert(gmx_omp_nthreads_get(emntNonbonded) == nbl_lists->nnbl);
+
+    wallcycle_sub_start(wcycle, ewcsNONBONDED);
+#pragma omp parallel for schedule(static) num_threads(nbl_lists->nnbl)
+    for (th = 0; th < nbl_lists->nnbl; th++)
+    {
+        gmx_nb_free_energy_kernel(nbl_lists->nbl_fep[th],
+                                  x, f, fr, mdatoms, &kernel_data, nrnb);
+    }
+
+    if (fepvals->sc_alpha != 0)
+    {
+        enerd->dvdl_nonlin[efptVDW]  += dvdl_nb[efptVDW];
+        enerd->dvdl_nonlin[efptCOUL] += dvdl_nb[efptCOUL];
+    }
+    else
+    {
+        enerd->dvdl_lin[efptVDW]  += dvdl_nb[efptVDW];
+        enerd->dvdl_lin[efptCOUL] += dvdl_nb[efptCOUL];
+    }
+
+    /* If we do foreign lambda and we have soft-core interactions
+     * we have to recalculate the (non-linear) energies contributions.
+     */
+    if (fepvals->n_lambda > 0 && (flags & GMX_FORCE_DHDL) && fepvals->sc_alpha != 0)
+    {
+        kernel_data.flags          = (donb_flags & ~(GMX_NONBONDED_DO_FORCE | GMX_NONBONDED_DO_SHIFTFORCE)) | GMX_NONBONDED_DO_FOREIGNLAMBDA;
+        kernel_data.lambda         = lam_i;
+        kernel_data.energygrp_elec = enerd->foreign_grpp.ener[egCOULSR];
+        kernel_data.energygrp_vdw  = enerd->foreign_grpp.ener[egLJSR];
+        /* Note that we add to kernel_data.dvdl, but ignore the result */
+
+        for (i = 0; i < enerd->n_lambda; i++)
+        {
+            for (j = 0; j < efptNR; j++)
+            {
+                lam_i[j] = (i == 0 ? lambda[j] : fepvals->all_lambda[j][i-1]);
+            }
+            reset_foreign_enerdata(enerd);
+#pragma omp parallel for schedule(static) num_threads(nbl_lists->nnbl)
+            for (th = 0; th < nbl_lists->nnbl; th++)
+            {
+                gmx_nb_free_energy_kernel(nbl_lists->nbl_fep[th],
+                                          x, f, fr, mdatoms, &kernel_data, nrnb);
+            }
+
+            sum_epot(&(enerd->foreign_grpp), enerd->foreign_term);
+            enerd->enerpart_lambda[i] += enerd->foreign_term[F_EPOT];
+        }
+    }
+
+    wallcycle_sub_stop(wcycle, ewcsNONBONDED);
+}
+
 void do_force_cutsVERLET(FILE *fplog, t_commrec *cr,
                          t_inputrec *inputrec,
                          gmx_int64_t step, t_nrnb *nrnb, gmx_wallcycle_t wcycle,
@@ -1152,6 +1267,29 @@ void do_force_cutsVERLET(FILE *fplog, t_commrec *cr,
                      nrnb, wcycle);
     }
 
+    if (fr->efep != efepNO)
+    {
+        /* Calculate the local and non-local free energy interactions here.
+         * Happens here on the CPU both with and without GPU.
+         */
+        if (fr->nbv->grp[eintLocal].nbl_lists.nbl_fep[0]->nrj > 0)
+        {
+            do_nb_verlet_fep(&fr->nbv->grp[eintLocal].nbl_lists,
+                             fr, x, f, mdatoms,
+                             inputrec->fepvals, lambda,
+                             enerd, flags, nrnb, wcycle);
+        }
+
+        if (DOMAINDECOMP(cr) &&
+            fr->nbv->grp[eintNonlocal].nbl_lists.nbl_fep[0]->nrj > 0)
+        {
+            do_nb_verlet_fep(&fr->nbv->grp[eintNonlocal].nbl_lists,
+                             fr, x, f, mdatoms,
+                             inputrec->fepvals, lambda,
+                             enerd, flags, nrnb, wcycle);
+        }
+    }
+
     if (!bUseOrEmulGPU || bDiffKernels)
     {
         int aloc;
index 3ae70f50380f6ed8c7a840d051957976af2b036d..f5c151202c50b0add3cc2c3990d6ae9144f00114 100644 (file)
@@ -458,13 +458,10 @@ double do_md(FILE *fplog, t_commrec *cr, int nfile, const t_filenm fnm[],
                                         repl_ex_nst, repl_ex_nex, repl_ex_seed);
     }
 
-    /* PME tuning is only supported with GPUs or PME nodes and not with rerun or LJ-PME.
-     * With perturbed charges with soft-core we should not change the cut-off.
-     */
+    /* PME tuning is only supported with GPUs or PME nodes and not with rerun or LJ-PME. */
     if ((Flags & MD_TUNEPME) &&
         EEL_PME(fr->eeltype) &&
         ( (fr->cutoff_scheme == ecutsVERLET && fr->nbv->bUseGPU) || !(cr->duty & DUTY_PME)) &&
-        !(ir->efep != efepNO && mdatoms->nChargePerturbed > 0 && ir->fepvals->bScCoul) &&
         !bRerunMD && !EVDW_PME(fr->vdwtype))
     {
         pme_loadbal_init(&pme_loadbal, ir, state->box, fr->ic, fr->pmedata);
index 4606f735cc18e72751509d980a2fd135d9a501b5..5ea760ec3ae69fd144b3c795f59a9209e60885db 100644 (file)
@@ -692,17 +692,12 @@ gmx_bool pme_load_balance(pme_load_balancing_t pme_lb,
         }
 #endif  /* GMX_THREAD_MPI */
     }
-    else
-    {
-        init_interaction_const_tables(NULL, ic, bUsesSimpleTables,
-                                      rtab);
-    }
 
-    if (pme_lb->cutoff_scheme == ecutsVERLET && nbv->ngrp > 1)
-    {
-        init_interaction_const_tables(NULL, ic, bUsesSimpleTables,
-                                      rtab);
-    }
+    /* Usually we won't need the simple tables with GPUs.
+     * But we do with hybrid acceleration and with free energy.
+     * To avoid bugs, we always re-initialize the simple tables here.
+     */
+    init_interaction_const_tables(NULL, ic, bUsesSimpleTables, rtab);
 
     if (cr->duty & DUTY_PME)
     {
index 767d0bb875ac57ee15fcba842e91eff80ad6945a..96d4f2f06c2dee625ac8a7513586d05c137b6b96 100644 (file)
@@ -1598,11 +1598,6 @@ int mdrunner(gmx_hw_opt_t *hw_opt,
          */
         mdatoms = init_mdatoms(fplog, mtop, inputrec->efep != efepNO);
 
-        if (mdatoms->nPerturbed > 0 && inputrec->cutoff_scheme == ecutsVERLET)
-        {
-            gmx_fatal(FARGS, "The Verlet cut-off scheme does not (yet) support free-energy calculations with perturbed atoms, only perturbed interactions. This will be implemented soon. Use the group scheme for now.");
-        }
-
         /* Initialize the virtual site communication */
         vsite = init_vsite(mtop, cr, FALSE);