Merge remote-tracking branch 'origin/release-4-6' into HEAD
authorRoland Schulz <roland@utk.edu>
Thu, 26 Jul 2012 23:32:43 +0000 (19:32 -0400)
committerRoland Schulz <roland@utk.edu>
Thu, 26 Jul 2012 23:32:43 +0000 (19:32 -0400)
Conflicts:
CMakeLists.txt

Change-Id: Icf9d0d92b977e35d42d55f1a077a2cdc8fbad86f

1  2 
CMakeLists.txt
src/gromacs/gmxlib/vmdio.c
src/gromacs/mdlib/pme.c

diff --cc CMakeLists.txt
index 8cac7ae235d926b7e3f121e10e7b7312fdcd59f8,80f305949fea34d8813c2965e6ad42a3e5456cfb..0b45bc69caa21d2ae3f20a25936254df8ee2b343
@@@ -1021,7 -984,7 +986,6 @@@ if(NOT CMAKE_SYSTEM_NAME STREQUAL "Darw
  endif()
  
  add_subdirectory(share)
- add_subdirectory(man)
 -add_subdirectory(include)
  add_subdirectory(src)
  add_subdirectory(scripts)
  
index df4cfe6d5632dbc81440654235fc6b02920fd3dd,0000000000000000000000000000000000000000..d8611a2483f7894bf02ac661831f5e2ddc52d090
mode 100644,000000..100644
--- /dev/null
@@@ -1,414 -1,0 +1,414 @@@
-     if (ifunc && ((initfunc)(ifunc))()) {
 +/* -*- mode: c; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4; c-file-style: "stroustrup"; -*-
 + *
 + * 
 + * This file is part of Gromacs        Copyright (c) 1991-2008
 + * David van der Spoel, Erik Lindahl, Berk Hess, University of Groningen.
 + *
 + * This program is free software; you can redistribute it and/or
 + * modify it under the terms of the GNU General Public License
 + * as published by the Free Software Foundation; either version 2
 + * of the License, or (at your option) any later version.
 + *
 + * To help us fund GROMACS development, we humbly ask that you cite
 + * the research papers on the package. Check out http://www.gromacs.org
 + * 
 + * And Hey:
 + * Gnomes, ROck Monsters And Chili Sauce
 + */
 +#ifdef HAVE_CONFIG_H
 +#include <config.h>
 +#endif
 +#include "gromacs/utility/gmx_header_config.h"
 +
 +
 +
 +/* Derived from PluginMgr.C and catdcd.c */
 +
 +/* PluginMgr.C: Copyright: */
 +/***************************************************************************
 + *cr
 + *cr            (C) Copyright 1995-2009 The Board of Trustees of the
 + *cr                        University of Illinois
 + *cr                         All Rights Reserved
 + *cr
 +Developed by:           Theoretical and Computational Biophysics Group
 +                        University of Illinois at Urbana-Champaign
 +                        http://www.ks.uiuc.edu/
 +
 +Permission is hereby granted, free of charge, to any person obtaining a copy of
 +this software and associated documentation files (the Software), to deal with
 +the Software without restriction, including without limitation the rights to
 +use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
 +of the Software, and to permit persons to whom the Software is furnished to
 +do so, subject to the following conditions:
 +
 +Redistributions of source code must retain the above copyright notice,
 +this list of conditions and the following disclaimers.
 +
 +Redistributions in binary form must reproduce the above copyright notice,
 +this list of conditions and the following disclaimers in the documentation
 +and/or other materials provided with the distribution.
 +
 +Neither the names of Theoretical and Computational Biophysics Group,
 +University of Illinois at Urbana-Champaign, nor the names of its contributors
 +may be used to endorse or promote products derived from this Software without
 +specific prior written permission.
 +
 +THE SOFTWARE IS PROVIDED AS IS, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 +THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
 +OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 +ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 +OTHER DEALINGS WITH THE SOFTWARE.
 + ***************************************************************************/
 +
 +/* catdcd.c: Copyright: */
 +/*****************************************************************************/
 +/*                                                                           */
 +/* (C) Copyright 2001-2005 Justin Gullingsrud and the University of Illinois.*/
 +/*                                                                           */
 +/*****************************************************************************/
 +
 +#include <stdlib.h>
 +#include <stdio.h>
 +#include <string.h>
 +#include <assert.h>
 +
 +/* 
 + * Plugin header files; get plugin source from www.ks.uiuc.edu/Research/vmd"
 + */
 +#include "external/vmd_molfile/molfile_plugin.h"
 +#include "external/vmd_molfile/vmddlopen.h"
 +#ifndef GMX_NATIVE_WINDOWS
 +#include <glob.h>
 +#else
 +#include <windows.h>
 +#include <shlobj.h>
 +#endif
 +#include "smalloc.h"
 +#include "futil.h"
 +#include "vmdio.h"
 +
 +
 +#include "types/simple.h"
 +#include "vec.h"
 +#include "gmxfio.h"
 +
 +
 +typedef int (*initfunc)(void);
 +typedef int (*regfunc)(void *, vmdplugin_register_cb);
 +typedef int (*finifunc)(void);
 +
 +
 +
 +static int register_cb(void *v, vmdplugin_t *p) {
 +    const char *key = p->name;
 +    t_gmxvmdplugin *vmdplugin = (t_gmxvmdplugin*)v;
 +
 +    if (strcmp(key,vmdplugin->filetype)==0)
 +    {
 +        vmdplugin->api = (molfile_plugin_t *)p;
 +    }
 +    return VMDPLUGIN_SUCCESS;
 +}
 +
 +static int load_sharedlibrary_plugins(const char *fullpath,t_gmxvmdplugin* vmdplugin) {
 +    /* Open the dll; try to execute the init function. */
 +    void *handle, *ifunc, *registerfunc; 
 +    handle = vmddlopen(fullpath);
 +    if (!handle) {
 +        if (debug) fprintf(debug, "\nUnable to open dynamic library %s.\n%s\n",  fullpath, vmddlerror());  /*only to debug because of stdc++ erros */
 +        return 0;
 +    }
 +
 +    ifunc = vmddlsym(handle, "vmdplugin_init");
++    if (!ifunc || ((initfunc)(ifunc))()) {
 +        printf("\nvmdplugin_init() for %s returned an error; plugin(s) not loaded.\n", fullpath);
 +        vmddlclose(handle);
 +        return 0;
 +    }
 +
 +    registerfunc = vmddlsym(handle, "vmdplugin_register");
 +    if (!registerfunc) {
 +        printf("\nDidn't find the register function in %s; plugin(s) not loaded.\n", fullpath);
 +        vmddlclose(handle);
 +        return 0;
 +    } else {
 +        /* Load plugins from the library.*/
 +        ((regfunc)registerfunc)(vmdplugin, register_cb);
 +    } 
 +    
 +    /* in case this library does not support the filetype, close it */
 +    if (vmdplugin->api == NULL)
 +    {
 +        vmddlclose(handle);
 +    }
 +
 +    return 1;
 +}
 +
 +/*return: 1: success, 0: last frame, -1: error*/
 +gmx_bool read_next_vmd_frame(int status,t_trxframe *fr)
 +{
 +    int rc,i;
 +    rvec vec, angle;
 +    molfile_timestep_t ts;
 +
 +
 +    fr->bV = fr->vmdplugin->bV;
 +        
 +#ifdef GMX_DOUBLE
 +    snew(ts.coords, fr->natoms*3);
 +    if (fr->bV)
 +    {
 +        snew(ts.velocities, fr->natoms*3);
 +    }
 +#else
 +    ts.coords = (float*)fr->x;
 +    if (fr->bV)
 +    {
 +        ts.velocities = (float*)fr->v;
 +    }
 +#endif
 +
 +    rc = fr->vmdplugin->api->read_next_timestep(fr->vmdplugin->handle, fr->natoms, &ts);
 +
 +    if (rc < -1) {
 +        fprintf(stderr, "\nError reading input file (error code %d)\n", rc);
 +    }
 +    if (rc < 0)
 +    {
 +        fr->vmdplugin->api->close_file_read(fr->vmdplugin->handle);
 +        return 0;
 +    }
 +
 +#ifdef GMX_DOUBLE
 +    for (i=0;i<fr->natoms;i++)
 +    {
 +        fr->x[i][0] = .1*ts.coords[i*3];
 +        fr->x[i][1] = .1*ts.coords[i*3+1];
 +        fr->x[i][2] = .1*ts.coords[i*3+2];
 +        if (fr->bV)
 +        {
 +            fr->v[i][0] = .1*ts.velocities[i*3];
 +            fr->v[i][1] = .1*ts.velocities[i*3+1];
 +            fr->v[i][2] = .1*ts.velocities[i*3+2];
 +        }
 +    }
 +    sfree(ts.coords);
 +    if (fr->bV)
 +    {
 +        sfree(ts.velocities);
 +    }
 +#else
 +    for (i=0;i<fr->natoms;i++)
 +    {
 +        svmul(.1,fr->x[i],fr->x[i]);
 +        if (fr->bV)
 +        {
 +            svmul(.1,fr->v[i],fr->v[i]);
 +        }
 +    }
 +#endif
 +
 +    fr->bX = 1;
 +    fr->bBox = 1;
 +    vec[0] = .1*ts.A; vec[1] = .1*ts.B; vec[2] = .1*ts.C;
 +    angle[0] = ts.alpha; angle[1] = ts.beta; angle[2] = ts.gamma; 
 +    matrix_convert(fr->box,vec,angle);
 +    if (fr->vmdplugin->api->abiversion>10)
 +    {
 +        fr->bTime = TRUE;
 +        fr->time = ts.physical_time;
 +    }
 +    else
 +    {
 +        fr->bTime = FALSE;
 +    }
 +
 +
 +    return 1;
 +}
 +
 +static int load_vmd_library(const char *fn, t_gmxvmdplugin *vmdplugin)
 +{
 +    char pathname[GMX_PATH_MAX],filename[GMX_PATH_MAX];
 +    const char *pathenv;
 +    const char *err;
 +    int i;
 +    int ret=0;
 +    char pathenv_buffer[GMX_PATH_MAX];
 +#ifndef GMX_NATIVE_WINDOWS
 +    glob_t globbuf;
 +    const char *defpath_suffix = "/plugins/*/molfile";
 +    const char *defpathenv = GMX_VMD_PLUGIN_PATH;
 +#else
 +    WIN32_FIND_DATA ffd;
 +    HANDLE hFind = INVALID_HANDLE_VALUE;
 +    char progfolder[GMX_PATH_MAX];
 +    char defpathenv[GMX_PATH_MAX];
 +    const char *defpath_suffix = "\\plugins\\WIN32\\molfile";
 +    SHGetFolderPath(NULL,CSIDL_PROGRAM_FILES,NULL,SHGFP_TYPE_CURRENT,progfolder);
 +    sprintf(defpathenv,"%s\\University of Illinois\\VMD\\plugins\\WIN32\\molfile",progfolder);
 +#endif
 +
 +    vmdplugin->api = NULL;
 +    vmdplugin->filetype = strrchr(fn,'.');
 +    if (!vmdplugin->filetype)
 +    {
 +        return 0;
 +    }
 +    vmdplugin->filetype++;
 +
 +    /* First look for an explicit path given at run time for the
 +     * plugins, then an implicit run-time path, and finally for one
 +     * given at configure time. This last might be hard-coded to the
 +     * default for VMD installs. */
 +    pathenv = getenv("VMD_PLUGIN_PATH");
 +    if (pathenv==NULL) 
 +    {
 +        pathenv = getenv("VMDDIR");
 +        if (NULL == pathenv)
 +        {
 +            printf("\nNeither VMD_PLUGIN_PATH or VMDDIR set. ");
 +            printf("Using default location:\n%s\n",defpathenv);
 +            pathenv=defpathenv;
 +        }
 +        else
 +        {
 +            printf("\nVMD_PLUGIN_PATH no set, but VMDDIR is set. ");
 +#ifdef _MSC_VER
 +            _snprintf_s(pathenv_buffer, sizeof(pathenv_buffer), _TRUNCATE, "%s%s", pathenv, defpath_suffix);
 +#else
 +            snprintf(pathenv_buffer, sizeof(pathenv_buffer), "%s%s", pathenv, defpath_suffix);
 +#endif
 +            printf("Using semi-default location:\n%s\n",pathenv_buffer);
 +            pathenv = pathenv_buffer;
 +        }
 +    }
 +    strncpy(pathname,pathenv,sizeof(pathname));
 +#ifndef GMX_NATIVE_WINDOWS
 +    strcat(pathname,"/*.so");
 +    glob(pathname, 0, NULL, &globbuf);
 +    if (globbuf.gl_pathc == 0)
 +    {
 +        printf("\nNo VMD Plugins found\n"
 +            "Set the environment variable VMD_PLUGIN_PATH to the molfile folder within the\n"
 +            "VMD installation.\n"
 +            "The architecture (e.g. 32bit versus 64bit) of Gromacs and VMD has to match.\n");
 +        return 0;
 +    }
 +    for (i=0; i<globbuf.gl_pathc && vmdplugin->api == NULL; i++)
 +    {
 +        /* FIXME: Undefined which plugin is chosen if more than one plugin
 +           can read a certain file ending. Requires some additional command
 +           line option or enviroment variable to specify which plugin should
 +           be picked.
 +        */
 +        ret|=load_sharedlibrary_plugins(globbuf.gl_pathv[i],vmdplugin);
 +    }
 +    globfree(&globbuf);
 +#else
 +    strcat(pathname,"\\*.so");
 +    hFind = FindFirstFile(pathname, &ffd);
 +    if (INVALID_HANDLE_VALUE == hFind) 
 +    {
 +        printf("\nNo VMD Plugins found\n");
 +        return 0;
 +    } 
 +    do
 +    {
 +        sprintf(filename,"%s\\%s",pathenv,ffd.cFileName);
 +        ret|=load_sharedlibrary_plugins(filename,vmdplugin);
 +    }
 +    while (FindNextFile(hFind, &ffd )  != 0 && vmdplugin->api == NULL );
 +    FindClose(hFind);
 +#endif
 +
 +    if (!ret)
 +    {
 +        printf("\nCould not open any VMD library.\n");
 +        err = vmddlerror();
 +        if (!err) 
 +        {
 +            printf("Compiled with dlopen?\n");
 +        }
 +        else
 +        {
 +            printf("Last error:\n%s\n",err);
 +        }
 +        return 0;
 +    }
 +
 +    if (vmdplugin->api == NULL)
 +    {
 +        printf("\nNo plugin for %s found\n",vmdplugin->filetype);
 +        return 0;
 +    }
 +
 +    if (vmdplugin->api->abiversion < 10)
 +    {
 +        printf("\nPlugin and/or VMD is too old. At least VMD 1.8.6 is required.\n");
 +        return 0;
 +    }
 +
 +    printf("\nUsing VMD plugin: %s (%s)\n",vmdplugin->api->name,vmdplugin->api->prettyname);
 +
 +    return 1;
 +
 +}
 +
 +int read_first_vmd_frame(int *status,const char *fn,t_trxframe *fr,int flags)
 +{
 +    molfile_timestep_metadata_t *metadata=NULL;
 +    
 +    snew(fr->vmdplugin,1);
 +    if (!load_vmd_library(fn,fr->vmdplugin))
 +    {
 +        return 0;
 +    }
 +
 +    fr->vmdplugin->handle = fr->vmdplugin->api->open_file_read(fn, fr->vmdplugin->filetype, &fr->natoms);
 +
 +    if (!fr->vmdplugin->handle) {
 +        fprintf(stderr, "\nError: could not open file '%s' for reading.\n",
 +                fn);
 +        return 0;
 +    }
 +
 +    if (fr->natoms == MOLFILE_NUMATOMS_UNKNOWN) {
 +        fprintf(stderr, "\nFormat of file %s does not record number of atoms.\n", fn);
 +        return 0;
 +    } else if (fr->natoms == MOLFILE_NUMATOMS_NONE) {
 +        fprintf(stderr, "\nNo atoms found by VMD plugin in file %s.\n", fn );
 +        return 0;
 +    } else if (fr->natoms < 1) { /*should not be reached*/
 +        fprintf(stderr, "\nUnknown number of atoms %d for VMD plugin opening file %s.\n",
 +                fr->natoms, fn );
 +        return 0;
 +    }
 +    
 +    snew(fr->x,fr->natoms);
 +
 +    fr->vmdplugin->bV = 0;
 +    if (fr->vmdplugin->api->abiversion > 10 && fr->vmdplugin->api->read_timestep_metadata)
 +    {
 +        fr->vmdplugin->api->read_timestep_metadata(fr->vmdplugin->handle, metadata);
 +        assert(metadata);
 +        fr->vmdplugin->bV = metadata->has_velocities;
 +        if (fr->vmdplugin->bV)
 +        {
 +            snew(fr->v,fr->natoms);
 +        }
 +    }
 +    else
 +    {
 +        fprintf(stderr,
 +                "\nThis trajectory is being read with a VMD plug-in from before VMD"
 +                "\nversion 1.8, or from a trajectory that lacks time step metadata."
 +                "\nEither way, GROMACS cannot tell whether the trajectory has velocities.\n");
 +    }
 +    return 1;
 +
 +}
index ac1892f3a71952229d2f4098108e5c406935a0ab,0000000000000000000000000000000000000000..8837bb5edad325f5139efcdd5d8ad11b751f7450
mode 100644,000000..100644
--- /dev/null
@@@ -1,4352 -1,0 +1,4364 @@@
-     pme_spline_work_t spline_work;
 +/* -*- mode: c; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4; c-file-style: "stroustrup"; -*-
 + *
 + *
 + *                This source code is part of
 + *
 + *                 G   R   O   M   A   C   S
 + *
 + *          GROningen MAchine for Chemical Simulations
 + *
 + *                        VERSION 3.2.0
 + * Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
 + * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
 + * Copyright (c) 2001-2004, The GROMACS development team,
 + * check out http://www.gromacs.org for more information.
 +
 + * This program is free software; you can redistribute it and/or
 + * modify it under the terms of the GNU General Public License
 + * as published by the Free Software Foundation; either version 2
 + * of the License, or (at your option) any later version.
 + *
 + * If you want to redistribute modifications, please consider that
 + * scientific software is very special. Version control is crucial -
 + * bugs must be traceable. We will be happy to consider code for
 + * inclusion in the official distribution, but derived work must not
 + * be called official GROMACS. Details are found in the README & COPYING
 + * files - if they are missing, get the official version at www.gromacs.org.
 + *
 + * To help us fund GROMACS development, we humbly ask that you cite
 + * the papers on the package - you can find them in the top README file.
 + *
 + * For more info, check our website at http://www.gromacs.org
 + *
 + * And Hey:
 + * GROwing Monsters And Cloning Shrimps
 + */
 +/* IMPORTANT FOR DEVELOPERS:
 + *
 + * Triclinic pme stuff isn't entirely trivial, and we've experienced
 + * some bugs during development (many of them due to me). To avoid
 + * this in the future, please check the following things if you make
 + * changes in this file:
 + *
 + * 1. You should obtain identical (at least to the PME precision)
 + *    energies, forces, and virial for
 + *    a rectangular box and a triclinic one where the z (or y) axis is
 + *    tilted a whole box side. For instance you could use these boxes:
 + *
 + *    rectangular       triclinic
 + *     2  0  0           2  0  0
 + *     0  2  0           0  2  0
 + *     0  0  6           2  2  6
 + *
 + * 2. You should check the energy conservation in a triclinic box.
 + *
 + * It might seem an overkill, but better safe than sorry.
 + * /Erik 001109
 + */
 +
 +#ifdef HAVE_CONFIG_H
 +#include <config.h>
 +#endif
 +
 +#ifdef GMX_LIB_MPI
 +#include <mpi.h>
 +#endif
 +#ifdef GMX_THREAD_MPI
 +#include "tmpi.h"
 +#endif
 +
 +#include <stdio.h>
 +#include <string.h>
 +#include <math.h>
 +#include <assert.h>
 +#include "typedefs.h"
 +#include "txtdump.h"
 +#include "vec.h"
 +#include "gmxcomplex.h"
 +#include "smalloc.h"
 +#include "futil.h"
 +#include "coulomb.h"
 +#include "gmx_fatal.h"
 +#include "pme.h"
 +#include "network.h"
 +#include "physics.h"
 +#include "nrnb.h"
 +#include "copyrite.h"
 +#include "gmx_wallcycle.h"
 +#include "gmx_parallel_3dfft.h"
 +#include "pdbio.h"
 +#include "gmx_cyclecounter.h"
 +#include "macros.h"
 +
 +/* Single precision, with SSE2 or higher available */
 +#if defined(GMX_X86_SSE2) && !defined(GMX_DOUBLE)
 +
 +#include "gmx_x86_sse2.h"
 +#include "gmx_math_x86_sse2_single.h"
 +
 +#define PME_SSE
 +/* Some old AMD processors could have problems with unaligned loads+stores */
 +#ifndef GMX_FAHCORE
 +#define PME_SSE_UNALIGNED
 +#endif
 +#endif
 +
 +#define DFT_TOL 1e-7
 +/* #define PRT_FORCE */
 +/* conditions for on the fly time-measurement */
 +/* #define TAKETIME (step > 1 && timesteps < 10) */
 +#define TAKETIME FALSE
 +
 +/* #define PME_TIME_THREADS */
 +
 +#ifdef GMX_DOUBLE
 +#define mpi_type MPI_DOUBLE
 +#else
 +#define mpi_type MPI_FLOAT
 +#endif
 +
 +/* GMX_CACHE_SEP should be a multiple of 16 to preserve alignment */
 +#define GMX_CACHE_SEP 64
 +
 +/* We only define a maximum to be able to use local arrays without allocation.
 + * An order larger than 12 should never be needed, even for test cases.
 + * If needed it can be changed here.
 + */
 +#define PME_ORDER_MAX 12
 +
 +/* Internal datastructures */
 +typedef struct {
 +    int send_index0;
 +    int send_nindex;
 +    int recv_index0;
 +    int recv_nindex;
 +} pme_grid_comm_t;
 +
 +typedef struct {
 +#ifdef GMX_MPI
 +    MPI_Comm mpi_comm;
 +#endif
 +    int  nnodes,nodeid;
 +    int  *s2g0;
 +    int  *s2g1;
 +    int  noverlap_nodes;
 +    int  *send_id,*recv_id;
 +    pme_grid_comm_t *comm_data;
 +    real *sendbuf;
 +    real *recvbuf;
 +} pme_overlap_t;
 +
 +typedef struct {
 +    int *n;     /* Cumulative counts of the number of particles per thread */
 +    int nalloc; /* Allocation size of i */
 +    int *i;     /* Particle indices ordered on thread index (n) */
 +} thread_plist_t;
 +
 +typedef struct {
 +    int  n;
 +    int  *ind;
 +    splinevec theta;
 +    splinevec dtheta;
 +} splinedata_t;
 +
 +typedef struct {
 +    int  dimind;            /* The index of the dimension, 0=x, 1=y */
 +    int  nslab;
 +    int  nodeid;
 +#ifdef GMX_MPI
 +    MPI_Comm mpi_comm;
 +#endif
 +
 +    int  *node_dest;        /* The nodes to send x and q to with DD */
 +    int  *node_src;         /* The nodes to receive x and q from with DD */
 +    int  *buf_index;        /* Index for commnode into the buffers */
 +
 +    int  maxshift;
 +
 +    int  npd;
 +    int  pd_nalloc;
 +    int  *pd;
 +    int  *count;            /* The number of atoms to send to each node */
 +    int  **count_thread;
 +    int  *rcount;           /* The number of atoms to receive */
 +
 +    int  n;
 +    int  nalloc;
 +    rvec *x;
 +    real *q;
 +    rvec *f;
 +    gmx_bool bSpread;       /* These coordinates are used for spreading */
 +    int  pme_order;
 +    ivec *idx;
 +    rvec *fractx;            /* Fractional coordinate relative to the
 +                              * lower cell boundary
 +                              */
 +    int  nthread;
 +    int  *thread_idx;        /* Which thread should spread which charge */
 +    thread_plist_t *thread_plist;
 +    splinedata_t *spline;
 +} pme_atomcomm_t;
 +
 +#define FLBS  3
 +#define FLBSZ 4
 +
 +typedef struct {
 +    ivec ci;     /* The spatial location of this grid       */
 +    ivec n;      /* The size of *grid, including order-1    */
 +    ivec offset; /* The grid offset from the full node grid */
 +    int  order;  /* PME spreading order                     */
 +    real *grid;  /* The grid local thread, size n           */
 +} pmegrid_t;
 +
 +typedef struct {
 +    pmegrid_t grid;     /* The full node grid (non thread-local)            */
 +    int  nthread;       /* The number of threads operating on this grid     */
 +    ivec nc;            /* The local spatial decomposition over the threads */
 +    pmegrid_t *grid_th; /* Array of grids for each thread                   */
 +    int  **g2t;         /* The grid to thread index                         */
 +    ivec nthread_comm;  /* The number of threads to communicate with        */
 +} pmegrids_t;
 +
 +
 +typedef struct {
 +#ifdef PME_SSE
 +    /* Masks for SSE aligned spreading and gathering */
 +    __m128 mask_SSE0[6],mask_SSE1[6];
 +#else
 +    int dummy; /* C89 requires that struct has at least one member */
 +#endif
 +} pme_spline_work_t;
 +
 +typedef struct {
 +    /* work data for solve_pme */
 +    int      nalloc;
 +    real *   mhx;
 +    real *   mhy;
 +    real *   mhz;
 +    real *   m2;
 +    real *   denom;
 +    real *   tmp1_alloc;
 +    real *   tmp1;
 +    real *   eterm;
 +    real *   m2inv;
 +
 +    real     energy;
 +    matrix   vir;
 +} pme_work_t;
 +
 +typedef struct gmx_pme {
 +    int  ndecompdim;         /* The number of decomposition dimensions */
 +    int  nodeid;             /* Our nodeid in mpi->mpi_comm */
 +    int  nodeid_major;
 +    int  nodeid_minor;
 +    int  nnodes;             /* The number of nodes doing PME */
 +    int  nnodes_major;
 +    int  nnodes_minor;
 +
 +    MPI_Comm mpi_comm;
 +    MPI_Comm mpi_comm_d[2];  /* Indexed on dimension, 0=x, 1=y */
 +#ifdef GMX_MPI
 +    MPI_Datatype  rvec_mpi;  /* the pme vector's MPI type */
 +#endif
 +
 +    int  nthread;            /* The number of threads doing PME */
 +
 +    gmx_bool bPPnode;        /* Node also does particle-particle forces */
 +    gmx_bool bFEP;           /* Compute Free energy contribution */
 +    int nkx,nky,nkz;         /* Grid dimensions */
 +    gmx_bool bP3M;           /* Do P3M: optimize the influence function */
 +    int pme_order;
 +    real epsilon_r;
 +
 +    pmegrids_t pmegridA;  /* Grids on which we do spreading/interpolation, includes overlap */
 +    pmegrids_t pmegridB;
 +    /* The PME charge spreading grid sizes/strides, includes pme_order-1 */
 +    int     pmegrid_nx,pmegrid_ny,pmegrid_nz;
 +    /* pmegrid_nz might be larger than strictly necessary to ensure
 +     * memory alignment, pmegrid_nz_base gives the real base size.
 +     */
 +    int     pmegrid_nz_base;
 +    /* The local PME grid starting indices */
 +    int     pmegrid_start_ix,pmegrid_start_iy,pmegrid_start_iz;
 +
 +    /* Work data for spreading and gathering */
-     work = &pme->spline_work;
++    pme_spline_work_t *spline_work;
 +
 +    real *fftgridA;             /* Grids for FFT. With 1D FFT decomposition this can be a pointer */
 +    real *fftgridB;             /* inside the interpolation grid, but separate for 2D PME decomp. */
 +    int   fftgrid_nx,fftgrid_ny,fftgrid_nz;
 +
 +    t_complex *cfftgridA;             /* Grids for complex FFT data */
 +    t_complex *cfftgridB;
 +    int   cfftgrid_nx,cfftgrid_ny,cfftgrid_nz;
 +
 +    gmx_parallel_3dfft_t  pfft_setupA;
 +    gmx_parallel_3dfft_t  pfft_setupB;
 +
 +    int  *nnx,*nny,*nnz;
 +    real *fshx,*fshy,*fshz;
 +
 +    pme_atomcomm_t atc[2];  /* Indexed on decomposition index */
 +    matrix    recipbox;
 +    splinevec bsp_mod;
 +
 +    pme_overlap_t overlap[2]; /* Indexed on dimension, 0=x, 1=y */
 +
 +    pme_atomcomm_t atc_energy; /* Only for gmx_pme_calc_energy */
 +
 +    rvec *bufv;             /* Communication buffer */
 +    real *bufr;             /* Communication buffer */
 +    int  buf_nalloc;        /* The communication buffer size */
 +
 +    /* thread local work data for solve_pme */
 +    pme_work_t *work;
 +
 +    /* Work data for PME_redist */
 +    gmx_bool redist_init;
 +    int *    scounts;
 +    int *    rcounts;
 +    int *    sdispls;
 +    int *    rdispls;
 +    int *    sidx;
 +    int *    idxa;
 +    real *   redist_buf;
 +    int      redist_buf_nalloc;
 +
 +    /* Work data for sum_qgrid */
 +    real *   sum_qgrid_tmp;
 +    real *   sum_qgrid_dd_tmp;
 +} t_gmx_pme;
 +
 +
 +static void calc_interpolation_idx(gmx_pme_t pme,pme_atomcomm_t *atc,
 +                                   int start,int end,int thread)
 +{
 +    int  i;
 +    int  *idxptr,tix,tiy,tiz;
 +    real *xptr,*fptr,tx,ty,tz;
 +    real rxx,ryx,ryy,rzx,rzy,rzz;
 +    int  nx,ny,nz;
 +    int  start_ix,start_iy,start_iz;
 +    int  *g2tx,*g2ty,*g2tz;
 +    gmx_bool bThreads;
 +    int  *thread_idx=NULL;
 +    thread_plist_t *tpl=NULL;
 +    int  *tpl_n=NULL;
 +    int  thread_i;
 +
 +    nx  = pme->nkx;
 +    ny  = pme->nky;
 +    nz  = pme->nkz;
 +
 +    start_ix = pme->pmegrid_start_ix;
 +    start_iy = pme->pmegrid_start_iy;
 +    start_iz = pme->pmegrid_start_iz;
 +
 +    rxx = pme->recipbox[XX][XX];
 +    ryx = pme->recipbox[YY][XX];
 +    ryy = pme->recipbox[YY][YY];
 +    rzx = pme->recipbox[ZZ][XX];
 +    rzy = pme->recipbox[ZZ][YY];
 +    rzz = pme->recipbox[ZZ][ZZ];
 +
 +    g2tx = pme->pmegridA.g2t[XX];
 +    g2ty = pme->pmegridA.g2t[YY];
 +    g2tz = pme->pmegridA.g2t[ZZ];
 +
 +    bThreads = (atc->nthread > 1);
 +    if (bThreads)
 +    {
 +        thread_idx = atc->thread_idx;
 +
 +        tpl   = &atc->thread_plist[thread];
 +        tpl_n = tpl->n;
 +        for(i=0; i<atc->nthread; i++)
 +        {
 +            tpl_n[i] = 0;
 +        }
 +    }
 +
 +    for(i=start; i<end; i++) {
 +        xptr   = atc->x[i];
 +        idxptr = atc->idx[i];
 +        fptr   = atc->fractx[i];
 +
 +        /* Fractional coordinates along box vectors, add 2.0 to make 100% sure we are positive for triclinic boxes */
 +        tx = nx * ( xptr[XX] * rxx + xptr[YY] * ryx + xptr[ZZ] * rzx + 2.0 );
 +        ty = ny * (                  xptr[YY] * ryy + xptr[ZZ] * rzy + 2.0 );
 +        tz = nz * (                                   xptr[ZZ] * rzz + 2.0 );
 +
 +        tix = (int)(tx);
 +        tiy = (int)(ty);
 +        tiz = (int)(tz);
 +
 +        /* Because decomposition only occurs in x and y,
 +         * we never have a fraction correction in z.
 +         */
 +        fptr[XX] = tx - tix + pme->fshx[tix];
 +        fptr[YY] = ty - tiy + pme->fshy[tiy];
 +        fptr[ZZ] = tz - tiz;
 +
 +        idxptr[XX] = pme->nnx[tix];
 +        idxptr[YY] = pme->nny[tiy];
 +        idxptr[ZZ] = pme->nnz[tiz];
 +
 +#ifdef DEBUG
 +        range_check(idxptr[XX],0,pme->pmegrid_nx);
 +        range_check(idxptr[YY],0,pme->pmegrid_ny);
 +        range_check(idxptr[ZZ],0,pme->pmegrid_nz);
 +#endif
 +
 +        if (bThreads)
 +        {
 +            thread_i = g2tx[idxptr[XX]] + g2ty[idxptr[YY]] + g2tz[idxptr[ZZ]];
 +            thread_idx[i] = thread_i;
 +            tpl_n[thread_i]++;
 +        }
 +    }
 +
 +    if (bThreads)
 +    {
 +        /* Make a list of particle indices sorted on thread */
 +
 +        /* Get the cumulative count */
 +        for(i=1; i<atc->nthread; i++)
 +        {
 +            tpl_n[i] += tpl_n[i-1];
 +        }
 +        /* The current implementation distributes particles equally
 +         * over the threads, so we could actually allocate for that
 +         * in pme_realloc_atomcomm_things.
 +         */
 +        if (tpl_n[atc->nthread-1] > tpl->nalloc)
 +        {
 +            tpl->nalloc = over_alloc_large(tpl_n[atc->nthread-1]);
 +            srenew(tpl->i,tpl->nalloc);
 +        }
 +        /* Set tpl_n to the cumulative start */
 +        for(i=atc->nthread-1; i>=1; i--)
 +        {
 +            tpl_n[i] = tpl_n[i-1];
 +        }
 +        tpl_n[0] = 0;
 +
 +        /* Fill our thread local array with indices sorted on thread */
 +        for(i=start; i<end; i++)
 +        {
 +            tpl->i[tpl_n[atc->thread_idx[i]]++] = i;
 +        }
 +        /* Now tpl_n contains the cummulative count again */
 +    }
 +}
 +
 +static void make_thread_local_ind(pme_atomcomm_t *atc,
 +                                  int thread,splinedata_t *spline)
 +{
 +    int  n,t,i,start,end;
 +    thread_plist_t *tpl;
 +
 +    /* Combine the indices made by each thread into one index */
 +
 +    n = 0;
 +    start = 0;
 +    for(t=0; t<atc->nthread; t++)
 +    {
 +        tpl = &atc->thread_plist[t];
 +        /* Copy our part (start - end) from the list of thread t */
 +        if (thread > 0)
 +        {
 +            start = tpl->n[thread-1];
 +        }
 +        end = tpl->n[thread];
 +        for(i=start; i<end; i++)
 +        {
 +            spline->ind[n++] = tpl->i[i];
 +        }
 +    }
 +
 +    spline->n = n;
 +}
 +
 +
 +static void pme_calc_pidx(int start, int end,
 +                          matrix recipbox, rvec x[],
 +                          pme_atomcomm_t *atc, int *count)
 +{
 +    int  nslab,i;
 +    int  si;
 +    real *xptr,s;
 +    real rxx,ryx,rzx,ryy,rzy;
 +    int *pd;
 +
 +    /* Calculate PME task index (pidx) for each grid index.
 +     * Here we always assign equally sized slabs to each node
 +     * for load balancing reasons (the PME grid spacing is not used).
 +     */
 +
 +    nslab = atc->nslab;
 +    pd    = atc->pd;
 +
 +    /* Reset the count */
 +    for(i=0; i<nslab; i++)
 +    {
 +        count[i] = 0;
 +    }
 +
 +    if (atc->dimind == 0)
 +    {
 +        rxx = recipbox[XX][XX];
 +        ryx = recipbox[YY][XX];
 +        rzx = recipbox[ZZ][XX];
 +        /* Calculate the node index in x-dimension */
 +        for(i=start; i<end; i++)
 +        {
 +            xptr   = x[i];
 +            /* Fractional coordinates along box vectors */
 +            s = nslab*(xptr[XX]*rxx + xptr[YY]*ryx + xptr[ZZ]*rzx);
 +            si = (int)(s + 2*nslab) % nslab;
 +            pd[i] = si;
 +            count[si]++;
 +        }
 +    }
 +    else
 +    {
 +        ryy = recipbox[YY][YY];
 +        rzy = recipbox[ZZ][YY];
 +        /* Calculate the node index in y-dimension */
 +        for(i=start; i<end; i++)
 +        {
 +            xptr   = x[i];
 +            /* Fractional coordinates along box vectors */
 +            s = nslab*(xptr[YY]*ryy + xptr[ZZ]*rzy);
 +            si = (int)(s + 2*nslab) % nslab;
 +            pd[i] = si;
 +            count[si]++;
 +        }
 +    }
 +}
 +
 +static void pme_calc_pidx_wrapper(int natoms, matrix recipbox, rvec x[],
 +                                  pme_atomcomm_t *atc)
 +{
 +    int nthread,thread,slab;
 +
 +    nthread = atc->nthread;
 +
 +#pragma omp parallel for num_threads(nthread) schedule(static)
 +    for(thread=0; thread<nthread; thread++)
 +    {
 +        pme_calc_pidx(natoms* thread   /nthread,
 +                      natoms*(thread+1)/nthread,
 +                      recipbox,x,atc,atc->count_thread[thread]);
 +    }
 +    /* Non-parallel reduction, since nslab is small */
 +
 +    for(thread=1; thread<nthread; thread++)
 +    {
 +        for(slab=0; slab<atc->nslab; slab++)
 +        {
 +            atc->count_thread[0][slab] += atc->count_thread[thread][slab];
 +        }
 +    }
 +}
 +
 +static void pme_realloc_splinedata(splinedata_t *spline, pme_atomcomm_t *atc)
 +{
 +    int i,d;
 +
 +    srenew(spline->ind,atc->nalloc);
 +    /* Initialize the index to identity so it works without threads */
 +    for(i=0; i<atc->nalloc; i++)
 +    {
 +        spline->ind[i] = i;
 +    }
 +
 +    for(d=0;d<DIM;d++)
 +    {
 +        srenew(spline->theta[d] ,atc->pme_order*atc->nalloc);
 +        srenew(spline->dtheta[d],atc->pme_order*atc->nalloc);
 +    }
 +}
 +
 +static void pme_realloc_atomcomm_things(pme_atomcomm_t *atc)
 +{
 +    int nalloc_old,i,j,nalloc_tpl;
 +
 +    /* We have to avoid a NULL pointer for atc->x to avoid
 +     * possible fatal errors in MPI routines.
 +     */
 +    if (atc->n > atc->nalloc || atc->nalloc == 0)
 +    {
 +        nalloc_old = atc->nalloc;
 +        atc->nalloc = over_alloc_dd(max(atc->n,1));
 +
 +        if (atc->nslab > 1) {
 +            srenew(atc->x,atc->nalloc);
 +            srenew(atc->q,atc->nalloc);
 +            srenew(atc->f,atc->nalloc);
 +            for(i=nalloc_old; i<atc->nalloc; i++)
 +            {
 +                clear_rvec(atc->f[i]);
 +            }
 +        }
 +        if (atc->bSpread) {
 +            srenew(atc->fractx,atc->nalloc);
 +            srenew(atc->idx   ,atc->nalloc);
 +
 +            if (atc->nthread > 1)
 +            {
 +                srenew(atc->thread_idx,atc->nalloc);
 +            }
 +
 +            for(i=0; i<atc->nthread; i++)
 +            {
 +                pme_realloc_splinedata(&atc->spline[i],atc);
 +            }
 +        }
 +    }
 +}
 +
 +static void pmeredist_pd(gmx_pme_t pme, gmx_bool forw,
 +                         int n, gmx_bool bXF, rvec *x_f, real *charge,
 +                         pme_atomcomm_t *atc)
 +/* Redistribute particle data for PME calculation */
 +/* domain decomposition by x coordinate           */
 +{
 +    int *idxa;
 +    int i, ii;
 +
 +    if(FALSE == pme->redist_init) {
 +        snew(pme->scounts,atc->nslab);
 +        snew(pme->rcounts,atc->nslab);
 +        snew(pme->sdispls,atc->nslab);
 +        snew(pme->rdispls,atc->nslab);
 +        snew(pme->sidx,atc->nslab);
 +        pme->redist_init = TRUE;
 +    }
 +    if (n > pme->redist_buf_nalloc) {
 +        pme->redist_buf_nalloc = over_alloc_dd(n);
 +        srenew(pme->redist_buf,pme->redist_buf_nalloc*DIM);
 +    }
 +
 +    pme->idxa = atc->pd;
 +
 +#ifdef GMX_MPI
 +    if (forw && bXF) {
 +        /* forward, redistribution from pp to pme */
 +
 +        /* Calculate send counts and exchange them with other nodes */
 +        for(i=0; (i<atc->nslab); i++) pme->scounts[i]=0;
 +        for(i=0; (i<n); i++) pme->scounts[pme->idxa[i]]++;
 +        MPI_Alltoall( pme->scounts, 1, MPI_INT, pme->rcounts, 1, MPI_INT, atc->mpi_comm);
 +
 +        /* Calculate send and receive displacements and index into send
 +           buffer */
 +        pme->sdispls[0]=0;
 +        pme->rdispls[0]=0;
 +        pme->sidx[0]=0;
 +        for(i=1; i<atc->nslab; i++) {
 +            pme->sdispls[i]=pme->sdispls[i-1]+pme->scounts[i-1];
 +            pme->rdispls[i]=pme->rdispls[i-1]+pme->rcounts[i-1];
 +            pme->sidx[i]=pme->sdispls[i];
 +        }
 +        /* Total # of particles to be received */
 +        atc->n = pme->rdispls[atc->nslab-1] + pme->rcounts[atc->nslab-1];
 +
 +        pme_realloc_atomcomm_things(atc);
 +
 +        /* Copy particle coordinates into send buffer and exchange*/
 +        for(i=0; (i<n); i++) {
 +            ii=DIM*pme->sidx[pme->idxa[i]];
 +            pme->sidx[pme->idxa[i]]++;
 +            pme->redist_buf[ii+XX]=x_f[i][XX];
 +            pme->redist_buf[ii+YY]=x_f[i][YY];
 +            pme->redist_buf[ii+ZZ]=x_f[i][ZZ];
 +        }
 +        MPI_Alltoallv(pme->redist_buf, pme->scounts, pme->sdispls,
 +                      pme->rvec_mpi, atc->x, pme->rcounts, pme->rdispls,
 +                      pme->rvec_mpi, atc->mpi_comm);
 +    }
 +    if (forw) {
 +        /* Copy charge into send buffer and exchange*/
 +        for(i=0; i<atc->nslab; i++) pme->sidx[i]=pme->sdispls[i];
 +        for(i=0; (i<n); i++) {
 +            ii=pme->sidx[pme->idxa[i]];
 +            pme->sidx[pme->idxa[i]]++;
 +            pme->redist_buf[ii]=charge[i];
 +        }
 +        MPI_Alltoallv(pme->redist_buf, pme->scounts, pme->sdispls, mpi_type,
 +                      atc->q, pme->rcounts, pme->rdispls, mpi_type,
 +                      atc->mpi_comm);
 +    }
 +    else { /* backward, redistribution from pme to pp */
 +        MPI_Alltoallv(atc->f, pme->rcounts, pme->rdispls, pme->rvec_mpi,
 +                      pme->redist_buf, pme->scounts, pme->sdispls,
 +                      pme->rvec_mpi, atc->mpi_comm);
 +
 +        /* Copy data from receive buffer */
 +        for(i=0; i<atc->nslab; i++)
 +            pme->sidx[i] = pme->sdispls[i];
 +        for(i=0; (i<n); i++) {
 +            ii = DIM*pme->sidx[pme->idxa[i]];
 +            x_f[i][XX] += pme->redist_buf[ii+XX];
 +            x_f[i][YY] += pme->redist_buf[ii+YY];
 +            x_f[i][ZZ] += pme->redist_buf[ii+ZZ];
 +            pme->sidx[pme->idxa[i]]++;
 +        }
 +    }
 +#endif
 +}
 +
 +static void pme_dd_sendrecv(pme_atomcomm_t *atc,
 +                            gmx_bool bBackward,int shift,
 +                            void *buf_s,int nbyte_s,
 +                            void *buf_r,int nbyte_r)
 +{
 +#ifdef GMX_MPI
 +    int dest,src;
 +    MPI_Status stat;
 +
 +    if (bBackward == FALSE) {
 +        dest = atc->node_dest[shift];
 +        src  = atc->node_src[shift];
 +    } else {
 +        dest = atc->node_src[shift];
 +        src  = atc->node_dest[shift];
 +    }
 +
 +    if (nbyte_s > 0 && nbyte_r > 0) {
 +        MPI_Sendrecv(buf_s,nbyte_s,MPI_BYTE,
 +                     dest,shift,
 +                     buf_r,nbyte_r,MPI_BYTE,
 +                     src,shift,
 +                     atc->mpi_comm,&stat);
 +    } else if (nbyte_s > 0) {
 +        MPI_Send(buf_s,nbyte_s,MPI_BYTE,
 +                 dest,shift,
 +                 atc->mpi_comm);
 +    } else if (nbyte_r > 0) {
 +        MPI_Recv(buf_r,nbyte_r,MPI_BYTE,
 +                 src,shift,
 +                 atc->mpi_comm,&stat);
 +    }
 +#endif
 +}
 +
 +static void dd_pmeredist_x_q(gmx_pme_t pme,
 +                             int n, gmx_bool bX, rvec *x, real *charge,
 +                             pme_atomcomm_t *atc)
 +{
 +    int *commnode,*buf_index;
 +    int nnodes_comm,i,nsend,local_pos,buf_pos,node,scount,rcount;
 +
 +    commnode  = atc->node_dest;
 +    buf_index = atc->buf_index;
 +
 +    nnodes_comm = min(2*atc->maxshift,atc->nslab-1);
 +
 +    nsend = 0;
 +    for(i=0; i<nnodes_comm; i++) {
 +        buf_index[commnode[i]] = nsend;
 +        nsend += atc->count[commnode[i]];
 +    }
 +    if (bX) {
 +        if (atc->count[atc->nodeid] + nsend != n)
 +            gmx_fatal(FARGS,"%d particles communicated to PME node %d are more than 2/3 times the cut-off out of the domain decomposition cell of their charge group in dimension %c.\n"
 +                      "This usually means that your system is not well equilibrated.",
 +                      n - (atc->count[atc->nodeid] + nsend),
 +                      pme->nodeid,'x'+atc->dimind);
 +
 +        if (nsend > pme->buf_nalloc) {
 +            pme->buf_nalloc = over_alloc_dd(nsend);
 +            srenew(pme->bufv,pme->buf_nalloc);
 +            srenew(pme->bufr,pme->buf_nalloc);
 +        }
 +
 +        atc->n = atc->count[atc->nodeid];
 +        for(i=0; i<nnodes_comm; i++) {
 +            scount = atc->count[commnode[i]];
 +            /* Communicate the count */
 +            if (debug)
 +                fprintf(debug,"dimind %d PME node %d send to node %d: %d\n",
 +                        atc->dimind,atc->nodeid,commnode[i],scount);
 +            pme_dd_sendrecv(atc,FALSE,i,
 +                            &scount,sizeof(int),
 +                            &atc->rcount[i],sizeof(int));
 +            atc->n += atc->rcount[i];
 +        }
 +
 +        pme_realloc_atomcomm_things(atc);
 +    }
 +
 +    local_pos = 0;
 +    for(i=0; i<n; i++) {
 +        node = atc->pd[i];
 +        if (node == atc->nodeid) {
 +            /* Copy direct to the receive buffer */
 +            if (bX) {
 +                copy_rvec(x[i],atc->x[local_pos]);
 +            }
 +            atc->q[local_pos] = charge[i];
 +            local_pos++;
 +        } else {
 +            /* Copy to the send buffer */
 +            if (bX) {
 +                copy_rvec(x[i],pme->bufv[buf_index[node]]);
 +            }
 +            pme->bufr[buf_index[node]] = charge[i];
 +            buf_index[node]++;
 +        }
 +    }
 +
 +    buf_pos = 0;
 +    for(i=0; i<nnodes_comm; i++) {
 +        scount = atc->count[commnode[i]];
 +        rcount = atc->rcount[i];
 +        if (scount > 0 || rcount > 0) {
 +            if (bX) {
 +                /* Communicate the coordinates */
 +                pme_dd_sendrecv(atc,FALSE,i,
 +                                pme->bufv[buf_pos],scount*sizeof(rvec),
 +                                atc->x[local_pos],rcount*sizeof(rvec));
 +            }
 +            /* Communicate the charges */
 +            pme_dd_sendrecv(atc,FALSE,i,
 +                            pme->bufr+buf_pos,scount*sizeof(real),
 +                            atc->q+local_pos,rcount*sizeof(real));
 +            buf_pos   += scount;
 +            local_pos += atc->rcount[i];
 +        }
 +    }
 +}
 +
 +static void dd_pmeredist_f(gmx_pme_t pme, pme_atomcomm_t *atc,
 +                           int n, rvec *f,
 +                           gmx_bool bAddF)
 +{
 +  int *commnode,*buf_index;
 +  int nnodes_comm,local_pos,buf_pos,i,scount,rcount,node;
 +
 +  commnode  = atc->node_dest;
 +  buf_index = atc->buf_index;
 +
 +  nnodes_comm = min(2*atc->maxshift,atc->nslab-1);
 +
 +  local_pos = atc->count[atc->nodeid];
 +  buf_pos = 0;
 +  for(i=0; i<nnodes_comm; i++) {
 +    scount = atc->rcount[i];
 +    rcount = atc->count[commnode[i]];
 +    if (scount > 0 || rcount > 0) {
 +      /* Communicate the forces */
 +      pme_dd_sendrecv(atc,TRUE,i,
 +                      atc->f[local_pos],scount*sizeof(rvec),
 +                      pme->bufv[buf_pos],rcount*sizeof(rvec));
 +      local_pos += scount;
 +    }
 +    buf_index[commnode[i]] = buf_pos;
 +    buf_pos   += rcount;
 +  }
 +
 +    local_pos = 0;
 +    if (bAddF)
 +    {
 +        for(i=0; i<n; i++)
 +        {
 +            node = atc->pd[i];
 +            if (node == atc->nodeid)
 +            {
 +                /* Add from the local force array */
 +                rvec_inc(f[i],atc->f[local_pos]);
 +                local_pos++;
 +            }
 +            else
 +            {
 +                /* Add from the receive buffer */
 +                rvec_inc(f[i],pme->bufv[buf_index[node]]);
 +                buf_index[node]++;
 +            }
 +        }
 +    }
 +    else
 +    {
 +        for(i=0; i<n; i++)
 +        {
 +            node = atc->pd[i];
 +            if (node == atc->nodeid)
 +            {
 +                /* Copy from the local force array */
 +                copy_rvec(atc->f[local_pos],f[i]);
 +                local_pos++;
 +            }
 +            else
 +            {
 +                /* Copy from the receive buffer */
 +                copy_rvec(pme->bufv[buf_index[node]],f[i]);
 +                buf_index[node]++;
 +            }
 +        }
 +    }
 +}
 +
 +#ifdef GMX_MPI
 +static void
 +gmx_sum_qgrid_dd(gmx_pme_t pme, real *grid, int direction)
 +{
 +    pme_overlap_t *overlap;
 +    int send_index0,send_nindex;
 +    int recv_index0,recv_nindex;
 +    MPI_Status stat;
 +    int i,j,k,ix,iy,iz,icnt;
 +    int ipulse,send_id,recv_id,datasize;
 +    real *p;
 +    real *sendptr,*recvptr;
 +
 +    /* Start with minor-rank communication. This is a bit of a pain since it is not contiguous */
 +    overlap = &pme->overlap[1];
 +
 +    for(ipulse=0;ipulse<overlap->noverlap_nodes;ipulse++)
 +    {
 +        /* Since we have already (un)wrapped the overlap in the z-dimension,
 +         * we only have to communicate 0 to nkz (not pmegrid_nz).
 +         */
 +        if (direction==GMX_SUM_QGRID_FORWARD)
 +        {
 +            send_id = overlap->send_id[ipulse];
 +            recv_id = overlap->recv_id[ipulse];
 +            send_index0   = overlap->comm_data[ipulse].send_index0;
 +            send_nindex   = overlap->comm_data[ipulse].send_nindex;
 +            recv_index0   = overlap->comm_data[ipulse].recv_index0;
 +            recv_nindex   = overlap->comm_data[ipulse].recv_nindex;
 +        }
 +        else
 +        {
 +            send_id = overlap->recv_id[ipulse];
 +            recv_id = overlap->send_id[ipulse];
 +            send_index0   = overlap->comm_data[ipulse].recv_index0;
 +            send_nindex   = overlap->comm_data[ipulse].recv_nindex;
 +            recv_index0   = overlap->comm_data[ipulse].send_index0;
 +            recv_nindex   = overlap->comm_data[ipulse].send_nindex;
 +        }
 +
 +        /* Copy data to contiguous send buffer */
 +        if (debug)
 +        {
 +            fprintf(debug,"PME send node %d %d -> %d grid start %d Communicating %d to %d\n",
 +                    pme->nodeid,overlap->nodeid,send_id,
 +                    pme->pmegrid_start_iy,
 +                    send_index0-pme->pmegrid_start_iy,
 +                    send_index0-pme->pmegrid_start_iy+send_nindex);
 +        }
 +        icnt = 0;
 +        for(i=0;i<pme->pmegrid_nx;i++)
 +        {
 +            ix = i;
 +            for(j=0;j<send_nindex;j++)
 +            {
 +                iy = j + send_index0 - pme->pmegrid_start_iy;
 +                for(k=0;k<pme->nkz;k++)
 +                {
 +                    iz = k;
 +                    overlap->sendbuf[icnt++] = grid[ix*(pme->pmegrid_ny*pme->pmegrid_nz)+iy*(pme->pmegrid_nz)+iz];
 +                }
 +            }
 +        }
 +
 +        datasize      = pme->pmegrid_nx * pme->nkz;
 +
 +        MPI_Sendrecv(overlap->sendbuf,send_nindex*datasize,GMX_MPI_REAL,
 +                     send_id,ipulse,
 +                     overlap->recvbuf,recv_nindex*datasize,GMX_MPI_REAL,
 +                     recv_id,ipulse,
 +                     overlap->mpi_comm,&stat);
 +
 +        /* Get data from contiguous recv buffer */
 +        if (debug)
 +        {
 +            fprintf(debug,"PME recv node %d %d <- %d grid start %d Communicating %d to %d\n",
 +                    pme->nodeid,overlap->nodeid,recv_id,
 +                    pme->pmegrid_start_iy,
 +                    recv_index0-pme->pmegrid_start_iy,
 +                    recv_index0-pme->pmegrid_start_iy+recv_nindex);
 +        }
 +        icnt = 0;
 +        for(i=0;i<pme->pmegrid_nx;i++)
 +        {
 +            ix = i;
 +            for(j=0;j<recv_nindex;j++)
 +            {
 +                iy = j + recv_index0 - pme->pmegrid_start_iy;
 +                for(k=0;k<pme->nkz;k++)
 +                {
 +                    iz = k;
 +                    if(direction==GMX_SUM_QGRID_FORWARD)
 +                    {
 +                        grid[ix*(pme->pmegrid_ny*pme->pmegrid_nz)+iy*(pme->pmegrid_nz)+iz] += overlap->recvbuf[icnt++];
 +                    }
 +                    else
 +                    {
 +                        grid[ix*(pme->pmegrid_ny*pme->pmegrid_nz)+iy*(pme->pmegrid_nz)+iz]  = overlap->recvbuf[icnt++];
 +                    }
 +                }
 +            }
 +        }
 +    }
 +
 +    /* Major dimension is easier, no copying required,
 +     * but we might have to sum to separate array.
 +     * Since we don't copy, we have to communicate up to pmegrid_nz,
 +     * not nkz as for the minor direction.
 +     */
 +    overlap = &pme->overlap[0];
 +
 +    for(ipulse=0;ipulse<overlap->noverlap_nodes;ipulse++)
 +    {
 +        if(direction==GMX_SUM_QGRID_FORWARD)
 +        {
 +            send_id = overlap->send_id[ipulse];
 +            recv_id = overlap->recv_id[ipulse];
 +            send_index0   = overlap->comm_data[ipulse].send_index0;
 +            send_nindex   = overlap->comm_data[ipulse].send_nindex;
 +            recv_index0   = overlap->comm_data[ipulse].recv_index0;
 +            recv_nindex   = overlap->comm_data[ipulse].recv_nindex;
 +            recvptr   = overlap->recvbuf;
 +        }
 +        else
 +        {
 +            send_id = overlap->recv_id[ipulse];
 +            recv_id = overlap->send_id[ipulse];
 +            send_index0   = overlap->comm_data[ipulse].recv_index0;
 +            send_nindex   = overlap->comm_data[ipulse].recv_nindex;
 +            recv_index0   = overlap->comm_data[ipulse].send_index0;
 +            recv_nindex   = overlap->comm_data[ipulse].send_nindex;
 +            recvptr   = grid + (recv_index0-pme->pmegrid_start_ix)*(pme->pmegrid_ny*pme->pmegrid_nz);
 +        }
 +
 +        sendptr       = grid + (send_index0-pme->pmegrid_start_ix)*(pme->pmegrid_ny*pme->pmegrid_nz);
 +        datasize      = pme->pmegrid_ny * pme->pmegrid_nz;
 +
 +        if (debug)
 +        {
 +            fprintf(debug,"PME send node %d %d -> %d grid start %d Communicating %d to %d\n",
 +                    pme->nodeid,overlap->nodeid,send_id,
 +                    pme->pmegrid_start_ix,
 +                    send_index0-pme->pmegrid_start_ix,
 +                    send_index0-pme->pmegrid_start_ix+send_nindex);
 +            fprintf(debug,"PME recv node %d %d <- %d grid start %d Communicating %d to %d\n",
 +                    pme->nodeid,overlap->nodeid,recv_id,
 +                    pme->pmegrid_start_ix,
 +                    recv_index0-pme->pmegrid_start_ix,
 +                    recv_index0-pme->pmegrid_start_ix+recv_nindex);
 +        }
 +
 +        MPI_Sendrecv(sendptr,send_nindex*datasize,GMX_MPI_REAL,
 +                     send_id,ipulse,
 +                     recvptr,recv_nindex*datasize,GMX_MPI_REAL,
 +                     recv_id,ipulse,
 +                     overlap->mpi_comm,&stat);
 +
 +        /* ADD data from contiguous recv buffer */
 +        if(direction==GMX_SUM_QGRID_FORWARD)
 +        {
 +            p = grid + (recv_index0-pme->pmegrid_start_ix)*(pme->pmegrid_ny*pme->pmegrid_nz);
 +            for(i=0;i<recv_nindex*datasize;i++)
 +            {
 +                p[i] += overlap->recvbuf[i];
 +            }
 +        }
 +    }
 +}
 +#endif
 +
 +
 +static int
 +copy_pmegrid_to_fftgrid(gmx_pme_t pme, real *pmegrid, real *fftgrid)
 +{
 +    ivec    local_fft_ndata,local_fft_offset,local_fft_size;
 +    ivec    local_pme_size;
 +    int     i,ix,iy,iz;
 +    int     pmeidx,fftidx;
 +
 +    /* Dimensions should be identical for A/B grid, so we just use A here */
 +    gmx_parallel_3dfft_real_limits(pme->pfft_setupA,
 +                                   local_fft_ndata,
 +                                   local_fft_offset,
 +                                   local_fft_size);
 +
 +    local_pme_size[0] = pme->pmegrid_nx;
 +    local_pme_size[1] = pme->pmegrid_ny;
 +    local_pme_size[2] = pme->pmegrid_nz;
 +
 +    /* The fftgrid is always 'justified' to the lower-left corner of the PME grid,
 +     the offset is identical, and the PME grid always has more data (due to overlap)
 +     */
 +    {
 +#ifdef DEBUG_PME
 +        FILE *fp,*fp2;
 +        char fn[STRLEN],format[STRLEN];
 +        real val;
 +        sprintf(fn,"pmegrid%d.pdb",pme->nodeid);
 +        fp = ffopen(fn,"w");
 +        sprintf(fn,"pmegrid%d.txt",pme->nodeid);
 +        fp2 = ffopen(fn,"w");
 +     sprintf(format,"%s%s\n",pdbformat,"%6.2f%6.2f");
 +#endif
 +
 +    for(ix=0;ix<local_fft_ndata[XX];ix++)
 +    {
 +        for(iy=0;iy<local_fft_ndata[YY];iy++)
 +        {
 +            for(iz=0;iz<local_fft_ndata[ZZ];iz++)
 +            {
 +                pmeidx = ix*(local_pme_size[YY]*local_pme_size[ZZ])+iy*(local_pme_size[ZZ])+iz;
 +                fftidx = ix*(local_fft_size[YY]*local_fft_size[ZZ])+iy*(local_fft_size[ZZ])+iz;
 +                fftgrid[fftidx] = pmegrid[pmeidx];
 +#ifdef DEBUG_PME
 +                val = 100*pmegrid[pmeidx];
 +                if (pmegrid[pmeidx] != 0)
 +                fprintf(fp,format,"ATOM",pmeidx,"CA","GLY",' ',pmeidx,' ',
 +                        5.0*ix,5.0*iy,5.0*iz,1.0,val);
 +                if (pmegrid[pmeidx] != 0)
 +                    fprintf(fp2,"%-12s  %5d  %5d  %5d  %12.5e\n",
 +                            "qgrid",
 +                            pme->pmegrid_start_ix + ix,
 +                            pme->pmegrid_start_iy + iy,
 +                            pme->pmegrid_start_iz + iz,
 +                            pmegrid[pmeidx]);
 +#endif
 +            }
 +        }
 +    }
 +#ifdef DEBUG_PME
 +    ffclose(fp);
 +    ffclose(fp2);
 +#endif
 +    }
 +    return 0;
 +}
 +
 +
 +static gmx_cycles_t omp_cyc_start()
 +{
 +    return gmx_cycles_read();
 +}
 +
 +static gmx_cycles_t omp_cyc_end(gmx_cycles_t c)
 +{
 +    return gmx_cycles_read() - c;
 +}
 +
 +
 +static int
 +copy_fftgrid_to_pmegrid(gmx_pme_t pme, const real *fftgrid, real *pmegrid,
 +                        int nthread,int thread)
 +{
 +    ivec    local_fft_ndata,local_fft_offset,local_fft_size;
 +    ivec    local_pme_size;
 +    int     ixy0,ixy1,ixy,ix,iy,iz;
 +    int     pmeidx,fftidx;
 +#ifdef PME_TIME_THREADS
 +    gmx_cycles_t c1;
 +    static double cs1=0;
 +    static int cnt=0;
 +#endif
 +
 +#ifdef PME_TIME_THREADS
 +    c1 = omp_cyc_start();
 +#endif
 +    /* Dimensions should be identical for A/B grid, so we just use A here */
 +    gmx_parallel_3dfft_real_limits(pme->pfft_setupA,
 +                                   local_fft_ndata,
 +                                   local_fft_offset,
 +                                   local_fft_size);
 +
 +    local_pme_size[0] = pme->pmegrid_nx;
 +    local_pme_size[1] = pme->pmegrid_ny;
 +    local_pme_size[2] = pme->pmegrid_nz;
 +
 +    /* The fftgrid is always 'justified' to the lower-left corner of the PME grid,
 +     the offset is identical, and the PME grid always has more data (due to overlap)
 +     */
 +    ixy0 = ((thread  )*local_fft_ndata[XX]*local_fft_ndata[YY])/nthread;
 +    ixy1 = ((thread+1)*local_fft_ndata[XX]*local_fft_ndata[YY])/nthread;
 +
 +    for(ixy=ixy0;ixy<ixy1;ixy++)
 +    {
 +        ix = ixy/local_fft_ndata[YY];
 +        iy = ixy - ix*local_fft_ndata[YY];
 +
 +        pmeidx = (ix*local_pme_size[YY] + iy)*local_pme_size[ZZ];
 +        fftidx = (ix*local_fft_size[YY] + iy)*local_fft_size[ZZ];
 +        for(iz=0;iz<local_fft_ndata[ZZ];iz++)
 +        {
 +            pmegrid[pmeidx+iz] = fftgrid[fftidx+iz];
 +        }
 +    }
 +
 +#ifdef PME_TIME_THREADS
 +    c1 = omp_cyc_end(c1);
 +    cs1 += (double)c1;
 +    cnt++;
 +    if (cnt % 20 == 0)
 +    {
 +        printf("copy %.2f\n",cs1*1e-9);
 +    }
 +#endif
 +
 +    return 0;
 +}
 +
 +
 +static void
 +wrap_periodic_pmegrid(gmx_pme_t pme, real *pmegrid)
 +{
 +    int     nx,ny,nz,pnx,pny,pnz,ny_x,overlap,ix,iy,iz;
 +
 +    nx = pme->nkx;
 +    ny = pme->nky;
 +    nz = pme->nkz;
 +
 +    pnx = pme->pmegrid_nx;
 +    pny = pme->pmegrid_ny;
 +    pnz = pme->pmegrid_nz;
 +
 +    overlap = pme->pme_order - 1;
 +
 +    /* Add periodic overlap in z */
 +    for(ix=0; ix<pme->pmegrid_nx; ix++)
 +    {
 +        for(iy=0; iy<pme->pmegrid_ny; iy++)
 +        {
 +            for(iz=0; iz<overlap; iz++)
 +            {
 +                pmegrid[(ix*pny+iy)*pnz+iz] +=
 +                    pmegrid[(ix*pny+iy)*pnz+nz+iz];
 +            }
 +        }
 +    }
 +
 +    if (pme->nnodes_minor == 1)
 +    {
 +       for(ix=0; ix<pme->pmegrid_nx; ix++)
 +       {
 +           for(iy=0; iy<overlap; iy++)
 +           {
 +               for(iz=0; iz<nz; iz++)
 +               {
 +                   pmegrid[(ix*pny+iy)*pnz+iz] +=
 +                       pmegrid[(ix*pny+ny+iy)*pnz+iz];
 +               }
 +           }
 +       }
 +    }
 +
 +    if (pme->nnodes_major == 1)
 +    {
 +        ny_x = (pme->nnodes_minor == 1 ? ny : pme->pmegrid_ny);
 +
 +        for(ix=0; ix<overlap; ix++)
 +        {
 +            for(iy=0; iy<ny_x; iy++)
 +            {
 +                for(iz=0; iz<nz; iz++)
 +                {
 +                    pmegrid[(ix*pny+iy)*pnz+iz] +=
 +                        pmegrid[((nx+ix)*pny+iy)*pnz+iz];
 +                }
 +            }
 +        }
 +    }
 +}
 +
 +
 +static void
 +unwrap_periodic_pmegrid(gmx_pme_t pme, real *pmegrid)
 +{
 +    int     nx,ny,nz,pnx,pny,pnz,ny_x,overlap,ix;
 +
 +    nx = pme->nkx;
 +    ny = pme->nky;
 +    nz = pme->nkz;
 +
 +    pnx = pme->pmegrid_nx;
 +    pny = pme->pmegrid_ny;
 +    pnz = pme->pmegrid_nz;
 +
 +    overlap = pme->pme_order - 1;
 +
 +    if (pme->nnodes_major == 1)
 +    {
 +        ny_x = (pme->nnodes_minor == 1 ? ny : pme->pmegrid_ny);
 +
 +        for(ix=0; ix<overlap; ix++)
 +        {
 +            int iy,iz;
 +
 +            for(iy=0; iy<ny_x; iy++)
 +            {
 +                for(iz=0; iz<nz; iz++)
 +                {
 +                    pmegrid[((nx+ix)*pny+iy)*pnz+iz] =
 +                        pmegrid[(ix*pny+iy)*pnz+iz];
 +                }
 +            }
 +        }
 +    }
 +
 +    if (pme->nnodes_minor == 1)
 +    {
 +#pragma omp parallel for num_threads(pme->nthread) schedule(static)
 +       for(ix=0; ix<pme->pmegrid_nx; ix++)
 +       {
 +           int iy,iz;
 +
 +           for(iy=0; iy<overlap; iy++)
 +           {
 +               for(iz=0; iz<nz; iz++)
 +               {
 +                   pmegrid[(ix*pny+ny+iy)*pnz+iz] =
 +                       pmegrid[(ix*pny+iy)*pnz+iz];
 +               }
 +           }
 +       }
 +    }
 +
 +    /* Copy periodic overlap in z */
 +#pragma omp parallel for num_threads(pme->nthread) schedule(static)
 +    for(ix=0; ix<pme->pmegrid_nx; ix++)
 +    {
 +        int iy,iz;
 +
 +        for(iy=0; iy<pme->pmegrid_ny; iy++)
 +        {
 +            for(iz=0; iz<overlap; iz++)
 +            {
 +                pmegrid[(ix*pny+iy)*pnz+nz+iz] =
 +                    pmegrid[(ix*pny+iy)*pnz+iz];
 +            }
 +        }
 +    }
 +}
 +
 +static void clear_grid(int nx,int ny,int nz,real *grid,
 +                       ivec fs,int *flag,
 +                       int fx,int fy,int fz,
 +                       int order)
 +{
 +    int nc,ncz;
 +    int fsx,fsy,fsz,gx,gy,gz,g0x,g0y,x,y,z;
 +    int flind;
 +
 +    nc  = 2 + (order - 2)/FLBS;
 +    ncz = 2 + (order - 2)/FLBSZ;
 +
 +    for(fsx=fx; fsx<fx+nc; fsx++)
 +    {
 +        for(fsy=fy; fsy<fy+nc; fsy++)
 +        {
 +            for(fsz=fz; fsz<fz+ncz; fsz++)
 +            {
 +                flind = (fsx*fs[YY] + fsy)*fs[ZZ] + fsz;
 +                if (flag[flind] == 0)
 +                {
 +                    gx = fsx*FLBS;
 +                    gy = fsy*FLBS;
 +                    gz = fsz*FLBSZ;
 +                    g0x = (gx*ny + gy)*nz + gz;
 +                    for(x=0; x<FLBS; x++)
 +                    {
 +                        g0y = g0x;
 +                        for(y=0; y<FLBS; y++)
 +                        {
 +                            for(z=0; z<FLBSZ; z++)
 +                            {
 +                                grid[g0y+z] = 0;
 +                            }
 +                            g0y += nz;
 +                        }
 +                        g0x += ny*nz;
 +                    }
 +
 +                    flag[flind] = 1;
 +                }
 +            }
 +        }
 +    }
 +}
 +
 +/* This has to be a macro to enable full compiler optimization with xlC (and probably others too) */
 +#define DO_BSPLINE(order)                            \
 +for(ithx=0; (ithx<order); ithx++)                    \
 +{                                                    \
 +    index_x = (i0+ithx)*pny*pnz;                     \
 +    valx    = qn*thx[ithx];                          \
 +                                                     \
 +    for(ithy=0; (ithy<order); ithy++)                \
 +    {                                                \
 +        valxy    = valx*thy[ithy];                   \
 +        index_xy = index_x+(j0+ithy)*pnz;            \
 +                                                     \
 +        for(ithz=0; (ithz<order); ithz++)            \
 +        {                                            \
 +            index_xyz        = index_xy+(k0+ithz);   \
 +            grid[index_xyz] += valxy*thz[ithz];      \
 +        }                                            \
 +    }                                                \
 +}
 +
 +
 +static void spread_q_bsplines_thread(pmegrid_t *pmegrid,
 +                                     pme_atomcomm_t *atc, splinedata_t *spline,
 +                                     pme_spline_work_t *work)
 +{
 +
 +    /* spread charges from home atoms to local grid */
 +    real     *grid;
 +    pme_overlap_t *ol;
 +    int      b,i,nn,n,ithx,ithy,ithz,i0,j0,k0;
 +    int *    idxptr;
 +    int      order,norder,index_x,index_xy,index_xyz;
 +    real     valx,valxy,qn;
 +    real     *thx,*thy,*thz;
 +    int      localsize, bndsize;
 +    int      pnx,pny,pnz,ndatatot;
 +    int      offx,offy,offz;
 +
 +    pnx = pmegrid->n[XX];
 +    pny = pmegrid->n[YY];
 +    pnz = pmegrid->n[ZZ];
 +
 +    offx = pmegrid->offset[XX];
 +    offy = pmegrid->offset[YY];
 +    offz = pmegrid->offset[ZZ];
 +
 +    ndatatot = pnx*pny*pnz;
 +    grid = pmegrid->grid;
 +    for(i=0;i<ndatatot;i++)
 +    {
 +        grid[i] = 0;
 +    }
 +
 +    order = pmegrid->order;
 +
 +    for(nn=0; nn<spline->n; nn++)
 +    {
 +        n  = spline->ind[nn];
 +        qn = atc->q[n];
 +
 +        if (qn != 0)
 +        {
 +            idxptr = atc->idx[n];
 +            norder = nn*order;
 +
 +            i0   = idxptr[XX] - offx;
 +            j0   = idxptr[YY] - offy;
 +            k0   = idxptr[ZZ] - offz;
 +
 +            thx = spline->theta[XX] + norder;
 +            thy = spline->theta[YY] + norder;
 +            thz = spline->theta[ZZ] + norder;
 +
 +            switch (order) {
 +            case 4:
 +#ifdef PME_SSE
 +#ifdef PME_SSE_UNALIGNED
 +#define PME_SPREAD_SSE_ORDER4
 +#else
 +#define PME_SPREAD_SSE_ALIGNED
 +#define PME_ORDER 4
 +#endif
 +#include "pme_sse_single.h"
 +#else
 +                DO_BSPLINE(4);
 +#endif
 +                break;
 +            case 5:
 +#ifdef PME_SSE
 +#define PME_SPREAD_SSE_ALIGNED
 +#define PME_ORDER 5
 +#include "pme_sse_single.h"
 +#else
 +                DO_BSPLINE(5);
 +#endif
 +                break;
 +            default:
 +                DO_BSPLINE(order);
 +                break;
 +            }
 +        }
 +    }
 +}
 +
 +static void set_grid_alignment(int *pmegrid_nz,int pme_order)
 +{
 +#ifdef PME_SSE
 +    if (pme_order == 5
 +#ifndef PME_SSE_UNALIGNED
 +        || pme_order == 4
 +#endif
 +        )
 +    {
 +        /* Round nz up to a multiple of 4 to ensure alignment */
 +        *pmegrid_nz = ((*pmegrid_nz + 3) & ~3);
 +    }
 +#endif
 +}
 +
 +static void set_gridsize_alignment(int *gridsize,int pme_order)
 +{
 +#ifdef PME_SSE
 +#ifndef PME_SSE_UNALIGNED
 +    if (pme_order == 4)
 +    {
 +        /* Add extra elements to ensured aligned operations do not go
 +         * beyond the allocated grid size.
 +         * Note that for pme_order=5, the pme grid z-size alignment
 +         * ensures that we will not go beyond the grid size.
 +         */
 +         *gridsize += 4;
 +    }
 +#endif
 +#endif
 +}
 +
 +static void pmegrid_init(pmegrid_t *grid,
 +                         int cx, int cy, int cz,
 +                         int x0, int y0, int z0,
 +                         int x1, int y1, int z1,
 +                         gmx_bool set_alignment,
 +                         int pme_order,
 +                         real *ptr)
 +{
 +    int nz,gridsize;
 +
 +    grid->ci[XX] = cx;
 +    grid->ci[YY] = cy;
 +    grid->ci[ZZ] = cz;
 +    grid->offset[XX] = x0;
 +    grid->offset[YY] = y0;
 +    grid->offset[ZZ] = z0;
 +    grid->n[XX]      = x1 - x0 + pme_order - 1;
 +    grid->n[YY]      = y1 - y0 + pme_order - 1;
 +    grid->n[ZZ]      = z1 - z0 + pme_order - 1;
 +
 +    nz = grid->n[ZZ];
 +    set_grid_alignment(&nz,pme_order);
 +    if (set_alignment)
 +    {
 +        grid->n[ZZ] = nz;
 +    }
 +    else if (nz != grid->n[ZZ])
 +    {
 +        gmx_incons("pmegrid_init call with an unaligned z size");
 +    }
 +
 +    grid->order = pme_order;
 +    if (ptr == NULL)
 +    {
 +        gridsize = grid->n[XX]*grid->n[YY]*grid->n[ZZ];
 +        set_gridsize_alignment(&gridsize,pme_order);
 +        snew_aligned(grid->grid,gridsize,16);
 +    }
 +    else
 +    {
 +        grid->grid = ptr;
 +    }
 +}
 +
 +static int div_round_up(int enumerator,int denominator)
 +{
 +    return (enumerator + denominator - 1)/denominator;
 +}
 +
 +static void make_subgrid_division(const ivec n,int ovl,int nthread,
 +                                  ivec nsub)
 +{
 +    int gsize_opt,gsize;
 +    int nsx,nsy,nsz;
 +    char *env;
 +
 +    gsize_opt = -1;
 +    for(nsx=1; nsx<=nthread; nsx++)
 +    {
 +        if (nthread % nsx == 0)
 +        {
 +            for(nsy=1; nsy<=nthread; nsy++)
 +            {
 +                if (nsx*nsy <= nthread && nthread % (nsx*nsy) == 0)
 +                {
 +                    nsz = nthread/(nsx*nsy);
 +
 +                    /* Determine the number of grid points per thread */
 +                    gsize =
 +                        (div_round_up(n[XX],nsx) + ovl)*
 +                        (div_round_up(n[YY],nsy) + ovl)*
 +                        (div_round_up(n[ZZ],nsz) + ovl);
 +
 +                    /* Minimize the number of grids points per thread
 +                     * and, secondarily, the number of cuts in minor dimensions.
 +                     */
 +                    if (gsize_opt == -1 ||
 +                        gsize < gsize_opt ||
 +                        (gsize == gsize_opt &&
 +                         (nsz < nsub[ZZ] || (nsz == nsub[ZZ] && nsy < nsub[YY]))))
 +                    {
 +                        nsub[XX] = nsx;
 +                        nsub[YY] = nsy;
 +                        nsub[ZZ] = nsz;
 +                        gsize_opt = gsize;
 +                    }
 +                }
 +            }
 +        }
 +    }
 +
 +    env = getenv("GMX_PME_THREAD_DIVISION");
 +    if (env != NULL)
 +    {
 +        sscanf(env,"%d %d %d",&nsub[XX],&nsub[YY],&nsub[ZZ]);
 +    }
 +
 +    if (nsub[XX]*nsub[YY]*nsub[ZZ] != nthread)
 +    {
 +        gmx_fatal(FARGS,"PME grid thread division (%d x %d x %d) does not match the total number of threads (%d)",nsub[XX],nsub[YY],nsub[ZZ],nthread);
 +    }
 +}
 +
 +static void pmegrids_init(pmegrids_t *grids,
 +                          int nx,int ny,int nz,int nz_base,
 +                          int pme_order,
 +                          int nthread,
 +                          int overlap_x,
 +                          int overlap_y)
 +{
 +    ivec n,n_base,g0,g1;
 +    int t,x,y,z,d,i,tfac;
 +    int max_comm_lines;
 +
 +    n[XX] = nx - (pme_order - 1);
 +    n[YY] = ny - (pme_order - 1);
 +    n[ZZ] = nz - (pme_order - 1);
 +
 +    copy_ivec(n,n_base);
 +    n_base[ZZ] = nz_base;
 +
 +    pmegrid_init(&grids->grid,0,0,0,0,0,0,n[XX],n[YY],n[ZZ],FALSE,pme_order,
 +                 NULL);
 +
 +    grids->nthread = nthread;
 +
 +    make_subgrid_division(n_base,pme_order-1,grids->nthread,grids->nc);
 +
 +    if (grids->nthread > 1)
 +    {
 +        ivec nst;
 +        int gridsize;
 +        real *grid_all;
 +
 +        for(d=0; d<DIM; d++)
 +        {
 +            nst[d] = div_round_up(n[d],grids->nc[d]) + pme_order - 1;
 +        }
 +        set_grid_alignment(&nst[ZZ],pme_order);
 +
 +        if (debug)
 +        {
 +            fprintf(debug,"pmegrid thread local division: %d x %d x %d\n",
 +                    grids->nc[XX],grids->nc[YY],grids->nc[ZZ]);
 +            fprintf(debug,"pmegrid %d %d %d max thread pmegrid %d %d %d\n",
 +                    nx,ny,nz,
 +                    nst[XX],nst[YY],nst[ZZ]);
 +        }
 +
 +        snew(grids->grid_th,grids->nthread);
 +        t = 0;
 +        gridsize = nst[XX]*nst[YY]*nst[ZZ];
 +        set_gridsize_alignment(&gridsize,pme_order);
 +        snew_aligned(grid_all,
 +                     grids->nthread*gridsize+(grids->nthread+1)*GMX_CACHE_SEP,
 +                     16);
 +
 +        for(x=0; x<grids->nc[XX]; x++)
 +        {
 +            for(y=0; y<grids->nc[YY]; y++)
 +            {
 +                for(z=0; z<grids->nc[ZZ]; z++)
 +                {
 +                    pmegrid_init(&grids->grid_th[t],
 +                                 x,y,z,
 +                                 (n[XX]*(x  ))/grids->nc[XX],
 +                                 (n[YY]*(y  ))/grids->nc[YY],
 +                                 (n[ZZ]*(z  ))/grids->nc[ZZ],
 +                                 (n[XX]*(x+1))/grids->nc[XX],
 +                                 (n[YY]*(y+1))/grids->nc[YY],
 +                                 (n[ZZ]*(z+1))/grids->nc[ZZ],
 +                                 TRUE,
 +                                 pme_order,
 +                                 grid_all+GMX_CACHE_SEP+t*(gridsize+GMX_CACHE_SEP));
 +                    t++;
 +                }
 +            }
 +        }
 +    }
 +
 +    snew(grids->g2t,DIM);
 +    tfac = 1;
 +    for(d=DIM-1; d>=0; d--)
 +    {
 +        snew(grids->g2t[d],n[d]);
 +        t = 0;
 +        for(i=0; i<n[d]; i++)
 +        {
 +            /* The second check should match the parameters
 +             * of the pmegrid_init call above.
 +             */
 +            while (t + 1 < grids->nc[d] && i >= (n[d]*(t+1))/grids->nc[d])
 +            {
 +                t++;
 +            }
 +            grids->g2t[d][i] = t*tfac;
 +        }
 +
 +        tfac *= grids->nc[d];
 +
 +        switch (d)
 +        {
 +        case XX: max_comm_lines = overlap_x;     break;
 +        case YY: max_comm_lines = overlap_y;     break;
 +        case ZZ: max_comm_lines = pme_order - 1; break;
 +        }
 +        grids->nthread_comm[d] = 0;
 +        while ((n[d]*grids->nthread_comm[d])/grids->nc[d] < max_comm_lines)
 +        {
 +            grids->nthread_comm[d]++;
 +        }
 +        if (debug != NULL)
 +        {
 +            fprintf(debug,"pmegrid thread grid communication range in %c: %d\n",
 +                    'x'+d,grids->nthread_comm[d]);
 +        }
 +        /* It should be possible to make grids->nthread_comm[d]==grids->nc[d]
 +         * work, but this is not a problematic restriction.
 +         */
 +        if (grids->nc[d] > 1 && grids->nthread_comm[d] > grids->nc[d])
 +        {
 +            gmx_fatal(FARGS,"Too many threads for PME (%d) compared to the number of grid lines, reduce the number of threads doing PME",grids->nthread);
 +        }
 +    }
 +}
 +
 +
 +static void pmegrids_destroy(pmegrids_t *grids)
 +{
 +    int t;
 +
 +    if (grids->grid.grid != NULL)
 +    {
 +        sfree(grids->grid.grid);
 +
 +        if (grids->nthread > 0)
 +        {
 +            for(t=0; t<grids->nthread; t++)
 +            {
 +                sfree(grids->grid_th[t].grid);
 +            }
 +            sfree(grids->grid_th);
 +        }
 +    }
 +}
 +
 +
 +static void realloc_work(pme_work_t *work,int nkx)
 +{
 +    if (nkx > work->nalloc)
 +    {
 +        work->nalloc = nkx;
 +        srenew(work->mhx  ,work->nalloc);
 +        srenew(work->mhy  ,work->nalloc);
 +        srenew(work->mhz  ,work->nalloc);
 +        srenew(work->m2   ,work->nalloc);
 +        /* Allocate an aligned pointer for SSE operations, including 3 extra
 +         * elements at the end since SSE operates on 4 elements at a time.
 +         */
 +        sfree_aligned(work->denom);
 +        sfree_aligned(work->tmp1);
 +        sfree_aligned(work->eterm);
 +        snew_aligned(work->denom,work->nalloc+3,16);
 +        snew_aligned(work->tmp1 ,work->nalloc+3,16);
 +        snew_aligned(work->eterm,work->nalloc+3,16);
 +        srenew(work->m2inv,work->nalloc);
 +    }
 +}
 +
 +
 +static void free_work(pme_work_t *work)
 +{
 +    sfree(work->mhx);
 +    sfree(work->mhy);
 +    sfree(work->mhz);
 +    sfree(work->m2);
 +    sfree_aligned(work->denom);
 +    sfree_aligned(work->tmp1);
 +    sfree_aligned(work->eterm);
 +    sfree(work->m2inv);
 +}
 +
 +
 +#ifdef PME_SSE
 +    /* Calculate exponentials through SSE in float precision */
 +inline static void calc_exponentials(int start, int end, real f, real *d_aligned, real *r_aligned, real *e_aligned)
 +{
 +    {
 +        const __m128 two = _mm_set_ps(2.0f,2.0f,2.0f,2.0f);
 +        __m128 f_sse;
 +        __m128 lu;
 +        __m128 tmp_d1,d_inv,tmp_r,tmp_e;
 +        int kx;
 +        f_sse = _mm_load1_ps(&f);
 +        for(kx=0; kx<end; kx+=4)
 +        {
 +            tmp_d1   = _mm_load_ps(d_aligned+kx);
 +            lu       = _mm_rcp_ps(tmp_d1);
 +            d_inv    = _mm_mul_ps(lu,_mm_sub_ps(two,_mm_mul_ps(lu,tmp_d1)));
 +            tmp_r    = _mm_load_ps(r_aligned+kx);
 +            tmp_r    = gmx_mm_exp_ps(tmp_r);
 +            tmp_e    = _mm_mul_ps(f_sse,d_inv);
 +            tmp_e    = _mm_mul_ps(tmp_e,tmp_r);
 +            _mm_store_ps(e_aligned+kx,tmp_e);
 +        }
 +    }
 +}
 +#else
 +inline static void calc_exponentials(int start, int end, real f, real *d, real *r, real *e)
 +{
 +    int kx;
 +    for(kx=start; kx<end; kx++)
 +    {
 +        d[kx] = 1.0/d[kx];
 +    }
 +    for(kx=start; kx<end; kx++)
 +    {
 +        r[kx] = exp(r[kx]);
 +    }
 +    for(kx=start; kx<end; kx++)
 +    {
 +        e[kx] = f*r[kx]*d[kx];
 +    }
 +}
 +#endif
 +
 +
 +static int solve_pme_yzx(gmx_pme_t pme,t_complex *grid,
 +                         real ewaldcoeff,real vol,
 +                         gmx_bool bEnerVir,
 +                         int nthread,int thread)
 +{
 +    /* do recip sum over local cells in grid */
 +    /* y major, z middle, x minor or continuous */
 +    t_complex *p0;
 +    int     kx,ky,kz,maxkx,maxky,maxkz;
 +    int     nx,ny,nz,iyz0,iyz1,iyz,iy,iz,kxstart,kxend;
 +    real    mx,my,mz;
 +    real    factor=M_PI*M_PI/(ewaldcoeff*ewaldcoeff);
 +    real    ets2,struct2,vfactor,ets2vf;
 +    real    d1,d2,energy=0;
 +    real    by,bz;
 +    real    virxx=0,virxy=0,virxz=0,viryy=0,viryz=0,virzz=0;
 +    real    rxx,ryx,ryy,rzx,rzy,rzz;
 +    pme_work_t *work;
 +    real    *mhx,*mhy,*mhz,*m2,*denom,*tmp1,*eterm,*m2inv;
 +    real    mhxk,mhyk,mhzk,m2k;
 +    real    corner_fac;
 +    ivec    complex_order;
 +    ivec    local_ndata,local_offset,local_size;
 +    real    elfac;
 +
 +    elfac = ONE_4PI_EPS0/pme->epsilon_r;
 +
 +    nx = pme->nkx;
 +    ny = pme->nky;
 +    nz = pme->nkz;
 +
 +    /* Dimensions should be identical for A/B grid, so we just use A here */
 +    gmx_parallel_3dfft_complex_limits(pme->pfft_setupA,
 +                                      complex_order,
 +                                      local_ndata,
 +                                      local_offset,
 +                                      local_size);
 +
 +    rxx = pme->recipbox[XX][XX];
 +    ryx = pme->recipbox[YY][XX];
 +    ryy = pme->recipbox[YY][YY];
 +    rzx = pme->recipbox[ZZ][XX];
 +    rzy = pme->recipbox[ZZ][YY];
 +    rzz = pme->recipbox[ZZ][ZZ];
 +
 +    maxkx = (nx+1)/2;
 +    maxky = (ny+1)/2;
 +    maxkz = nz/2+1;
 +
 +    work = &pme->work[thread];
 +    mhx   = work->mhx;
 +    mhy   = work->mhy;
 +    mhz   = work->mhz;
 +    m2    = work->m2;
 +    denom = work->denom;
 +    tmp1  = work->tmp1;
 +    eterm = work->eterm;
 +    m2inv = work->m2inv;
 +
 +    iyz0 = local_ndata[YY]*local_ndata[ZZ]* thread   /nthread;
 +    iyz1 = local_ndata[YY]*local_ndata[ZZ]*(thread+1)/nthread;
 +
 +    for(iyz=iyz0; iyz<iyz1; iyz++)
 +    {
 +        iy = iyz/local_ndata[ZZ];
 +        iz = iyz - iy*local_ndata[ZZ];
 +
 +        ky = iy + local_offset[YY];
 +
 +        if (ky < maxky)
 +        {
 +            my = ky;
 +        }
 +        else
 +        {
 +            my = (ky - ny);
 +        }
 +
 +        by = M_PI*vol*pme->bsp_mod[YY][ky];
 +
 +        kz = iz + local_offset[ZZ];
 +
 +        mz = kz;
 +
 +        bz = pme->bsp_mod[ZZ][kz];
 +
 +        /* 0.5 correction for corner points */
 +        corner_fac = 1;
 +        if (kz == 0 || kz == (nz+1)/2)
 +        {
 +            corner_fac = 0.5;
 +        }
 +
 +        p0 = grid + iy*local_size[ZZ]*local_size[XX] + iz*local_size[XX];
 +
 +        /* We should skip the k-space point (0,0,0) */
 +        if (local_offset[XX] > 0 || ky > 0 || kz > 0)
 +        {
 +            kxstart = local_offset[XX];
 +        }
 +        else
 +        {
 +            kxstart = local_offset[XX] + 1;
 +            p0++;
 +        }
 +        kxend = local_offset[XX] + local_ndata[XX];
 +
 +        if (bEnerVir)
 +        {
 +            /* More expensive inner loop, especially because of the storage
 +             * of the mh elements in array's.
 +             * Because x is the minor grid index, all mh elements
 +             * depend on kx for triclinic unit cells.
 +             */
 +
 +                /* Two explicit loops to avoid a conditional inside the loop */
 +            for(kx=kxstart; kx<maxkx; kx++)
 +            {
 +                mx = kx;
 +
 +                mhxk      = mx * rxx;
 +                mhyk      = mx * ryx + my * ryy;
 +                mhzk      = mx * rzx + my * rzy + mz * rzz;
 +                m2k       = mhxk*mhxk + mhyk*mhyk + mhzk*mhzk;
 +                mhx[kx]   = mhxk;
 +                mhy[kx]   = mhyk;
 +                mhz[kx]   = mhzk;
 +                m2[kx]    = m2k;
 +                denom[kx] = m2k*bz*by*pme->bsp_mod[XX][kx];
 +                tmp1[kx]  = -factor*m2k;
 +            }
 +
 +            for(kx=maxkx; kx<kxend; kx++)
 +            {
 +                mx = (kx - nx);
 +
 +                mhxk      = mx * rxx;
 +                mhyk      = mx * ryx + my * ryy;
 +                mhzk      = mx * rzx + my * rzy + mz * rzz;
 +                m2k       = mhxk*mhxk + mhyk*mhyk + mhzk*mhzk;
 +                mhx[kx]   = mhxk;
 +                mhy[kx]   = mhyk;
 +                mhz[kx]   = mhzk;
 +                m2[kx]    = m2k;
 +                denom[kx] = m2k*bz*by*pme->bsp_mod[XX][kx];
 +                tmp1[kx]  = -factor*m2k;
 +            }
 +
 +            for(kx=kxstart; kx<kxend; kx++)
 +            {
 +                m2inv[kx] = 1.0/m2[kx];
 +            }
 +
 +            calc_exponentials(kxstart,kxend,elfac,denom,tmp1,eterm);
 +
 +            for(kx=kxstart; kx<kxend; kx++,p0++)
 +            {
 +                d1      = p0->re;
 +                d2      = p0->im;
 +
 +                p0->re  = d1*eterm[kx];
 +                p0->im  = d2*eterm[kx];
 +
 +                struct2 = 2.0*(d1*d1+d2*d2);
 +
 +                tmp1[kx] = eterm[kx]*struct2;
 +            }
 +
 +            for(kx=kxstart; kx<kxend; kx++)
 +            {
 +                ets2     = corner_fac*tmp1[kx];
 +                vfactor  = (factor*m2[kx] + 1.0)*2.0*m2inv[kx];
 +                energy  += ets2;
 +
 +                ets2vf   = ets2*vfactor;
 +                virxx   += ets2vf*mhx[kx]*mhx[kx] - ets2;
 +                virxy   += ets2vf*mhx[kx]*mhy[kx];
 +                virxz   += ets2vf*mhx[kx]*mhz[kx];
 +                viryy   += ets2vf*mhy[kx]*mhy[kx] - ets2;
 +                viryz   += ets2vf*mhy[kx]*mhz[kx];
 +                virzz   += ets2vf*mhz[kx]*mhz[kx] - ets2;
 +            }
 +        }
 +        else
 +        {
 +            /* We don't need to calculate the energy and the virial.
 +             * In this case the triclinic overhead is small.
 +             */
 +
 +            /* Two explicit loops to avoid a conditional inside the loop */
 +
 +            for(kx=kxstart; kx<maxkx; kx++)
 +            {
 +                mx = kx;
 +
 +                mhxk      = mx * rxx;
 +                mhyk      = mx * ryx + my * ryy;
 +                mhzk      = mx * rzx + my * rzy + mz * rzz;
 +                m2k       = mhxk*mhxk + mhyk*mhyk + mhzk*mhzk;
 +                denom[kx] = m2k*bz*by*pme->bsp_mod[XX][kx];
 +                tmp1[kx]  = -factor*m2k;
 +            }
 +
 +            for(kx=maxkx; kx<kxend; kx++)
 +            {
 +                mx = (kx - nx);
 +
 +                mhxk      = mx * rxx;
 +                mhyk      = mx * ryx + my * ryy;
 +                mhzk      = mx * rzx + my * rzy + mz * rzz;
 +                m2k       = mhxk*mhxk + mhyk*mhyk + mhzk*mhzk;
 +                denom[kx] = m2k*bz*by*pme->bsp_mod[XX][kx];
 +                tmp1[kx]  = -factor*m2k;
 +            }
 +
 +            calc_exponentials(kxstart,kxend,elfac,denom,tmp1,eterm);
 +
 +            for(kx=kxstart; kx<kxend; kx++,p0++)
 +            {
 +                d1      = p0->re;
 +                d2      = p0->im;
 +
 +                p0->re  = d1*eterm[kx];
 +                p0->im  = d2*eterm[kx];
 +            }
 +        }
 +    }
 +
 +    if (bEnerVir)
 +    {
 +        /* Update virial with local values.
 +         * The virial is symmetric by definition.
 +         * this virial seems ok for isotropic scaling, but I'm
 +         * experiencing problems on semiisotropic membranes.
 +         * IS THAT COMMENT STILL VALID??? (DvdS, 2001/02/07).
 +         */
 +        work->vir[XX][XX] = 0.25*virxx;
 +        work->vir[YY][YY] = 0.25*viryy;
 +        work->vir[ZZ][ZZ] = 0.25*virzz;
 +        work->vir[XX][YY] = work->vir[YY][XX] = 0.25*virxy;
 +        work->vir[XX][ZZ] = work->vir[ZZ][XX] = 0.25*virxz;
 +        work->vir[YY][ZZ] = work->vir[ZZ][YY] = 0.25*viryz;
 +
 +        /* This energy should be corrected for a charged system */
 +        work->energy = 0.5*energy;
 +    }
 +
 +    /* Return the loop count */
 +    return local_ndata[YY]*local_ndata[XX];
 +}
 +
 +static void get_pme_ener_vir(const gmx_pme_t pme,int nthread,
 +                             real *mesh_energy,matrix vir)
 +{
 +    /* This function sums output over threads
 +     * and should therefore only be called after thread synchronization.
 +     */
 +    int thread;
 +
 +    *mesh_energy = pme->work[0].energy;
 +    copy_mat(pme->work[0].vir,vir);
 +
 +    for(thread=1; thread<nthread; thread++)
 +    {
 +        *mesh_energy += pme->work[thread].energy;
 +        m_add(vir,pme->work[thread].vir,vir);
 +    }
 +}
 +
 +#define DO_FSPLINE(order)                      \
 +for(ithx=0; (ithx<order); ithx++)              \
 +{                                              \
 +    index_x = (i0+ithx)*pny*pnz;               \
 +    tx      = thx[ithx];                       \
 +    dx      = dthx[ithx];                      \
 +                                               \
 +    for(ithy=0; (ithy<order); ithy++)          \
 +    {                                          \
 +        index_xy = index_x+(j0+ithy)*pnz;      \
 +        ty       = thy[ithy];                  \
 +        dy       = dthy[ithy];                 \
 +        fxy1     = fz1 = 0;                    \
 +                                               \
 +        for(ithz=0; (ithz<order); ithz++)      \
 +        {                                      \
 +            gval  = grid[index_xy+(k0+ithz)];  \
 +            fxy1 += thz[ithz]*gval;            \
 +            fz1  += dthz[ithz]*gval;           \
 +        }                                      \
 +        fx += dx*ty*fxy1;                      \
 +        fy += tx*dy*fxy1;                      \
 +        fz += tx*ty*fz1;                       \
 +    }                                          \
 +}
 +
 +
 +static void gather_f_bsplines(gmx_pme_t pme,real *grid,
 +                              gmx_bool bClearF,pme_atomcomm_t *atc,
 +                              splinedata_t *spline,
 +                              real scale)
 +{
 +    /* sum forces for local particles */
 +    int     nn,n,ithx,ithy,ithz,i0,j0,k0;
 +    int     index_x,index_xy;
 +    int     nx,ny,nz,pnx,pny,pnz;
 +    int *   idxptr;
 +    real    tx,ty,dx,dy,qn;
 +    real    fx,fy,fz,gval;
 +    real    fxy1,fz1;
 +    real    *thx,*thy,*thz,*dthx,*dthy,*dthz;
 +    int     norder;
 +    real    rxx,ryx,ryy,rzx,rzy,rzz;
 +    int     order;
 +
 +    pme_spline_work_t *work;
 +
- static void sse_mask_init(pme_spline_work_t *work,int order)
++    work = pme->spline_work;
 +
 +    order = pme->pme_order;
 +    thx   = spline->theta[XX];
 +    thy   = spline->theta[YY];
 +    thz   = spline->theta[ZZ];
 +    dthx  = spline->dtheta[XX];
 +    dthy  = spline->dtheta[YY];
 +    dthz  = spline->dtheta[ZZ];
 +    nx    = pme->nkx;
 +    ny    = pme->nky;
 +    nz    = pme->nkz;
 +    pnx   = pme->pmegrid_nx;
 +    pny   = pme->pmegrid_ny;
 +    pnz   = pme->pmegrid_nz;
 +
 +    rxx   = pme->recipbox[XX][XX];
 +    ryx   = pme->recipbox[YY][XX];
 +    ryy   = pme->recipbox[YY][YY];
 +    rzx   = pme->recipbox[ZZ][XX];
 +    rzy   = pme->recipbox[ZZ][YY];
 +    rzz   = pme->recipbox[ZZ][ZZ];
 +
 +    for(nn=0; nn<spline->n; nn++)
 +    {
 +        n  = spline->ind[nn];
 +        qn = scale*atc->q[n];
 +
 +        if (bClearF)
 +        {
 +            atc->f[n][XX] = 0;
 +            atc->f[n][YY] = 0;
 +            atc->f[n][ZZ] = 0;
 +        }
 +        if (qn != 0)
 +        {
 +            fx     = 0;
 +            fy     = 0;
 +            fz     = 0;
 +            idxptr = atc->idx[n];
 +            norder = nn*order;
 +
 +            i0   = idxptr[XX];
 +            j0   = idxptr[YY];
 +            k0   = idxptr[ZZ];
 +
 +            /* Pointer arithmetic alert, next six statements */
 +            thx  = spline->theta[XX] + norder;
 +            thy  = spline->theta[YY] + norder;
 +            thz  = spline->theta[ZZ] + norder;
 +            dthx = spline->dtheta[XX] + norder;
 +            dthy = spline->dtheta[YY] + norder;
 +            dthz = spline->dtheta[ZZ] + norder;
 +
 +            switch (order) {
 +            case 4:
 +#ifdef PME_SSE
 +#ifdef PME_SSE_UNALIGNED
 +#define PME_GATHER_F_SSE_ORDER4
 +#else
 +#define PME_GATHER_F_SSE_ALIGNED
 +#define PME_ORDER 4
 +#endif
 +#include "pme_sse_single.h"
 +#else
 +                DO_FSPLINE(4);
 +#endif
 +                break;
 +            case 5:
 +#ifdef PME_SSE
 +#define PME_GATHER_F_SSE_ALIGNED
 +#define PME_ORDER 5
 +#include "pme_sse_single.h"
 +#else
 +                DO_FSPLINE(5);
 +#endif
 +                break;
 +            default:
 +                DO_FSPLINE(order);
 +                break;
 +            }
 +
 +            atc->f[n][XX] += -qn*( fx*nx*rxx );
 +            atc->f[n][YY] += -qn*( fx*nx*ryx + fy*ny*ryy );
 +            atc->f[n][ZZ] += -qn*( fx*nx*rzx + fy*ny*rzy + fz*nz*rzz );
 +        }
 +    }
 +    /* Since the energy and not forces are interpolated
 +     * the net force might not be exactly zero.
 +     * This can be solved by also interpolating F, but
 +     * that comes at a cost.
 +     * A better hack is to remove the net force every
 +     * step, but that must be done at a higher level
 +     * since this routine doesn't see all atoms if running
 +     * in parallel. Don't know how important it is?  EL 990726
 +     */
 +}
 +
 +
 +static real gather_energy_bsplines(gmx_pme_t pme,real *grid,
 +                                   pme_atomcomm_t *atc)
 +{
 +    splinedata_t *spline;
 +    int     n,ithx,ithy,ithz,i0,j0,k0;
 +    int     index_x,index_xy;
 +    int *   idxptr;
 +    real    energy,pot,tx,ty,qn,gval;
 +    real    *thx,*thy,*thz;
 +    int     norder;
 +    int     order;
 +
 +    spline = &atc->spline[0];
 +
 +    order = pme->pme_order;
 +
 +    energy = 0;
 +    for(n=0; (n<atc->n); n++) {
 +        qn      = atc->q[n];
 +
 +        if (qn != 0) {
 +            idxptr = atc->idx[n];
 +            norder = n*order;
 +
 +            i0   = idxptr[XX];
 +            j0   = idxptr[YY];
 +            k0   = idxptr[ZZ];
 +
 +            /* Pointer arithmetic alert, next three statements */
 +            thx  = spline->theta[XX] + norder;
 +            thy  = spline->theta[YY] + norder;
 +            thz  = spline->theta[ZZ] + norder;
 +
 +            pot = 0;
 +            for(ithx=0; (ithx<order); ithx++)
 +            {
 +                index_x = (i0+ithx)*pme->pmegrid_ny*pme->pmegrid_nz;
 +                tx      = thx[ithx];
 +
 +                for(ithy=0; (ithy<order); ithy++)
 +                {
 +                    index_xy = index_x+(j0+ithy)*pme->pmegrid_nz;
 +                    ty       = thy[ithy];
 +
 +                    for(ithz=0; (ithz<order); ithz++)
 +                    {
 +                        gval  = grid[index_xy+(k0+ithz)];
 +                        pot  += tx*ty*thz[ithz]*gval;
 +                    }
 +
 +                }
 +            }
 +
 +            energy += pot*qn;
 +        }
 +    }
 +
 +    return energy;
 +}
 +
 +/* Macro to force loop unrolling by fixing order.
 + * This gives a significant performance gain.
 + */
 +#define CALC_SPLINE(order)                     \
 +{                                              \
 +    int j,k,l;                                 \
 +    real dr,div;                               \
 +    real data[PME_ORDER_MAX];                  \
 +    real ddata[PME_ORDER_MAX];                 \
 +                                               \
 +    for(j=0; (j<DIM); j++)                     \
 +    {                                          \
 +        dr  = xptr[j];                         \
 +                                               \
 +        /* dr is relative offset from lower cell limit */ \
 +        data[order-1] = 0;                     \
 +        data[1] = dr;                          \
 +        data[0] = 1 - dr;                      \
 +                                               \
 +        for(k=3; (k<order); k++)               \
 +        {                                      \
 +            div = 1.0/(k - 1.0);               \
 +            data[k-1] = div*dr*data[k-2];      \
 +            for(l=1; (l<(k-1)); l++)           \
 +            {                                  \
 +                data[k-l-1] = div*((dr+l)*data[k-l-2]+(k-l-dr)* \
 +                                   data[k-l-1]);                \
 +            }                                  \
 +            data[0] = div*(1-dr)*data[0];      \
 +        }                                      \
 +        /* differentiate */                    \
 +        ddata[0] = -data[0];                   \
 +        for(k=1; (k<order); k++)               \
 +        {                                      \
 +            ddata[k] = data[k-1] - data[k];    \
 +        }                                      \
 +                                               \
 +        div = 1.0/(order - 1);                 \
 +        data[order-1] = div*dr*data[order-2];  \
 +        for(l=1; (l<(order-1)); l++)           \
 +        {                                      \
 +            data[order-l-1] = div*((dr+l)*data[order-l-2]+    \
 +                               (order-l-dr)*data[order-l-1]); \
 +        }                                      \
 +        data[0] = div*(1 - dr)*data[0];        \
 +                                               \
 +        for(k=0; k<order; k++)                 \
 +        {                                      \
 +            theta[j][i*order+k]  = data[k];    \
 +            dtheta[j][i*order+k] = ddata[k];   \
 +        }                                      \
 +    }                                          \
 +}
 +
 +void make_bsplines(splinevec theta,splinevec dtheta,int order,
 +                   rvec fractx[],int nr,int ind[],real charge[],
 +                   gmx_bool bFreeEnergy)
 +{
 +    /* construct splines for local atoms */
 +    int  i,ii;
 +    real *xptr;
 +
 +    for(i=0; i<nr; i++)
 +    {
 +        /* With free energy we do not use the charge check.
 +         * In most cases this will be more efficient than calling make_bsplines
 +         * twice, since usually more than half the particles have charges.
 +         */
 +        ii = ind[i];
 +        if (bFreeEnergy || charge[ii] != 0.0) {
 +            xptr = fractx[ii];
 +            switch(order) {
 +            case 4:  CALC_SPLINE(4);     break;
 +            case 5:  CALC_SPLINE(5);     break;
 +            default: CALC_SPLINE(order); break;
 +            }
 +        }
 +    }
 +}
 +
 +
 +void make_dft_mod(real *mod,real *data,int ndata)
 +{
 +  int i,j;
 +  real sc,ss,arg;
 +
 +  for(i=0;i<ndata;i++) {
 +    sc=ss=0;
 +    for(j=0;j<ndata;j++) {
 +      arg=(2.0*M_PI*i*j)/ndata;
 +      sc+=data[j]*cos(arg);
 +      ss+=data[j]*sin(arg);
 +    }
 +    mod[i]=sc*sc+ss*ss;
 +  }
 +  for(i=0;i<ndata;i++)
 +    if(mod[i]<1e-7)
 +      mod[i]=(mod[i-1]+mod[i+1])*0.5;
 +}
 +
 +
 +static void make_bspline_moduli(splinevec bsp_mod,
 +                                int nx,int ny,int nz,int order)
 +{
 +  int nmax=max(nx,max(ny,nz));
 +  real *data,*ddata,*bsp_data;
 +  int i,k,l;
 +  real div;
 +
 +  snew(data,order);
 +  snew(ddata,order);
 +  snew(bsp_data,nmax);
 +
 +  data[order-1]=0;
 +  data[1]=0;
 +  data[0]=1;
 +
 +  for(k=3;k<order;k++) {
 +    div=1.0/(k-1.0);
 +    data[k-1]=0;
 +    for(l=1;l<(k-1);l++)
 +      data[k-l-1]=div*(l*data[k-l-2]+(k-l)*data[k-l-1]);
 +    data[0]=div*data[0];
 +  }
 +  /* differentiate */
 +  ddata[0]=-data[0];
 +  for(k=1;k<order;k++)
 +    ddata[k]=data[k-1]-data[k];
 +  div=1.0/(order-1);
 +  data[order-1]=0;
 +  for(l=1;l<(order-1);l++)
 +    data[order-l-1]=div*(l*data[order-l-2]+(order-l)*data[order-l-1]);
 +  data[0]=div*data[0];
 +
 +  for(i=0;i<nmax;i++)
 +    bsp_data[i]=0;
 +  for(i=1;i<=order;i++)
 +    bsp_data[i]=data[i-1];
 +
 +  make_dft_mod(bsp_mod[XX],bsp_data,nx);
 +  make_dft_mod(bsp_mod[YY],bsp_data,ny);
 +  make_dft_mod(bsp_mod[ZZ],bsp_data,nz);
 +
 +  sfree(data);
 +  sfree(ddata);
 +  sfree(bsp_data);
 +}
 +
 +
 +/* Return the P3M optimal influence function */
 +static double do_p3m_influence(double z, int order)
 +{
 +    double z2,z4;
 +
 +    z2 = z*z;
 +    z4 = z2*z2;
 +
 +    /* The formula and most constants can be found in:
 +     * Ballenegger et al., JCTC 8, 936 (2012)
 +     */
 +    switch(order)
 +    {
 +    case 2:
 +        return 1.0 - 2.0*z2/3.0;
 +        break;
 +    case 3:
 +        return 1.0 - z2 + 2.0*z4/15.0;
 +        break;
 +    case 4:
 +        return 1.0 - 4.0*z2/3.0 + 2.0*z4/5.0 + 4.0*z2*z4/315.0;
 +        break;
 +    case 5:
 +        return 1.0 - 5.0*z2/3.0 + 7.0*z4/9.0 - 17.0*z2*z4/189.0 + 2.0*z4*z4/2835.0;
 +        break;
 +    case 6:
 +        return 1.0 - 2.0*z2 + 19.0*z4/15.0 - 256.0*z2*z4/945.0 + 62.0*z4*z4/4725.0 + 4.0*z2*z4*z4/155925.0;
 +        break;
 +    case 7:
 +        return 1.0 - 7.0*z2/3.0 + 28.0*z4/15.0 - 16.0*z2*z4/27.0 + 26.0*z4*z4/405.0 - 2.0*z2*z4*z4/1485.0 + 4.0*z4*z4*z4/6081075.0;
 +    case 8:
 +        return 1.0 - 8.0*z2/3.0 + 116.0*z4/45.0 - 344.0*z2*z4/315.0 + 914.0*z4*z4/4725.0 - 248.0*z4*z4*z2/22275.0 + 21844.0*z4*z4*z4/212837625.0 - 8.0*z4*z4*z4*z2/638512875.0;
 +        break;
 +    }
 +
 +    return 0.0;
 +}
 +
 +/* Calculate the P3M B-spline moduli for one dimension */
 +static void make_p3m_bspline_moduli_dim(real *bsp_mod,int n,int order)
 +{
 +    double zarg,zai,sinzai,infl;
 +    int    maxk,i;
 +
 +    if (order > 8)
 +    {
 +        gmx_fatal(FARGS,"The current P3M code only supports orders up to 8");
 +    }
 +
 +    zarg = M_PI/n;
 +
 +    maxk = (n + 1)/2;
 +
 +    for(i=-maxk; i<0; i++)
 +    {
 +        zai    = zarg*i;
 +        sinzai = sin(zai);
 +        infl   = do_p3m_influence(sinzai,order);
 +        bsp_mod[n+i] = infl*infl*pow(sinzai/zai,-2.0*order);
 +    }
 +    bsp_mod[0] = 1.0;
 +    for(i=1; i<maxk; i++)
 +    {
 +        zai    = zarg*i;
 +        sinzai = sin(zai);
 +        infl   = do_p3m_influence(sinzai,order);
 +        bsp_mod[i] = infl*infl*pow(sinzai/zai,-2.0*order);
 +    }
 +}
 +
 +/* Calculate the P3M B-spline moduli */
 +static void make_p3m_bspline_moduli(splinevec bsp_mod,
 +                                    int nx,int ny,int nz,int order)
 +{
 +    make_p3m_bspline_moduli_dim(bsp_mod[XX],nx,order);
 +    make_p3m_bspline_moduli_dim(bsp_mod[YY],ny,order);
 +    make_p3m_bspline_moduli_dim(bsp_mod[ZZ],nz,order);
 +}
 +
 +
 +static void setup_coordinate_communication(pme_atomcomm_t *atc)
 +{
 +  int nslab,n,i;
 +  int fw,bw;
 +
 +  nslab = atc->nslab;
 +
 +  n = 0;
 +  for(i=1; i<=nslab/2; i++) {
 +    fw = (atc->nodeid + i) % nslab;
 +    bw = (atc->nodeid - i + nslab) % nslab;
 +    if (n < nslab - 1) {
 +      atc->node_dest[n] = fw;
 +      atc->node_src[n]  = bw;
 +      n++;
 +    }
 +    if (n < nslab - 1) {
 +      atc->node_dest[n] = bw;
 +      atc->node_src[n]  = fw;
 +      n++;
 +    }
 +  }
 +}
 +
 +int gmx_pme_destroy(FILE *log,gmx_pme_t *pmedata)
 +{
 +    int thread;
 +
 +    if(NULL != log)
 +    {
 +        fprintf(log,"Destroying PME data structures.\n");
 +    }
 +
 +    sfree((*pmedata)->nnx);
 +    sfree((*pmedata)->nny);
 +    sfree((*pmedata)->nnz);
 +
 +    pmegrids_destroy(&(*pmedata)->pmegridA);
 +
 +    sfree((*pmedata)->fftgridA);
 +    sfree((*pmedata)->cfftgridA);
 +    gmx_parallel_3dfft_destroy((*pmedata)->pfft_setupA);
 +
 +    if ((*pmedata)->pmegridB.grid.grid != NULL)
 +    {
 +        pmegrids_destroy(&(*pmedata)->pmegridB);
 +        sfree((*pmedata)->fftgridB);
 +        sfree((*pmedata)->cfftgridB);
 +        gmx_parallel_3dfft_destroy((*pmedata)->pfft_setupB);
 +    }
 +    for(thread=0; thread<(*pmedata)->nthread; thread++)
 +    {
 +        free_work(&(*pmedata)->work[thread]);
 +    }
 +    sfree((*pmedata)->work);
 +
 +    sfree(*pmedata);
 +    *pmedata = NULL;
 +
 +  return 0;
 +}
 +
 +static int mult_up(int n,int f)
 +{
 +    return ((n + f - 1)/f)*f;
 +}
 +
 +
 +static double pme_load_imbalance(gmx_pme_t pme)
 +{
 +    int    nma,nmi;
 +    double n1,n2,n3;
 +
 +    nma = pme->nnodes_major;
 +    nmi = pme->nnodes_minor;
 +
 +    n1 = mult_up(pme->nkx,nma)*mult_up(pme->nky,nmi)*pme->nkz;
 +    n2 = mult_up(pme->nkx,nma)*mult_up(pme->nkz,nmi)*pme->nky;
 +    n3 = mult_up(pme->nky,nma)*mult_up(pme->nkz,nmi)*pme->nkx;
 +
 +    /* pme_solve is roughly double the cost of an fft */
 +
 +    return (n1 + n2 + 3*n3)/(double)(6*pme->nkx*pme->nky*pme->nkz);
 +}
 +
 +static void init_atomcomm(gmx_pme_t pme,pme_atomcomm_t *atc, t_commrec *cr,
 +                          int dimind,gmx_bool bSpread)
 +{
 +    int nk,k,s,thread;
 +
 +    atc->dimind = dimind;
 +    atc->nslab  = 1;
 +    atc->nodeid = 0;
 +    atc->pd_nalloc = 0;
 +#ifdef GMX_MPI
 +    if (pme->nnodes > 1)
 +    {
 +        atc->mpi_comm = pme->mpi_comm_d[dimind];
 +        MPI_Comm_size(atc->mpi_comm,&atc->nslab);
 +        MPI_Comm_rank(atc->mpi_comm,&atc->nodeid);
 +    }
 +    if (debug)
 +    {
 +        fprintf(debug,"For PME atom communication in dimind %d: nslab %d rank %d\n",atc->dimind,atc->nslab,atc->nodeid);
 +    }
 +#endif
 +
 +    atc->bSpread   = bSpread;
 +    atc->pme_order = pme->pme_order;
 +
 +    if (atc->nslab > 1)
 +    {
 +        /* These three allocations are not required for particle decomp. */
 +        snew(atc->node_dest,atc->nslab);
 +        snew(atc->node_src,atc->nslab);
 +        setup_coordinate_communication(atc);
 +
 +        snew(atc->count_thread,pme->nthread);
 +        for(thread=0; thread<pme->nthread; thread++)
 +        {
 +            snew(atc->count_thread[thread],atc->nslab);
 +        }
 +        atc->count = atc->count_thread[0];
 +        snew(atc->rcount,atc->nslab);
 +        snew(atc->buf_index,atc->nslab);
 +    }
 +
 +    atc->nthread = pme->nthread;
 +    if (atc->nthread > 1)
 +    {
 +        snew(atc->thread_plist,atc->nthread);
 +    }
 +    snew(atc->spline,atc->nthread);
 +    for(thread=0; thread<atc->nthread; thread++)
 +    {
 +        if (atc->nthread > 1)
 +        {
 +            snew(atc->thread_plist[thread].n,atc->nthread+2*GMX_CACHE_SEP);
 +            atc->thread_plist[thread].n += GMX_CACHE_SEP;
 +        }
 +    }
 +}
 +
 +static void
 +init_overlap_comm(pme_overlap_t *  ol,
 +                  int              norder,
 +#ifdef GMX_MPI
 +                  MPI_Comm         comm,
 +#endif
 +                  int              nnodes,
 +                  int              nodeid,
 +                  int              ndata,
 +                  int              commplainsize)
 +{
 +    int lbnd,rbnd,maxlr,b,i;
 +    int exten;
 +    int nn,nk;
 +    pme_grid_comm_t *pgc;
 +    gmx_bool bCont;
 +    int fft_start,fft_end,send_index1,recv_index1;
 +
 +#ifdef GMX_MPI
 +    ol->mpi_comm = comm;
 +#endif
 +
 +    ol->nnodes = nnodes;
 +    ol->nodeid = nodeid;
 +
 +    /* Linear translation of the PME grid wo'nt affect reciprocal space
 +     * calculations, so to optimize we only interpolate "upwards",
 +     * which also means we only have to consider overlap in one direction.
 +     * I.e., particles on this node might also be spread to grid indices
 +     * that belong to higher nodes (modulo nnodes)
 +     */
 +
 +    snew(ol->s2g0,ol->nnodes+1);
 +    snew(ol->s2g1,ol->nnodes);
 +    if (debug) { fprintf(debug,"PME slab boundaries:"); }
 +    for(i=0; i<nnodes; i++)
 +    {
 +        /* s2g0 the local interpolation grid start.
 +         * s2g1 the local interpolation grid end.
 +         * Because grid overlap communication only goes forward,
 +         * the grid the slabs for fft's should be rounded down.
 +         */
 +        ol->s2g0[i] = ( i   *ndata + 0       )/nnodes;
 +        ol->s2g1[i] = ((i+1)*ndata + nnodes-1)/nnodes + norder - 1;
 +
 +        if (debug)
 +        {
 +            fprintf(debug,"  %3d %3d",ol->s2g0[i],ol->s2g1[i]);
 +        }
 +    }
 +    ol->s2g0[nnodes] = ndata;
 +    if (debug) { fprintf(debug,"\n"); }
 +
 +    /* Determine with how many nodes we need to communicate the grid overlap */
 +    b = 0;
 +    do
 +    {
 +        b++;
 +        bCont = FALSE;
 +        for(i=0; i<nnodes; i++)
 +        {
 +            if ((i+b <  nnodes && ol->s2g1[i] > ol->s2g0[i+b]) ||
 +                (i+b >= nnodes && ol->s2g1[i] > ol->s2g0[i+b-nnodes] + ndata))
 +            {
 +                bCont = TRUE;
 +            }
 +        }
 +    }
 +    while (bCont && b < nnodes);
 +    ol->noverlap_nodes = b - 1;
 +
 +    snew(ol->send_id,ol->noverlap_nodes);
 +    snew(ol->recv_id,ol->noverlap_nodes);
 +    for(b=0; b<ol->noverlap_nodes; b++)
 +    {
 +        ol->send_id[b] = (ol->nodeid + (b + 1)) % ol->nnodes;
 +        ol->recv_id[b] = (ol->nodeid - (b + 1) + ol->nnodes) % ol->nnodes;
 +    }
 +    snew(ol->comm_data, ol->noverlap_nodes);
 +
 +    for(b=0; b<ol->noverlap_nodes; b++)
 +    {
 +        pgc = &ol->comm_data[b];
 +        /* Send */
 +        fft_start        = ol->s2g0[ol->send_id[b]];
 +        fft_end          = ol->s2g0[ol->send_id[b]+1];
 +        if (ol->send_id[b] < nodeid)
 +        {
 +            fft_start += ndata;
 +            fft_end   += ndata;
 +        }
 +        send_index1      = ol->s2g1[nodeid];
 +        send_index1      = min(send_index1,fft_end);
 +        pgc->send_index0 = fft_start;
 +        pgc->send_nindex = max(0,send_index1 - pgc->send_index0);
 +
 +        /* We always start receiving to the first index of our slab */
 +        fft_start        = ol->s2g0[ol->nodeid];
 +        fft_end          = ol->s2g0[ol->nodeid+1];
 +        recv_index1      = ol->s2g1[ol->recv_id[b]];
 +        if (ol->recv_id[b] > nodeid)
 +        {
 +            recv_index1 -= ndata;
 +        }
 +        recv_index1      = min(recv_index1,fft_end);
 +        pgc->recv_index0 = fft_start;
 +        pgc->recv_nindex = max(0,recv_index1 - pgc->recv_index0);
 +    }
 +
 +    /* For non-divisible grid we need pme_order iso pme_order-1 */
 +    snew(ol->sendbuf,norder*commplainsize);
 +    snew(ol->recvbuf,norder*commplainsize);
 +}
 +
 +static void
 +make_gridindex5_to_localindex(int n,int local_start,int local_range,
 +                              int **global_to_local,
 +                              real **fraction_shift)
 +{
 +    int i;
 +    int * gtl;
 +    real * fsh;
 +
 +    snew(gtl,5*n);
 +    snew(fsh,5*n);
 +    for(i=0; (i<5*n); i++)
 +    {
 +        /* Determine the global to local grid index */
 +        gtl[i] = (i - local_start + n) % n;
 +        /* For coordinates that fall within the local grid the fraction
 +         * is correct, we don't need to shift it.
 +         */
 +        fsh[i] = 0;
 +        if (local_range < n)
 +        {
 +            /* Due to rounding issues i could be 1 beyond the lower or
 +             * upper boundary of the local grid. Correct the index for this.
 +             * If we shift the index, we need to shift the fraction by
 +             * the same amount in the other direction to not affect
 +             * the weights.
 +             * Note that due to this shifting the weights at the end of
 +             * the spline might change, but that will only involve values
 +             * between zero and values close to the precision of a real,
 +             * which is anyhow the accuracy of the whole mesh calculation.
 +             */
 +            /* With local_range=0 we should not change i=local_start */
 +            if (i % n != local_start)
 +            {
 +                if (gtl[i] == n-1)
 +                {
 +                    gtl[i] = 0;
 +                    fsh[i] = -1;
 +                }
 +                else if (gtl[i] == local_range)
 +                {
 +                    gtl[i] = local_range - 1;
 +                    fsh[i] = 1;
 +                }
 +            }
 +        }
 +    }
 +
 +    *global_to_local = gtl;
 +    *fraction_shift  = fsh;
 +}
 +
-     sse_mask_init(&pme->spline_work,pme->pme_order);
++static pme_spline_work_t *make_pme_spline_work(int order)
 +{
++    pme_spline_work_t *work;
++
 +#ifdef PME_SSE
 +    float  tmp[8];
 +    __m128 zero_SSE;
 +    int    of,i;
 +
++    snew_aligned(work,1,16);
++
 +    zero_SSE = _mm_setzero_ps();
 +
++    /* Generate bit masks to mask out the unused grid entries,
++     * as we only operate on order of the 8 grid entries that are
++     * load into 2 SSE float registers.
++     */
 +    for(of=0; of<8-(order-1); of++)
 +    {
 +        for(i=0; i<8; i++)
 +        {
 +            tmp[i] = (i >= of && i < of+order ? 1 : 0);
 +        }
 +        work->mask_SSE0[of] = _mm_loadu_ps(tmp);
 +        work->mask_SSE1[of] = _mm_loadu_ps(tmp+4);
 +        work->mask_SSE0[of] = _mm_cmpgt_ps(work->mask_SSE0[of],zero_SSE);
 +        work->mask_SSE1[of] = _mm_cmpgt_ps(work->mask_SSE1[of],zero_SSE);
 +    }
++#else
++    work = NULL;
 +#endif
++
++    return work;
 +}
 +
 +static void
 +gmx_pme_check_grid_restrictions(FILE *fplog,char dim,int nnodes,int *nk)
 +{
 +    int nk_new;
 +
 +    if (*nk % nnodes != 0)
 +    {
 +        nk_new = nnodes*(*nk/nnodes + 1);
 +
 +        if (2*nk_new >= 3*(*nk))
 +        {
 +            gmx_fatal(FARGS,"The PME grid size in dim %c (%d) is not divisble by the number of nodes doing PME in dim %c (%d). The grid size would have to be increased by more than 50%% to make the grid divisible. Change the total number of nodes or the number of domain decomposition cells in x or the PME grid %c dimension (and the cut-off).",
 +                      dim,*nk,dim,nnodes,dim);
 +        }
 +
 +        if (fplog != NULL)
 +        {
 +            fprintf(fplog,"\nNOTE: The PME grid size in dim %c (%d) is not divisble by the number of nodes doing PME in dim %c (%d). Increasing the PME grid size in dim %c to %d. This will increase the accuracy and will not decrease the performance significantly on this number of nodes. For optimal performance change the total number of nodes or the number of domain decomposition cells in x or the PME grid %c dimension (and the cut-off).\n\n",
 +                    dim,*nk,dim,nnodes,dim,nk_new,dim);
 +        }
 +
 +        *nk = nk_new;
 +    }
 +}
 +
 +int gmx_pme_init(gmx_pme_t *         pmedata,
 +                 t_commrec *         cr,
 +                 int                 nnodes_major,
 +                 int                 nnodes_minor,
 +                 t_inputrec *        ir,
 +                 int                 homenr,
 +                 gmx_bool            bFreeEnergy,
 +                 gmx_bool            bReproducible,
 +                 int                 nthread)
 +{
 +    gmx_pme_t pme=NULL;
 +
 +    pme_atomcomm_t *atc;
 +    ivec ndata;
 +
 +    if (debug)
 +        fprintf(debug,"Creating PME data structures.\n");
 +    snew(pme,1);
 +
 +    pme->redist_init         = FALSE;
 +    pme->sum_qgrid_tmp       = NULL;
 +    pme->sum_qgrid_dd_tmp    = NULL;
 +    pme->buf_nalloc          = 0;
 +    pme->redist_buf_nalloc   = 0;
 +
 +    pme->nnodes              = 1;
 +    pme->bPPnode             = TRUE;
 +
 +    pme->nnodes_major        = nnodes_major;
 +    pme->nnodes_minor        = nnodes_minor;
 +
 +#ifdef GMX_MPI
 +    if (nnodes_major*nnodes_minor > 1)
 +    {
 +        pme->mpi_comm = cr->mpi_comm_mygroup;
 +
 +        MPI_Comm_rank(pme->mpi_comm,&pme->nodeid);
 +        MPI_Comm_size(pme->mpi_comm,&pme->nnodes);
 +        if (pme->nnodes != nnodes_major*nnodes_minor)
 +        {
 +            gmx_incons("PME node count mismatch");
 +        }
 +    }
 +    else
 +    {
 +        pme->mpi_comm = MPI_COMM_NULL;
 +    }
 +#endif
 +
 +    if (pme->nnodes == 1)
 +    {
 +        pme->ndecompdim = 0;
 +        pme->nodeid_major = 0;
 +        pme->nodeid_minor = 0;
 +#ifdef GMX_MPI
 +        pme->mpi_comm_d[0] = pme->mpi_comm_d[1] = MPI_COMM_NULL;
 +#endif
 +    }
 +    else
 +    {
 +        if (nnodes_minor == 1)
 +        {
 +#ifdef GMX_MPI
 +            pme->mpi_comm_d[0] = pme->mpi_comm;
 +            pme->mpi_comm_d[1] = MPI_COMM_NULL;
 +#endif
 +            pme->ndecompdim = 1;
 +            pme->nodeid_major = pme->nodeid;
 +            pme->nodeid_minor = 0;
 +
 +        }
 +        else if (nnodes_major == 1)
 +        {
 +#ifdef GMX_MPI
 +            pme->mpi_comm_d[0] = MPI_COMM_NULL;
 +            pme->mpi_comm_d[1] = pme->mpi_comm;
 +#endif
 +            pme->ndecompdim = 1;
 +            pme->nodeid_major = 0;
 +            pme->nodeid_minor = pme->nodeid;
 +        }
 +        else
 +        {
 +            if (pme->nnodes % nnodes_major != 0)
 +            {
 +                gmx_incons("For 2D PME decomposition, #PME nodes must be divisible by the number of nodes in the major dimension");
 +            }
 +            pme->ndecompdim = 2;
 +
 +#ifdef GMX_MPI
 +            MPI_Comm_split(pme->mpi_comm,pme->nodeid % nnodes_minor,
 +                           pme->nodeid,&pme->mpi_comm_d[0]);  /* My communicator along major dimension */
 +            MPI_Comm_split(pme->mpi_comm,pme->nodeid/nnodes_minor,
 +                           pme->nodeid,&pme->mpi_comm_d[1]);  /* My communicator along minor dimension */
 +
 +            MPI_Comm_rank(pme->mpi_comm_d[0],&pme->nodeid_major);
 +            MPI_Comm_size(pme->mpi_comm_d[0],&pme->nnodes_major);
 +            MPI_Comm_rank(pme->mpi_comm_d[1],&pme->nodeid_minor);
 +            MPI_Comm_size(pme->mpi_comm_d[1],&pme->nnodes_minor);
 +#endif
 +        }
 +        pme->bPPnode = (cr->duty & DUTY_PP);
 +    }
 +
 +    pme->nthread = nthread;
 +
 +    if (ir->ePBC == epbcSCREW)
 +    {
 +        gmx_fatal(FARGS,"pme does not (yet) work with pbc = screw");
 +    }
 +
 +    pme->bFEP        = ((ir->efep != efepNO) && bFreeEnergy);
 +    pme->nkx         = ir->nkx;
 +    pme->nky         = ir->nky;
 +    pme->nkz         = ir->nkz;
 +    pme->bP3M        = (ir->coulombtype == eelP3M_AD || getenv("GMX_PME_P3M") != NULL);
 +    pme->pme_order   = ir->pme_order;
 +    pme->epsilon_r   = ir->epsilon_r;
 +
 +    if (pme->pme_order > PME_ORDER_MAX)
 +    {
 +        gmx_fatal(FARGS,"pme_order (%d) is larger than the maximum allowed value (%d). Modify and recompile the code if you really need such a high order.",
 +                  pme->pme_order,PME_ORDER_MAX);
 +    }
 +
 +    /* Currently pme.c supports only the fft5d FFT code.
 +     * Therefore the grid always needs to be divisible by nnodes.
 +     * When the old 1D code is also supported again, change this check.
 +     *
 +     * This check should be done before calling gmx_pme_init
 +     * and fplog should be passed iso stderr.
 +     *
 +    if (pme->ndecompdim >= 2)
 +    */
 +    if (pme->ndecompdim >= 1)
 +    {
 +        /*
 +        gmx_pme_check_grid_restrictions(pme->nodeid==0 ? stderr : NULL,
 +                                        'x',nnodes_major,&pme->nkx);
 +        gmx_pme_check_grid_restrictions(pme->nodeid==0 ? stderr : NULL,
 +                                        'y',nnodes_minor,&pme->nky);
 +        */
 +    }
 +
 +    if (pme->nkx <= pme->pme_order*(pme->nnodes_major > 1 ? 2 : 1) ||
 +        pme->nky <= pme->pme_order*(pme->nnodes_minor > 1 ? 2 : 1) ||
 +        pme->nkz <= pme->pme_order)
 +    {
 +        gmx_fatal(FARGS,"The pme grid dimensions need to be larger than pme_order (%d) and in parallel larger than 2*pme_ordern for x and/or y",pme->pme_order);
 +    }
 +
 +    if (pme->nnodes > 1) {
 +        double imbal;
 +
 +#ifdef GMX_MPI
 +        MPI_Type_contiguous(DIM, mpi_type, &(pme->rvec_mpi));
 +        MPI_Type_commit(&(pme->rvec_mpi));
 +#endif
 +
 +        /* Note that the charge spreading and force gathering, which usually
 +         * takes about the same amount of time as FFT+solve_pme,
 +         * is always fully load balanced
 +         * (unless the charge distribution is inhomogeneous).
 +         */
 +
 +        imbal = pme_load_imbalance(pme);
 +        if (imbal >= 1.2 && pme->nodeid_major == 0 && pme->nodeid_minor == 0)
 +        {
 +            fprintf(stderr,
 +                    "\n"
 +                    "NOTE: The load imbalance in PME FFT and solve is %d%%.\n"
 +                    "      For optimal PME load balancing\n"
 +                    "      PME grid_x (%d) and grid_y (%d) should be divisible by #PME_nodes_x (%d)\n"
 +                    "      and PME grid_y (%d) and grid_z (%d) should be divisible by #PME_nodes_y (%d)\n"
 +                    "\n",
 +                    (int)((imbal-1)*100 + 0.5),
 +                    pme->nkx,pme->nky,pme->nnodes_major,
 +                    pme->nky,pme->nkz,pme->nnodes_minor);
 +        }
 +    }
 +
 +    /* For non-divisible grid we need pme_order iso pme_order-1 */
 +    /* In sum_qgrid_dd x overlap is copied in place: take padding into account.
 +     * y is always copied through a buffer: we don't need padding in z,
 +     * but we do need the overlap in x because of the communication order.
 +     */
 +    init_overlap_comm(&pme->overlap[0],pme->pme_order,
 +#ifdef GMX_MPI
 +                      pme->mpi_comm_d[0],
 +#endif
 +                      pme->nnodes_major,pme->nodeid_major,
 +                      pme->nkx,
 +                      (div_round_up(pme->nky,pme->nnodes_minor)+pme->pme_order)*(pme->nkz+pme->pme_order-1));
 +
 +    init_overlap_comm(&pme->overlap[1],pme->pme_order,
 +#ifdef GMX_MPI
 +                      pme->mpi_comm_d[1],
 +#endif
 +                      pme->nnodes_minor,pme->nodeid_minor,
 +                      pme->nky,
 +                      (div_round_up(pme->nkx,pme->nnodes_major)+pme->pme_order)*pme->nkz);
 +
 +    /* Check for a limitation of the (current) sum_fftgrid_dd code */
 +    if (pme->nthread > 1 &&
 +        (pme->overlap[0].noverlap_nodes > 1 ||
 +         pme->overlap[1].noverlap_nodes > 1))
 +    {
 +        gmx_fatal(FARGS,"With threads the number of grid lines per node along x and or y should be pme_order (%d) or more or exactly pme_order-1",pme->pme_order);
 +    }
 +
 +    snew(pme->bsp_mod[XX],pme->nkx);
 +    snew(pme->bsp_mod[YY],pme->nky);
 +    snew(pme->bsp_mod[ZZ],pme->nkz);
 +
 +    /* The required size of the interpolation grid, including overlap.
 +     * The allocated size (pmegrid_n?) might be slightly larger.
 +     */
 +    pme->pmegrid_nx = pme->overlap[0].s2g1[pme->nodeid_major] -
 +                      pme->overlap[0].s2g0[pme->nodeid_major];
 +    pme->pmegrid_ny = pme->overlap[1].s2g1[pme->nodeid_minor] -
 +                      pme->overlap[1].s2g0[pme->nodeid_minor];
 +    pme->pmegrid_nz_base = pme->nkz;
 +    pme->pmegrid_nz = pme->pmegrid_nz_base + pme->pme_order - 1;
 +    set_grid_alignment(&pme->pmegrid_nz,pme->pme_order);
 +
 +    pme->pmegrid_start_ix = pme->overlap[0].s2g0[pme->nodeid_major];
 +    pme->pmegrid_start_iy = pme->overlap[1].s2g0[pme->nodeid_minor];
 +    pme->pmegrid_start_iz = 0;
 +
 +    make_gridindex5_to_localindex(pme->nkx,
 +                                  pme->pmegrid_start_ix,
 +                                  pme->pmegrid_nx - (pme->pme_order-1),
 +                                  &pme->nnx,&pme->fshx);
 +    make_gridindex5_to_localindex(pme->nky,
 +                                  pme->pmegrid_start_iy,
 +                                  pme->pmegrid_ny - (pme->pme_order-1),
 +                                  &pme->nny,&pme->fshy);
 +    make_gridindex5_to_localindex(pme->nkz,
 +                                  pme->pmegrid_start_iz,
 +                                  pme->pmegrid_nz_base,
 +                                  &pme->nnz,&pme->fshz);
 +
 +    pmegrids_init(&pme->pmegridA,
 +                  pme->pmegrid_nx,pme->pmegrid_ny,pme->pmegrid_nz,
 +                  pme->pmegrid_nz_base,
 +                  pme->pme_order,
 +                  pme->nthread,
 +                  pme->overlap[0].s2g1[pme->nodeid_major]-pme->overlap[0].s2g0[pme->nodeid_major+1],
 +                  pme->overlap[1].s2g1[pme->nodeid_minor]-pme->overlap[1].s2g0[pme->nodeid_minor+1]);
 +
-             spread_q_bsplines_thread(grid,atc,spline,&pme->spline_work);
++    pme->spline_work = make_pme_spline_work(pme->pme_order);
 +
 +    ndata[0] = pme->nkx;
 +    ndata[1] = pme->nky;
 +    ndata[2] = pme->nkz;
 +
 +    /* This routine will allocate the grid data to fit the FFTs */
 +    gmx_parallel_3dfft_init(&pme->pfft_setupA,ndata,
 +                            &pme->fftgridA,&pme->cfftgridA,
 +                            pme->mpi_comm_d,
 +                            pme->overlap[0].s2g0,pme->overlap[1].s2g0,
 +                            bReproducible,pme->nthread);
 +
 +    if (bFreeEnergy)
 +    {
 +        pmegrids_init(&pme->pmegridB,
 +                      pme->pmegrid_nx,pme->pmegrid_ny,pme->pmegrid_nz,
 +                      pme->pmegrid_nz_base,
 +                      pme->pme_order,
 +                      pme->nthread,
 +                      pme->nkx % pme->nnodes_major != 0,
 +                      pme->nky % pme->nnodes_minor != 0);
 +
 +        gmx_parallel_3dfft_init(&pme->pfft_setupB,ndata,
 +                                &pme->fftgridB,&pme->cfftgridB,
 +                                pme->mpi_comm_d,
 +                                pme->overlap[0].s2g0,pme->overlap[1].s2g0,
 +                                bReproducible,pme->nthread);
 +    }
 +    else
 +    {
 +        pme->pmegridB.grid.grid = NULL;
 +        pme->fftgridB           = NULL;
 +        pme->cfftgridB          = NULL;
 +    }
 +
 +    if (!pme->bP3M)
 +    {
 +        /* Use plain SPME B-spline interpolation */
 +        make_bspline_moduli(pme->bsp_mod,pme->nkx,pme->nky,pme->nkz,pme->pme_order);
 +    }
 +    else
 +    {
 +        /* Use the P3M grid-optimized influence function */
 +        make_p3m_bspline_moduli(pme->bsp_mod,pme->nkx,pme->nky,pme->nkz,pme->pme_order);
 +    }
 +
 +    /* Use atc[0] for spreading */
 +    init_atomcomm(pme,&pme->atc[0],cr,nnodes_major > 1 ? 0 : 1,TRUE);
 +    if (pme->ndecompdim >= 2)
 +    {
 +        init_atomcomm(pme,&pme->atc[1],cr,1,FALSE);
 +    }
 +
 +    if (pme->nnodes == 1) {
 +        pme->atc[0].n = homenr;
 +        pme_realloc_atomcomm_things(&pme->atc[0]);
 +    }
 +
 +    {
 +        int thread;
 +
 +        /* Use fft5d, order after FFT is y major, z, x minor */
 +
 +        snew(pme->work,pme->nthread);
 +        for(thread=0; thread<pme->nthread; thread++)
 +        {
 +            realloc_work(&pme->work[thread],pme->nkx);
 +        }
 +    }
 +
 +    *pmedata = pme;
 +
 +    return 0;
 +}
 +
 +
 +static void copy_local_grid(gmx_pme_t pme,
 +                            pmegrids_t *pmegrids,int thread,real *fftgrid)
 +{
 +    ivec local_fft_ndata,local_fft_offset,local_fft_size;
 +    int  fft_my,fft_mz;
 +    int  nsx,nsy,nsz;
 +    ivec nf;
 +    int  offx,offy,offz,x,y,z,i0,i0t;
 +    int  d;
 +    pmegrid_t *pmegrid;
 +    real *grid_th;
 +
 +    gmx_parallel_3dfft_real_limits(pme->pfft_setupA,
 +                                   local_fft_ndata,
 +                                   local_fft_offset,
 +                                   local_fft_size);
 +    fft_my = local_fft_size[YY];
 +    fft_mz = local_fft_size[ZZ];
 +
 +    pmegrid = &pmegrids->grid_th[thread];
 +
 +    nsx = pmegrid->n[XX];
 +    nsy = pmegrid->n[YY];
 +    nsz = pmegrid->n[ZZ];
 +
 +    for(d=0; d<DIM; d++)
 +    {
 +        nf[d] = min(pmegrid->n[d] - (pmegrid->order - 1),
 +                    local_fft_ndata[d] - pmegrid->offset[d]);
 +    }
 +
 +    offx = pmegrid->offset[XX];
 +    offy = pmegrid->offset[YY];
 +    offz = pmegrid->offset[ZZ];
 +
 +    /* Directly copy the non-overlapping parts of the local grids.
 +     * This also initializes the full grid.
 +     */
 +    grid_th = pmegrid->grid;
 +    for(x=0; x<nf[XX]; x++)
 +    {
 +        for(y=0; y<nf[YY]; y++)
 +        {
 +            i0  = ((offx + x)*fft_my + (offy + y))*fft_mz + offz;
 +            i0t = (x*nsy + y)*nsz;
 +            for(z=0; z<nf[ZZ]; z++)
 +            {
 +                fftgrid[i0+z] = grid_th[i0t+z];
 +            }
 +        }
 +    }
 +}
 +
 +static void print_sendbuf(gmx_pme_t pme,real *sendbuf)
 +{
 +    ivec local_fft_ndata,local_fft_offset,local_fft_size;
 +    pme_overlap_t *overlap;
 +    int datasize,nind;
 +    int i,x,y,z,n;
 +
 +    gmx_parallel_3dfft_real_limits(pme->pfft_setupA,
 +                                   local_fft_ndata,
 +                                   local_fft_offset,
 +                                   local_fft_size);
 +    /* Major dimension */
 +    overlap = &pme->overlap[0];
 +
 +    nind   = overlap->comm_data[0].send_nindex;
 +
 +    for(y=0; y<local_fft_ndata[YY]; y++) {
 +         printf(" %2d",y);
 +    }
 +    printf("\n");
 +
 +    i = 0;
 +    for(x=0; x<nind; x++) {
 +        for(y=0; y<local_fft_ndata[YY]; y++) {
 +            n = 0;
 +            for(z=0; z<local_fft_ndata[ZZ]; z++) {
 +                if (sendbuf[i] != 0) n++;
 +                i++;
 +            }
 +            printf(" %2d",n);
 +        }
 +        printf("\n");
 +    }
 +}
 +
 +static void
 +reduce_threadgrid_overlap(gmx_pme_t pme,
 +                          const pmegrids_t *pmegrids,int thread,
 +                          real *fftgrid,real *commbuf_x,real *commbuf_y)
 +{
 +    ivec local_fft_ndata,local_fft_offset,local_fft_size;
 +    int  fft_nx,fft_ny,fft_nz;
 +    int  fft_my,fft_mz;
 +    int  buf_my=-1;
 +    int  nsx,nsy,nsz;
 +    ivec ne;
 +    int  offx,offy,offz,x,y,z,i0,i0t;
 +    int  sx,sy,sz,fx,fy,fz,tx1,ty1,tz1,ox,oy,oz;
 +    gmx_bool bClearBufX,bClearBufY,bClearBufXY,bClearBuf;
 +    gmx_bool bCommX,bCommY;
 +    int  d;
 +    int  thread_f;
 +    const pmegrid_t *pmegrid,*pmegrid_g,*pmegrid_f;
 +    const real *grid_th;
 +    real *commbuf=NULL;
 +
 +    gmx_parallel_3dfft_real_limits(pme->pfft_setupA,
 +                                   local_fft_ndata,
 +                                   local_fft_offset,
 +                                   local_fft_size);
 +    fft_nx = local_fft_ndata[XX];
 +    fft_ny = local_fft_ndata[YY];
 +    fft_nz = local_fft_ndata[ZZ];
 +
 +    fft_my = local_fft_size[YY];
 +    fft_mz = local_fft_size[ZZ];
 +
 +    /* This routine is called when all thread have finished spreading.
 +     * Here each thread sums grid contributions calculated by other threads
 +     * to the thread local grid volume.
 +     * To minimize the number of grid copying operations,
 +     * this routines sums immediately from the pmegrid to the fftgrid.
 +     */
 +
 +    /* Determine which part of the full node grid we should operate on,
 +     * this is our thread local part of the full grid.
 +     */
 +    pmegrid = &pmegrids->grid_th[thread];
 +
 +    for(d=0; d<DIM; d++)
 +    {
 +        ne[d] = min(pmegrid->offset[d]+pmegrid->n[d]-(pmegrid->order-1),
 +                    local_fft_ndata[d]);
 +    }
 +
 +    offx = pmegrid->offset[XX];
 +    offy = pmegrid->offset[YY];
 +    offz = pmegrid->offset[ZZ];
 +
 +
 +    bClearBufX  = TRUE;
 +    bClearBufY  = TRUE;
 +    bClearBufXY = TRUE;
 +
 +    /* Now loop over all the thread data blocks that contribute
 +     * to the grid region we (our thread) are operating on.
 +     */
 +    /* Note that ffy_nx/y is equal to the number of grid points
 +     * between the first point of our node grid and the one of the next node.
 +     */
 +    for(sx=0; sx>=-pmegrids->nthread_comm[XX]; sx--)
 +    {
 +        fx = pmegrid->ci[XX] + sx;
 +        ox = 0;
 +        bCommX = FALSE;
 +        if (fx < 0) {
 +            fx += pmegrids->nc[XX];
 +            ox -= fft_nx;
 +            bCommX = (pme->nnodes_major > 1);
 +        }
 +        pmegrid_g = &pmegrids->grid_th[fx*pmegrids->nc[YY]*pmegrids->nc[ZZ]];
 +        ox += pmegrid_g->offset[XX];
 +        if (!bCommX)
 +        {
 +            tx1 = min(ox + pmegrid_g->n[XX],ne[XX]);
 +        }
 +        else
 +        {
 +            tx1 = min(ox + pmegrid_g->n[XX],pme->pme_order);
 +        }
 +
 +        for(sy=0; sy>=-pmegrids->nthread_comm[YY]; sy--)
 +        {
 +            fy = pmegrid->ci[YY] + sy;
 +            oy = 0;
 +            bCommY = FALSE;
 +            if (fy < 0) {
 +                fy += pmegrids->nc[YY];
 +                oy -= fft_ny;
 +                bCommY = (pme->nnodes_minor > 1);
 +            }
 +            pmegrid_g = &pmegrids->grid_th[fy*pmegrids->nc[ZZ]];
 +            oy += pmegrid_g->offset[YY];
 +            if (!bCommY)
 +            {
 +                ty1 = min(oy + pmegrid_g->n[YY],ne[YY]);
 +            }
 +            else
 +            {
 +                ty1 = min(oy + pmegrid_g->n[YY],pme->pme_order);
 +            }
 +
 +            for(sz=0; sz>=-pmegrids->nthread_comm[ZZ]; sz--)
 +            {
 +                fz = pmegrid->ci[ZZ] + sz;
 +                oz = 0;
 +                if (fz < 0)
 +                {
 +                    fz += pmegrids->nc[ZZ];
 +                    oz -= fft_nz;
 +                }
 +                pmegrid_g = &pmegrids->grid_th[fz];
 +                oz += pmegrid_g->offset[ZZ];
 +                tz1 = min(oz + pmegrid_g->n[ZZ],ne[ZZ]);
 +
 +                if (sx == 0 && sy == 0 && sz == 0)
 +                {
 +                    /* We have already added our local contribution
 +                     * before calling this routine, so skip it here.
 +                     */
 +                    continue;
 +                }
 +
 +                thread_f = (fx*pmegrids->nc[YY] + fy)*pmegrids->nc[ZZ] + fz;
 +
 +                pmegrid_f = &pmegrids->grid_th[thread_f];
 +
 +                grid_th = pmegrid_f->grid;
 +
 +                nsx = pmegrid_f->n[XX];
 +                nsy = pmegrid_f->n[YY];
 +                nsz = pmegrid_f->n[ZZ];
 +
 +#ifdef DEBUG_PME_REDUCE
 +                printf("n%d t%d add %d  %2d %2d %2d  %2d %2d %2d  %2d-%2d %2d-%2d, %2d-%2d %2d-%2d, %2d-%2d %2d-%2d\n",
 +                       pme->nodeid,thread,thread_f,
 +                       pme->pmegrid_start_ix,
 +                       pme->pmegrid_start_iy,
 +                       pme->pmegrid_start_iz,
 +                       sx,sy,sz,
 +                       offx-ox,tx1-ox,offx,tx1,
 +                       offy-oy,ty1-oy,offy,ty1,
 +                       offz-oz,tz1-oz,offz,tz1);
 +#endif
 +
 +                if (!(bCommX || bCommY))
 +                {
 +                    /* Copy from the thread local grid to the node grid */
 +                    for(x=offx; x<tx1; x++)
 +                    {
 +                        for(y=offy; y<ty1; y++)
 +                        {
 +                            i0  = (x*fft_my + y)*fft_mz;
 +                            i0t = ((x - ox)*nsy + (y - oy))*nsz - oz;
 +                            for(z=offz; z<tz1; z++)
 +                            {
 +                                fftgrid[i0+z] += grid_th[i0t+z];
 +                            }
 +                        }
 +                    }
 +                }
 +                else
 +                {
 +                    /* The order of this conditional decides
 +                     * where the corner volume gets stored with x+y decomp.
 +                     */
 +                    if (bCommY)
 +                    {
 +                        commbuf = commbuf_y;
 +                        buf_my  = ty1 - offy;
 +                        if (bCommX)
 +                        {
 +                            /* We index commbuf modulo the local grid size */
 +                            commbuf += buf_my*fft_nx*fft_nz;
 +
 +                            bClearBuf  = bClearBufXY;
 +                            bClearBufXY = FALSE;
 +                        }
 +                        else
 +                        {
 +                            bClearBuf  = bClearBufY;
 +                            bClearBufY = FALSE;
 +                        }
 +                    }
 +                    else
 +                    {
 +                        commbuf = commbuf_x;
 +                        buf_my  = fft_ny;
 +                        bClearBuf  = bClearBufX;
 +                        bClearBufX = FALSE;
 +                    }
 +
 +                    /* Copy to the communication buffer */
 +                    for(x=offx; x<tx1; x++)
 +                    {
 +                        for(y=offy; y<ty1; y++)
 +                        {
 +                            i0  = (x*buf_my + y)*fft_nz;
 +                            i0t = ((x - ox)*nsy + (y - oy))*nsz - oz;
 +
 +                            if (bClearBuf)
 +                            {
 +                                /* First access of commbuf, initialize it */
 +                                for(z=offz; z<tz1; z++)
 +                                {
 +                                    commbuf[i0+z]  = grid_th[i0t+z];
 +                                }
 +                            }
 +                            else
 +                            {
 +                                for(z=offz; z<tz1; z++)
 +                                {
 +                                    commbuf[i0+z] += grid_th[i0t+z];
 +                                }
 +                            }
 +                        }
 +                    }
 +                }
 +            }
 +        }
 +    }
 +}
 +
 +
 +static void sum_fftgrid_dd(gmx_pme_t pme,real *fftgrid)
 +{
 +    ivec local_fft_ndata,local_fft_offset,local_fft_size;
 +    pme_overlap_t *overlap;
 +    int  send_nindex;
 +    int  recv_index0,recv_nindex;
 +#ifdef GMX_MPI
 +    MPI_Status stat;
 +#endif
 +    int  ipulse,send_id,recv_id,datasize,gridsize,size_yx;
 +    real *sendptr,*recvptr;
 +    int  x,y,z,indg,indb;
 +
 +    /* Note that this routine is only used for forward communication.
 +     * Since the force gathering, unlike the charge spreading,
 +     * can be trivially parallelized over the particles,
 +     * the backwards process is much simpler and can use the "old"
 +     * communication setup.
 +     */
 +
 +    gmx_parallel_3dfft_real_limits(pme->pfft_setupA,
 +                                   local_fft_ndata,
 +                                   local_fft_offset,
 +                                   local_fft_size);
 +
 +    /* Currently supports only a single communication pulse */
 +
 +/* for(ipulse=0;ipulse<overlap->noverlap_nodes;ipulse++) */
 +    if (pme->nnodes_minor > 1)
 +    {
 +        /* Major dimension */
 +        overlap = &pme->overlap[1];
 +
 +        if (pme->nnodes_major > 1)
 +        {
 +             size_yx = pme->overlap[0].comm_data[0].send_nindex;
 +        }
 +        else
 +        {
 +            size_yx = 0;
 +        }
 +        datasize = (local_fft_ndata[XX]+size_yx)*local_fft_ndata[ZZ];
 +
 +        ipulse = 0;
 +
 +        send_id = overlap->send_id[ipulse];
 +        recv_id = overlap->recv_id[ipulse];
 +        send_nindex   = overlap->comm_data[ipulse].send_nindex;
 +        /* recv_index0   = overlap->comm_data[ipulse].recv_index0; */
 +        recv_index0 = 0;
 +        recv_nindex   = overlap->comm_data[ipulse].recv_nindex;
 +
 +        sendptr = overlap->sendbuf;
 +        recvptr = overlap->recvbuf;
 +
 +        /*
 +        printf("node %d comm %2d x %2d x %2d\n",pme->nodeid,
 +               local_fft_ndata[XX]+size_yx,send_nindex,local_fft_ndata[ZZ]);
 +        printf("node %d send %f, %f\n",pme->nodeid,
 +               sendptr[0],sendptr[send_nindex*datasize-1]);
 +        */
 +
 +#ifdef GMX_MPI
 +        MPI_Sendrecv(sendptr,send_nindex*datasize,GMX_MPI_REAL,
 +                     send_id,ipulse,
 +                     recvptr,recv_nindex*datasize,GMX_MPI_REAL,
 +                     recv_id,ipulse,
 +                     overlap->mpi_comm,&stat);
 +#endif
 +
 +        for(x=0; x<local_fft_ndata[XX]; x++)
 +        {
 +            for(y=0; y<recv_nindex; y++)
 +            {
 +                indg = (x*local_fft_size[YY] + y)*local_fft_size[ZZ];
 +                indb = (x*recv_nindex        + y)*local_fft_ndata[ZZ];
 +                for(z=0; z<local_fft_ndata[ZZ]; z++)
 +                {
 +                    fftgrid[indg+z] += recvptr[indb+z];
 +                }
 +            }
 +        }
 +        if (pme->nnodes_major > 1)
 +        {
 +            sendptr = pme->overlap[0].sendbuf;
 +            for(x=0; x<size_yx; x++)
 +            {
 +                for(y=0; y<recv_nindex; y++)
 +                {
 +                    indg = (x*local_fft_ndata[YY] + y)*local_fft_ndata[ZZ];
 +                    indb = ((local_fft_ndata[XX] + x)*recv_nindex +y)*local_fft_ndata[ZZ];
 +                    for(z=0; z<local_fft_ndata[ZZ]; z++)
 +                    {
 +                        sendptr[indg+z] += recvptr[indb+z];
 +                    }
 +                }
 +            }
 +        }
 +    }
 +
 +    /* for(ipulse=0;ipulse<overlap->noverlap_nodes;ipulse++) */
 +    if (pme->nnodes_major > 1)
 +    {
 +        /* Major dimension */
 +        overlap = &pme->overlap[0];
 +
 +        datasize = local_fft_ndata[YY]*local_fft_ndata[ZZ];
 +        gridsize = local_fft_size[YY] *local_fft_size[ZZ];
 +
 +        ipulse = 0;
 +
 +        send_id = overlap->send_id[ipulse];
 +        recv_id = overlap->recv_id[ipulse];
 +        send_nindex   = overlap->comm_data[ipulse].send_nindex;
 +        /* recv_index0   = overlap->comm_data[ipulse].recv_index0; */
 +        recv_index0 = 0;
 +        recv_nindex   = overlap->comm_data[ipulse].recv_nindex;
 +
 +        sendptr = overlap->sendbuf;
 +        recvptr = overlap->recvbuf;
 +
 +        if (debug != NULL)
 +        {
 +            fprintf(debug,"PME fftgrid comm %2d x %2d x %2d\n",
 +                   send_nindex,local_fft_ndata[YY],local_fft_ndata[ZZ]);
 +        }
 +
 +#ifdef GMX_MPI
 +        MPI_Sendrecv(sendptr,send_nindex*datasize,GMX_MPI_REAL,
 +                     send_id,ipulse,
 +                     recvptr,recv_nindex*datasize,GMX_MPI_REAL,
 +                     recv_id,ipulse,
 +                     overlap->mpi_comm,&stat);
 +#endif
 +
 +        for(x=0; x<recv_nindex; x++)
 +        {
 +            for(y=0; y<local_fft_ndata[YY]; y++)
 +            {
 +                indg = (x*local_fft_size[YY]  + y)*local_fft_size[ZZ];
 +                indb = (x*local_fft_ndata[YY] + y)*local_fft_ndata[ZZ];
 +                for(z=0; z<local_fft_ndata[ZZ]; z++)
 +                {
 +                    fftgrid[indg+z] += recvptr[indb+z];
 +                }
 +            }
 +        }
 +    }
 +}
 +
 +
 +static void spread_on_grid(gmx_pme_t pme,
 +                           pme_atomcomm_t *atc,pmegrids_t *grids,
 +                           gmx_bool bCalcSplines,gmx_bool bSpread,
 +                           real *fftgrid)
 +{
 +    int nthread,thread;
 +#ifdef PME_TIME_THREADS
 +    gmx_cycles_t c1,c2,c3,ct1a,ct1b,ct1c;
 +    static double cs1=0,cs2=0,cs3=0;
 +    static double cs1a[6]={0,0,0,0,0,0};
 +    static int cnt=0;
 +#endif
 +
 +    nthread = pme->nthread;
 +    assert(nthread>0);
 +
 +#ifdef PME_TIME_THREADS
 +    c1 = omp_cyc_start();
 +#endif
 +    if (bCalcSplines)
 +    {
 +#pragma omp parallel for num_threads(nthread) schedule(static)
 +        for(thread=0; thread<nthread; thread++)
 +        {
 +            int start,end;
 +
 +            start = atc->n* thread   /nthread;
 +            end   = atc->n*(thread+1)/nthread;
 +
 +            /* Compute fftgrid index for all atoms,
 +             * with help of some extra variables.
 +             */
 +            calc_interpolation_idx(pme,atc,start,end,thread);
 +        }
 +    }
 +#ifdef PME_TIME_THREADS
 +    c1 = omp_cyc_end(c1);
 +    cs1 += (double)c1;
 +#endif
 +
 +#ifdef PME_TIME_THREADS
 +    c2 = omp_cyc_start();
 +#endif
 +#pragma omp parallel for num_threads(nthread) schedule(static)
 +    for(thread=0; thread<nthread; thread++)
 +    {
 +        splinedata_t *spline;
 +        pmegrid_t *grid;
 +
 +        /* make local bsplines  */
 +        if (grids == NULL || grids->nthread == 1)
 +        {
 +            spline = &atc->spline[0];
 +
 +            spline->n = atc->n;
 +
 +            grid = &grids->grid;
 +        }
 +        else
 +        {
 +            spline = &atc->spline[thread];
 +
 +            make_thread_local_ind(atc,thread,spline);
 +
 +            grid = &grids->grid_th[thread];
 +        }
 +
 +        if (bCalcSplines)
 +        {
 +            make_bsplines(spline->theta,spline->dtheta,pme->pme_order,
 +                          atc->fractx,spline->n,spline->ind,atc->q,pme->bFEP);
 +        }
 +
 +        if (bSpread)
 +        {
 +            /* put local atoms on grid. */
 +#ifdef PME_TIME_SPREAD
 +            ct1a = omp_cyc_start();
 +#endif
++            spread_q_bsplines_thread(grid,atc,spline,pme->spline_work);
 +
 +            if (grids->nthread > 1)
 +            {
 +                copy_local_grid(pme,grids,thread,fftgrid);
 +            }
 +#ifdef PME_TIME_SPREAD
 +            ct1a = omp_cyc_end(ct1a);
 +            cs1a[thread] += (double)ct1a;
 +#endif
 +        }
 +    }
 +#ifdef PME_TIME_THREADS
 +    c2 = omp_cyc_end(c2);
 +    cs2 += (double)c2;
 +#endif
 +
 +    if (bSpread && grids->nthread > 1)
 +    {
 +#ifdef PME_TIME_THREADS
 +        c3 = omp_cyc_start();
 +#endif
 +#pragma omp parallel for num_threads(grids->nthread) schedule(static)
 +        for(thread=0; thread<grids->nthread; thread++)
 +        {
 +            reduce_threadgrid_overlap(pme,grids,thread,
 +                                      fftgrid,
 +                                      pme->overlap[0].sendbuf,
 +                                      pme->overlap[1].sendbuf);
 +#ifdef PRINT_PME_SENDBUF
 +            print_sendbuf(pme,pme->overlap[0].sendbuf);
 +#endif
 +        }
 +#ifdef PME_TIME_THREADS
 +        c3 = omp_cyc_end(c3);
 +        cs3 += (double)c3;
 +#endif
 +
 +        if (pme->nnodes > 1)
 +        {
 +            /* Communicate the overlapping part of the fftgrid */
 +            sum_fftgrid_dd(pme,fftgrid);
 +        }
 +    }
 +
 +#ifdef PME_TIME_THREADS
 +    cnt++;
 +    if (cnt % 20 == 0)
 +    {
 +        printf("idx %.2f spread %.2f red %.2f",
 +               cs1*1e-9,cs2*1e-9,cs3*1e-9);
 +#ifdef PME_TIME_SPREAD
 +        for(thread=0; thread<nthread; thread++)
 +            printf(" %.2f",cs1a[thread]*1e-9);
 +#endif
 +        printf("\n");
 +    }
 +#endif
 +}
 +
 +
 +static void dump_grid(FILE *fp,
 +                      int sx,int sy,int sz,int nx,int ny,int nz,
 +                      int my,int mz,const real *g)
 +{
 +    int x,y,z;
 +
 +    for(x=0; x<nx; x++)
 +    {
 +        for(y=0; y<ny; y++)
 +        {
 +            for(z=0; z<nz; z++)
 +            {
 +                fprintf(fp,"%2d %2d %2d %6.3f\n",
 +                        sx+x,sy+y,sz+z,g[(x*my + y)*mz + z]);
 +            }
 +        }
 +    }
 +}
 +
 +static void dump_local_fftgrid(gmx_pme_t pme,const real *fftgrid)
 +{
 +    ivec local_fft_ndata,local_fft_offset,local_fft_size;
 +
 +    gmx_parallel_3dfft_real_limits(pme->pfft_setupA,
 +                                   local_fft_ndata,
 +                                   local_fft_offset,
 +                                   local_fft_size);
 +
 +    dump_grid(stderr,
 +              pme->pmegrid_start_ix,
 +              pme->pmegrid_start_iy,
 +              pme->pmegrid_start_iz,
 +              pme->pmegrid_nx-pme->pme_order+1,
 +              pme->pmegrid_ny-pme->pme_order+1,
 +              pme->pmegrid_nz-pme->pme_order+1,
 +              local_fft_size[YY],
 +              local_fft_size[ZZ],
 +              fftgrid);
 +}
 +
 +
 +void gmx_pme_calc_energy(gmx_pme_t pme,int n,rvec *x,real *q,real *V)
 +{
 +    pme_atomcomm_t *atc;
 +    pmegrids_t *grid;
 +
 +    if (pme->nnodes > 1)
 +    {
 +        gmx_incons("gmx_pme_calc_energy called in parallel");
 +    }
 +    if (pme->bFEP > 1)
 +    {
 +        gmx_incons("gmx_pme_calc_energy with free energy");
 +    }
 +
 +    atc = &pme->atc_energy;
 +    atc->nthread   = 1;
 +    if (atc->spline == NULL)
 +    {
 +        snew(atc->spline,atc->nthread);
 +    }
 +    atc->nslab     = 1;
 +    atc->bSpread   = TRUE;
 +    atc->pme_order = pme->pme_order;
 +    atc->n         = n;
 +    pme_realloc_atomcomm_things(atc);
 +    atc->x         = x;
 +    atc->q         = q;
 +
 +    /* We only use the A-charges grid */
 +    grid = &pme->pmegridA;
 +
 +    spread_on_grid(pme,atc,NULL,TRUE,FALSE,pme->fftgridA);
 +
 +    *V = gather_energy_bsplines(pme,grid->grid.grid,atc);
 +}
 +
 +
 +static void reset_pmeonly_counters(t_commrec *cr,gmx_wallcycle_t wcycle,
 +        t_nrnb *nrnb,t_inputrec *ir, gmx_large_int_t step_rel)
 +{
 +    /* Reset all the counters related to performance over the run */
 +    wallcycle_stop(wcycle,ewcRUN);
 +    wallcycle_reset_all(wcycle);
 +    init_nrnb(nrnb);
 +    ir->init_step += step_rel;
 +    ir->nsteps    -= step_rel;
 +    wallcycle_start(wcycle,ewcRUN);
 +}
 +
 +
 +int gmx_pmeonly(gmx_pme_t pme,
 +                t_commrec *cr,    t_nrnb *nrnb,
 +                gmx_wallcycle_t wcycle,
 +                real ewaldcoeff,  gmx_bool bGatherOnly,
 +                t_inputrec *ir)
 +{
 +    gmx_pme_pp_t pme_pp;
 +    int  natoms;
 +    matrix box;
 +    rvec *x_pp=NULL,*f_pp=NULL;
 +    real *chargeA=NULL,*chargeB=NULL;
 +    real lambda=0;
 +    int  maxshift_x=0,maxshift_y=0;
 +    real energy,dvdlambda;
 +    matrix vir;
 +    float cycles;
 +    int  count;
 +    gmx_bool bEnerVir;
 +    gmx_large_int_t step,step_rel;
 +
 +
 +    pme_pp = gmx_pme_pp_init(cr);
 +
 +    init_nrnb(nrnb);
 +
 +    count = 0;
 +    do /****** this is a quasi-loop over time steps! */
 +    {
 +        /* Domain decomposition */
 +        natoms = gmx_pme_recv_q_x(pme_pp,
 +                                  &chargeA,&chargeB,box,&x_pp,&f_pp,
 +                                  &maxshift_x,&maxshift_y,
 +                                  &pme->bFEP,&lambda,
 +                                  &bEnerVir,
 +                                  &step);
 +
 +        if (natoms == -1) {
 +            /* We should stop: break out of the loop */
 +            break;
 +        }
 +
 +        step_rel = step - ir->init_step;
 +
 +        if (count == 0)
 +            wallcycle_start(wcycle,ewcRUN);
 +
 +        wallcycle_start(wcycle,ewcPMEMESH);
 +
 +        dvdlambda = 0;
 +        clear_mat(vir);
 +        gmx_pme_do(pme,0,natoms,x_pp,f_pp,chargeA,chargeB,box,
 +                   cr,maxshift_x,maxshift_y,nrnb,wcycle,vir,ewaldcoeff,
 +                   &energy,lambda,&dvdlambda,
 +                   GMX_PME_DO_ALL_F | (bEnerVir ? GMX_PME_CALC_ENER_VIR : 0));
 +
 +        cycles = wallcycle_stop(wcycle,ewcPMEMESH);
 +
 +        gmx_pme_send_force_vir_ener(pme_pp,
 +                                    f_pp,vir,energy,dvdlambda,
 +                                    cycles);
 +
 +        count++;
 +
 +        if (step_rel == wcycle_get_reset_counters(wcycle))
 +        {
 +            /* Reset all the counters related to performance over the run */
 +            reset_pmeonly_counters(cr,wcycle,nrnb,ir,step_rel);
 +            wcycle_set_reset_counters(wcycle, 0);
 +        }
 +
 +    } /***** end of quasi-loop, we stop with the break above */
 +    while (TRUE);
 +
 +    return 0;
 +}
 +
 +int gmx_pme_do(gmx_pme_t pme,
 +               int start,       int homenr,
 +               rvec x[],        rvec f[],
 +               real *chargeA,   real *chargeB,
 +               matrix box, t_commrec *cr,
 +               int  maxshift_x, int maxshift_y,
 +               t_nrnb *nrnb,    gmx_wallcycle_t wcycle,
 +               matrix vir,      real ewaldcoeff,
 +               real *energy,    real lambda,
 +               real *dvdlambda, int flags)
 +{
 +    int     q,d,i,j,ntot,npme;
 +    int     nx,ny,nz;
 +    int     n_d,local_ny;
 +    pme_atomcomm_t *atc=NULL;
 +    pmegrids_t *pmegrid=NULL;
 +    real    *grid=NULL;
 +    real    *ptr;
 +    rvec    *x_d,*f_d;
 +    real    *charge=NULL,*q_d;
 +    real    energy_AB[2];
 +    matrix  vir_AB[2];
 +    gmx_bool bClearF;
 +    gmx_parallel_3dfft_t pfft_setup;
 +    real *  fftgrid;
 +    t_complex * cfftgrid;
 +    int     thread;
 +    const gmx_bool bCalcEnerVir = flags & GMX_PME_CALC_ENER_VIR;
 +    const gmx_bool bCalcF = flags & GMX_PME_CALC_F;
 +
 +    assert(pme->nnodes > 0);
 +    assert(pme->nnodes == 1 || pme->ndecompdim > 0);
 +
 +    if (pme->nnodes > 1) {
 +        atc = &pme->atc[0];
 +        atc->npd = homenr;
 +        if (atc->npd > atc->pd_nalloc) {
 +            atc->pd_nalloc = over_alloc_dd(atc->npd);
 +            srenew(atc->pd,atc->pd_nalloc);
 +        }
 +        atc->maxshift = (atc->dimind==0 ? maxshift_x : maxshift_y);
 +    }
 +    else
 +    {
 +        /* This could be necessary for TPI */
 +        pme->atc[0].n = homenr;
 +    }
 +
 +    for(q=0; q<(pme->bFEP ? 2 : 1); q++) {
 +        if (q == 0) {
 +            pmegrid = &pme->pmegridA;
 +            fftgrid = pme->fftgridA;
 +            cfftgrid = pme->cfftgridA;
 +            pfft_setup = pme->pfft_setupA;
 +            charge = chargeA+start;
 +        } else {
 +            pmegrid = &pme->pmegridB;
 +            fftgrid = pme->fftgridB;
 +            cfftgrid = pme->cfftgridB;
 +            pfft_setup = pme->pfft_setupB;
 +            charge = chargeB+start;
 +        }
 +        grid = pmegrid->grid.grid;
 +        /* Unpack structure */
 +        if (debug) {
 +            fprintf(debug,"PME: nnodes = %d, nodeid = %d\n",
 +                    cr->nnodes,cr->nodeid);
 +            fprintf(debug,"Grid = %p\n",(void*)grid);
 +            if (grid == NULL)
 +                gmx_fatal(FARGS,"No grid!");
 +        }
 +        where();
 +
 +        m_inv_ur0(box,pme->recipbox);
 +
 +        if (pme->nnodes == 1) {
 +            atc = &pme->atc[0];
 +            if (DOMAINDECOMP(cr)) {
 +                atc->n = homenr;
 +                pme_realloc_atomcomm_things(atc);
 +            }
 +            atc->x = x;
 +            atc->q = charge;
 +            atc->f = f;
 +        } else {
 +            wallcycle_start(wcycle,ewcPME_REDISTXF);
 +            for(d=pme->ndecompdim-1; d>=0; d--)
 +            {
 +                if (d == pme->ndecompdim-1)
 +                {
 +                    n_d = homenr;
 +                    x_d = x + start;
 +                    q_d = charge;
 +                }
 +                else
 +                {
 +                    n_d = pme->atc[d+1].n;
 +                    x_d = atc->x;
 +                    q_d = atc->q;
 +                }
 +                atc = &pme->atc[d];
 +                atc->npd = n_d;
 +                if (atc->npd > atc->pd_nalloc) {
 +                    atc->pd_nalloc = over_alloc_dd(atc->npd);
 +                    srenew(atc->pd,atc->pd_nalloc);
 +                }
 +                atc->maxshift = (atc->dimind==0 ? maxshift_x : maxshift_y);
 +                pme_calc_pidx_wrapper(n_d,pme->recipbox,x_d,atc);
 +                where();
 +
 +                /* Redistribute x (only once) and qA or qB */
 +                if (DOMAINDECOMP(cr)) {
 +                    dd_pmeredist_x_q(pme, n_d, q==0, x_d, q_d, atc);
 +                } else {
 +                    pmeredist_pd(pme, TRUE, n_d, q==0, x_d, q_d, atc);
 +                }
 +            }
 +            where();
 +
 +            wallcycle_stop(wcycle,ewcPME_REDISTXF);
 +        }
 +
 +        if (debug)
 +            fprintf(debug,"Node= %6d, pme local particles=%6d\n",
 +                    cr->nodeid,atc->n);
 +
 +        if (flags & GMX_PME_SPREAD_Q)
 +        {
 +            wallcycle_start(wcycle,ewcPME_SPREADGATHER);
 +
 +            /* Spread the charges on a grid */
 +            spread_on_grid(pme,&pme->atc[0],pmegrid,q==0,TRUE,fftgrid);
 +
 +            if (q == 0)
 +            {
 +                inc_nrnb(nrnb,eNR_WEIGHTS,DIM*atc->n);
 +            }
 +            inc_nrnb(nrnb,eNR_SPREADQBSP,
 +                     pme->pme_order*pme->pme_order*pme->pme_order*atc->n);
 +
 +            if (pme->nthread == 1)
 +            {
 +                wrap_periodic_pmegrid(pme,grid);
 +
 +                /* sum contributions to local grid from other nodes */
 +#ifdef GMX_MPI
 +                if (pme->nnodes > 1)
 +                {
 +                    gmx_sum_qgrid_dd(pme,grid,GMX_SUM_QGRID_FORWARD);
 +                    where();
 +                }
 +#endif
 +
 +                copy_pmegrid_to_fftgrid(pme,grid,fftgrid);
 +            }
 +
 +            wallcycle_stop(wcycle,ewcPME_SPREADGATHER);
 +
 +            /*
 +            dump_local_fftgrid(pme,fftgrid);
 +            exit(0);
 +            */
 +        }
 +
 +        /* Here we start a large thread parallel region */
 +#pragma omp parallel for num_threads(pme->nthread) schedule(static)
 +        for(thread=0; thread<pme->nthread; thread++)
 +        {
 +            if (flags & GMX_PME_SOLVE)
 +            {
 +                int loop_count;
 +
 +                /* do 3d-fft */
 +                if (thread == 0)
 +                {
 +                    wallcycle_start(wcycle,ewcPME_FFT);
 +                }
 +                gmx_parallel_3dfft_execute(pfft_setup,GMX_FFT_REAL_TO_COMPLEX,
 +                                           fftgrid,cfftgrid,thread,wcycle);
 +                if (thread == 0)
 +                {
 +                    wallcycle_stop(wcycle,ewcPME_FFT);
 +                }
 +                where();
 +
 +                /* solve in k-space for our local cells */
 +                if (thread == 0)
 +                {
 +                    wallcycle_start(wcycle,ewcPME_SOLVE);
 +                }
 +                loop_count =
 +                    solve_pme_yzx(pme,cfftgrid,ewaldcoeff,
 +                                  box[XX][XX]*box[YY][YY]*box[ZZ][ZZ],
 +                                  bCalcEnerVir,
 +                                  pme->nthread,thread);
 +                if (thread == 0)
 +                {
 +                    wallcycle_stop(wcycle,ewcPME_SOLVE);
 +                    where();
 +                    inc_nrnb(nrnb,eNR_SOLVEPME,loop_count);
 +                }
 +            }
 +
 +            if (bCalcF)
 +            {
 +                /* do 3d-invfft */
 +                if (thread == 0)
 +                {
 +                    where();
 +                    wallcycle_start(wcycle,ewcPME_FFT);
 +                }
 +                gmx_parallel_3dfft_execute(pfft_setup,GMX_FFT_COMPLEX_TO_REAL,
 +                                           cfftgrid,fftgrid,thread,wcycle);
 +                if (thread == 0)
 +                {
 +                    wallcycle_stop(wcycle,ewcPME_FFT);
 +
 +                    where();
 +
 +                    if (pme->nodeid == 0)
 +                    {
 +                        ntot = pme->nkx*pme->nky*pme->nkz;
 +                        npme  = ntot*log((real)ntot)/log(2.0);
 +                        inc_nrnb(nrnb,eNR_FFT,2*npme);
 +                    }
 +
 +                    wallcycle_start(wcycle,ewcPME_SPREADGATHER);
 +                }
 +
 +                copy_fftgrid_to_pmegrid(pme,fftgrid,grid,pme->nthread,thread);
 +            }
 +        }
 +        /* End of thread parallel section.
 +         * With MPI we have to synchronize here before gmx_sum_qgrid_dd.
 +         */
 +
 +        if (bCalcF)
 +        {
 +            /* distribute local grid to all nodes */
 +#ifdef GMX_MPI
 +            if (pme->nnodes > 1) {
 +                gmx_sum_qgrid_dd(pme,grid,GMX_SUM_QGRID_BACKWARD);
 +            }
 +#endif
 +            where();
 +
 +            unwrap_periodic_pmegrid(pme,grid);
 +
 +            /* interpolate forces for our local atoms */
 +
 +            where();
 +
 +            /* If we are running without parallelization,
 +             * atc->f is the actual force array, not a buffer,
 +             * therefore we should not clear it.
 +             */
 +            bClearF = (q == 0 && PAR(cr));
 +#pragma omp parallel for num_threads(pme->nthread) schedule(static)
 +            for(thread=0; thread<pme->nthread; thread++)
 +            {
 +                gather_f_bsplines(pme,grid,bClearF,atc,
 +                                  &atc->spline[thread],
 +                                  pme->bFEP ? (q==0 ? 1.0-lambda : lambda) : 1.0);
 +            }
 +
 +            where();
 +
 +            inc_nrnb(nrnb,eNR_GATHERFBSP,
 +                     pme->pme_order*pme->pme_order*pme->pme_order*pme->atc[0].n);
 +            wallcycle_stop(wcycle,ewcPME_SPREADGATHER);
 +        }
 +
 +        if (bCalcEnerVir)
 +        {
 +            /* This should only be called on the master thread
 +             * and after the threads have synchronized.
 +             */
 +            get_pme_ener_vir(pme,pme->nthread,&energy_AB[q],vir_AB[q]);
 +        }
 +    } /* of q-loop */
 +
 +    if (bCalcF && pme->nnodes > 1) {
 +        wallcycle_start(wcycle,ewcPME_REDISTXF);
 +        for(d=0; d<pme->ndecompdim; d++)
 +        {
 +            atc = &pme->atc[d];
 +            if (d == pme->ndecompdim - 1)
 +            {
 +                n_d = homenr;
 +                f_d = f + start;
 +            }
 +            else
 +            {
 +                n_d = pme->atc[d+1].n;
 +                f_d = pme->atc[d+1].f;
 +            }
 +            if (DOMAINDECOMP(cr)) {
 +                dd_pmeredist_f(pme,atc,n_d,f_d,
 +                               d==pme->ndecompdim-1 && pme->bPPnode);
 +            } else {
 +                pmeredist_pd(pme, FALSE, n_d, TRUE, f_d, NULL, atc);
 +            }
 +        }
 +
 +        wallcycle_stop(wcycle,ewcPME_REDISTXF);
 +    }
 +    where();
 +
 +    if (bCalcEnerVir)
 +    {
 +        if (!pme->bFEP) {
 +            *energy = energy_AB[0];
 +            m_add(vir,vir_AB[0],vir);
 +        } else {
 +            *energy = (1.0-lambda)*energy_AB[0] + lambda*energy_AB[1];
 +            *dvdlambda += energy_AB[1] - energy_AB[0];
 +            for(i=0; i<DIM; i++)
 +            {
 +                for(j=0; j<DIM; j++)
 +                {
 +                    vir[i][j] += (1.0-lambda)*vir_AB[0][i][j] + 
 +                        lambda*vir_AB[1][i][j];
 +                }
 +            }
 +        }
 +    }
 +    else
 +    {
 +        *energy = 0;
 +    }
 +
 +    if (debug)
 +    {
 +        fprintf(debug,"PME mesh energy: %g\n",*energy);
 +    }
 +
 +    return 0;
 +}