Merge branch release-5-1 into release-2016
authorBerk Hess <hess@kth.se>
Wed, 24 Aug 2016 11:12:21 +0000 (13:12 +0200)
committerBerk Hess <hess@kth.se>
Wed, 24 Aug 2016 11:14:22 +0000 (13:14 +0200)
Also applied the merged fix to nbnxn_cuda_kernel_fermi.cuh.

Change-Id: I79d0cb59214290097d6f356e35dd13c4eadaed75

1  2 
src/gromacs/mdlib/nbnxn_cuda/nbnxn_cuda_kernel.cuh
src/gromacs/mdlib/nbnxn_cuda/nbnxn_cuda_kernel_fermi.cuh
src/gromacs/mdlib/nbnxn_ocl/nbnxn_ocl_kernel_amd.clh
src/gromacs/mdlib/nbnxn_ocl/nbnxn_ocl_kernel_nowarp.clh
src/gromacs/mdlib/nbnxn_ocl/nbnxn_ocl_kernel_nvidia.clh

index 0623603903a27cc36f9b88916859241d6c2937ce,0000000000000000000000000000000000000000..a84f45a54d87b63cb67617c0a115f131a755eb95
mode 100644,000000..100644
--- /dev/null
@@@ -1,574 -1,0 +1,574 @@@
- #ifdef LJ_POT_SWITCH
- #ifdef CALC_ENERGIES
-                                 calculate_potential_switch_F_E(nbparam, c6, c12, inv_r, r2, &F_invr, &E_lj_p);
- #else
-                                 calculate_potential_switch_F(nbparam, c6, c12, inv_r, r2, &F_invr, &E_lj_p);
- #endif /* CALC_ENERGIES */
- #endif /* LJ_POT_SWITCH */
 +/*
 + * This file is part of the GROMACS molecular simulation package.
 + *
 + * Copyright (c) 2012,2013,2014,2015,2016, by the GROMACS development team, led by
 + * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
 + * and including many others, as listed in the AUTHORS file in the
 + * top-level source directory and at http://www.gromacs.org.
 + *
 + * GROMACS is free software; you can redistribute it and/or
 + * modify it under the terms of the GNU Lesser General Public License
 + * as published by the Free Software Foundation; either version 2.1
 + * of the License, or (at your option) any later version.
 + *
 + * GROMACS is distributed in the hope that it will be useful,
 + * but WITHOUT ANY WARRANTY; without even the implied warranty of
 + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 + * Lesser General Public License for more details.
 + *
 + * You should have received a copy of the GNU Lesser General Public
 + * License along with GROMACS; if not, see
 + * http://www.gnu.org/licenses, or write to the Free Software Foundation,
 + * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
 + *
 + * If you want to redistribute modifications to GROMACS, please
 + * consider that scientific software is very special. Version
 + * control is crucial - bugs must be traceable. We will be happy to
 + * consider code for inclusion in the official distribution, but
 + * derived work must not be called official GROMACS. Details are found
 + * in the README & COPYING files - if they are missing, get the
 + * official version at http://www.gromacs.org.
 + *
 + * To help us fund GROMACS development, we humbly ask that you cite
 + * the research papers on the package. Check out http://www.gromacs.org.
 + */
 +
 +/*! \internal \file
 + *  \brief
 + *  CUDA non-bonded kernel used through preprocessor-based code generation
 + *  of multiple kernel flavors for CC 2.x, see nbnxn_cuda_kernels.cuh.
 + *
 + *  NOTE: No include fence as it is meant to be included multiple times.
 + *
 + *  \author Szilárd Páll <pall.szilard@gmail.com>
 + *  \author Berk Hess <hess@kth.se>
 + *  \ingroup module_mdlib
 + */
 +
 +#include "gromacs/gpu_utils/cuda_arch_utils.cuh"
 +#include "gromacs/math/utilities.h"
 +#include "gromacs/pbcutil/ishift.h"
 +/* Note that floating-point constants in CUDA code should be suffixed
 + * with f (e.g. 0.5f), to stop the compiler producing intermediate
 + * code that is in double precision.
 + */
 +
 +#if GMX_PTX_ARCH >= 300
 +#error "nbnxn_cuda_kernel_fermi.cuh included with GMX_PTX_ARCH >= 300"
 +#endif
 +
 +#if defined EL_EWALD_ANA || defined EL_EWALD_TAB
 +/* Note: convenience macro, needs to be undef-ed at the end of the file. */
 +#define EL_EWALD_ANY
 +#endif
 +
 +#if defined EL_EWALD_ANY || defined EL_RF || defined LJ_EWALD || (defined EL_CUTOFF && defined CALC_ENERGIES)
 +/* Macro to control the calculation of exclusion forces in the kernel
 + * We do that with Ewald (elec/vdw) and RF. Cut-off only has exclusion
 + * energy terms.
 + *
 + * Note: convenience macro, needs to be undef-ed at the end of the file.
 + */
 +#define EXCLUSION_FORCES
 +#endif
 +
 +#if defined LJ_EWALD_COMB_GEOM || defined LJ_EWALD_COMB_LB
 +/* Note: convenience macro, needs to be undef-ed at the end of the file. */
 +#define LJ_EWALD
 +#endif
 +
 +#if defined LJ_COMB_GEOM || defined LJ_COMB_LB
 +#define LJ_COMB
 +#endif
 +
 +/*
 +   Kernel launch parameters:
 +    - #blocks   = #pair lists, blockId = pair list Id
 +    - #threads  = c_clSize^2
 +    - shmem     = see nbnxn_cuda.cu:calc_shmem_required()
 +
 +    Each thread calculates an i force-component taking one pair of i-j atoms.
 + */
 +
 +/**@{*/
 +/*! \brief Definition of kernel launch configuration parameters for CC 2.x.
 + */
 +
 +/* Kernel launch bounds, 16 blocks/multiprocessor can be kept in flight. */
 +#define THREADS_PER_BLOCK   (c_clSize*c_clSize)
 +
 +__launch_bounds__(THREADS_PER_BLOCK)
 +#ifdef PRUNE_NBL
 +#ifdef CALC_ENERGIES
 +__global__ void NB_KERNEL_FUNC_NAME(nbnxn_kernel, _VF_prune_cuda)
 +#else
 +__global__ void NB_KERNEL_FUNC_NAME(nbnxn_kernel, _F_prune_cuda)
 +#endif /* CALC_ENERGIES */
 +#else
 +#ifdef CALC_ENERGIES
 +__global__ void NB_KERNEL_FUNC_NAME(nbnxn_kernel, _VF_cuda)
 +#else
 +__global__ void NB_KERNEL_FUNC_NAME(nbnxn_kernel, _F_cuda)
 +#endif /* CALC_ENERGIES */
 +#endif /* PRUNE_NBL */
 +(const cu_atomdata_t atdat,
 + const cu_nbparam_t nbparam,
 + const cu_plist_t plist,
 + bool bCalcFshift)
 +#ifdef FUNCTION_DECLARATION_ONLY
 +;     /* Only do function declaration, omit the function body. */
 +#else
 +{
 +    /* convenience variables */
 +    const nbnxn_sci_t *pl_sci       = plist.sci;
 +#ifndef PRUNE_NBL
 +    const
 +#endif
 +    nbnxn_cj4_t        *pl_cj4      = plist.cj4;
 +    const nbnxn_excl_t *excl        = plist.excl;
 +#ifndef LJ_COMB
 +    const int          *atom_types  = atdat.atom_types;
 +    int                 ntypes      = atdat.ntypes;
 +#else
 +    const float2       *lj_comb     = atdat.lj_comb;
 +    float2              ljcp_i, ljcp_j;
 +#endif
 +    const float4       *xq          = atdat.xq;
 +    float3             *f           = atdat.f;
 +    const float3       *shift_vec   = atdat.shift_vec;
 +    float               rcoulomb_sq = nbparam.rcoulomb_sq;
 +#ifdef VDW_CUTOFF_CHECK
 +    float               rvdw_sq     = nbparam.rvdw_sq;
 +    float               vdw_in_range;
 +#endif
 +#ifdef LJ_EWALD
 +    float               lje_coeff2, lje_coeff6_6;
 +#endif
 +#ifdef EL_RF
 +    float two_k_rf              = nbparam.two_k_rf;
 +#endif
 +#ifdef EL_EWALD_TAB
 +    float coulomb_tab_scale     = nbparam.coulomb_tab_scale;
 +#endif
 +#ifdef EL_EWALD_ANA
 +    float beta2                 = nbparam.ewald_beta*nbparam.ewald_beta;
 +    float beta3                 = nbparam.ewald_beta*nbparam.ewald_beta*nbparam.ewald_beta;
 +#endif
 +#ifdef PRUNE_NBL
 +    float rlist_sq              = nbparam.rlist_sq;
 +#endif
 +
 +#ifdef CALC_ENERGIES
 +#ifdef EL_EWALD_ANY
 +    float  beta        = nbparam.ewald_beta;
 +    float  ewald_shift = nbparam.sh_ewald;
 +#else
 +    float  c_rf        = nbparam.c_rf;
 +#endif /* EL_EWALD_ANY */
 +    float *e_lj        = atdat.e_lj;
 +    float *e_el        = atdat.e_el;
 +#endif /* CALC_ENERGIES */
 +
 +    /* thread/block/warp id-s */
 +    unsigned int tidxi  = threadIdx.x;
 +    unsigned int tidxj  = threadIdx.y;
 +    unsigned int tidx   = threadIdx.y * blockDim.x + threadIdx.x;
 +    unsigned int bidx   = blockIdx.x;
 +    unsigned int widx   = tidx / warp_size; /* warp index */
 +
 +    int          sci, ci, cj,
 +                 ai, aj,
 +                 cij4_start, cij4_end;
 +#ifndef LJ_COMB
 +    int          typei, typej;
 +#endif
 +    int          i, jm, j4, wexcl_idx;
 +    float        qi, qj_f,
 +                 r2, inv_r, inv_r2;
 +#if !defined LJ_COMB_LB || defined CALC_ENERGIES
 +    float        inv_r6, c6, c12;
 +#endif
 +#ifdef LJ_COMB_LB
 +    float        sigma, epsilon;
 +#endif
 +    float        int_bit,
 +                 F_invr;
 +#ifdef CALC_ENERGIES
 +    float        E_lj, E_el;
 +#endif
 +#if defined CALC_ENERGIES || defined LJ_POT_SWITCH
 +    float        E_lj_p;
 +#endif
 +    unsigned int wexcl, imask, mask_ji;
 +    float4       xqbuf;
 +    float3       xi, xj, rv, f_ij, fcj_buf;
 +    float3       fci_buf[c_numClPerSupercl]; /* i force buffer */
 +    nbnxn_sci_t  nb_sci;
 +
 +    /*! i-cluster interaction mask for a super-cluster with all c_numClPerSupercl=8 bits set */
 +    const unsigned superClInteractionMask = ((1U << c_numClPerSupercl) - 1U);
 +
 +    /* shmem buffer for i x+q pre-loading */
 +    extern __shared__  float4 xqib[];
 +
 +    /* shmem buffer for cj, for each warp separately */
 +    int   *cjs   = ((int *)(xqib + c_numClPerSupercl * c_clSize));
 +    /* shmem j force buffer */
 +    float *f_buf = (float *)(cjs + c_nbnxnGpuClusterpairSplit * c_nbnxnGpuJgroupSize);
 +
 +    nb_sci      = pl_sci[bidx];         /* my i super-cluster's index = current bidx */
 +    sci         = nb_sci.sci;           /* super-cluster */
 +    cij4_start  = nb_sci.cj4_ind_start; /* first ...*/
 +    cij4_end    = nb_sci.cj4_ind_end;   /* and last index of j clusters */
 +
 +    {
 +        /* Pre-load i-atom x and q into shared memory */
 +        ci = sci * c_numClPerSupercl + tidxj;
 +        ai = ci * c_clSize + tidxi;
 +
 +        xqbuf    = xq[ai] + shift_vec[nb_sci.shift];
 +        xqbuf.w *= nbparam.epsfac;
 +        xqib[tidxj * c_clSize + tidxi] = xqbuf;
 +    }
 +    __syncthreads();
 +
 +    for (i = 0; i < c_numClPerSupercl; i++)
 +    {
 +        fci_buf[i] = make_float3(0.0f);
 +    }
 +
 +#ifdef LJ_EWALD
 +    /* TODO: we are trading registers with flops by keeping lje_coeff-s, try re-calculating it later */
 +    lje_coeff2   = nbparam.ewaldcoeff_lj*nbparam.ewaldcoeff_lj;
 +    lje_coeff6_6 = lje_coeff2*lje_coeff2*lje_coeff2*c_oneSixth;
 +#endif
 +
 +
 +#ifdef CALC_ENERGIES
 +    E_lj = 0.0f;
 +    E_el = 0.0f;
 +
 +#ifdef EXCLUSION_FORCES /* Ewald or RF */
 +    if (nb_sci.shift == CENTRAL && pl_cj4[cij4_start].cj[0] == sci*c_numClPerSupercl)
 +    {
 +        /* we have the diagonal: add the charge and LJ self interaction energy term */
 +        for (i = 0; i < c_numClPerSupercl; i++)
 +        {
 +#if defined EL_EWALD_ANY || defined EL_RF || defined EL_CUTOFF
 +            qi    = xqib[i * c_clSize + tidxi].w;
 +            E_el += qi*qi;
 +#endif
 +
 +#ifdef LJ_EWALD
 +            E_lj += tex1Dfetch(nbfp_texref, atom_types[(sci*c_numClPerSupercl + i)*c_clSize + tidxi]*(ntypes + 1)*2);
 +#endif
 +        }
 +
 +        /* divide the self term(s) equally over the j-threads, then multiply with the coefficients. */
 +#ifdef LJ_EWALD
 +        E_lj /= c_clSize;
 +        E_lj *= 0.5f*c_oneSixth*lje_coeff6_6;
 +#endif
 +
 +#if defined EL_EWALD_ANY || defined EL_RF || defined EL_CUTOFF
 +        /* Correct for epsfac^2 due to adding qi^2 */
 +        E_el /= nbparam.epsfac*c_clSize;
 +#if defined EL_RF || defined EL_CUTOFF
 +        E_el *= -0.5f*c_rf;
 +#else
 +        E_el *= -beta*M_FLOAT_1_SQRTPI; /* last factor 1/sqrt(pi) */
 +#endif
 +#endif                                  /* EL_EWALD_ANY || defined EL_RF || defined EL_CUTOFF */
 +    }
 +#endif                                  /* EXCLUSION_FORCES */
 +
 +#endif                                  /* CALC_ENERGIES */
 +
 +    /* loop over the j clusters = seen by any of the atoms in the current super-cluster */
 +    for (j4 = cij4_start; j4 < cij4_end; j4++)
 +    {
 +        wexcl_idx   = pl_cj4[j4].imei[widx].excl_ind;
 +        imask       = pl_cj4[j4].imei[widx].imask;
 +        wexcl       = excl[wexcl_idx].pair[(tidx) & (warp_size - 1)];
 +
 +#ifndef PRUNE_NBL
 +        if (imask)
 +#endif
 +        {
 +            /* Pre-load cj into shared memory on both warps separately */
 +            if ((tidxj == 0 || tidxj == 4) && tidxi < c_nbnxnGpuJgroupSize)
 +            {
 +                cjs[tidxi + tidxj * c_nbnxnGpuJgroupSize/c_splitClSize] = pl_cj4[j4].cj[tidxi];
 +            }
 +
 +            /* Unrolling this loop with pruning leads to register spilling;
 +               Tested with up to nvcc 7.5 */
 +#if !defined PRUNE_NBL
 +#pragma unroll 4
 +#endif
 +            for (jm = 0; jm < c_nbnxnGpuJgroupSize; jm++)
 +            {
 +                if (imask & (superClInteractionMask << (jm * c_numClPerSupercl)))
 +                {
 +                    mask_ji = (1U << (jm * c_numClPerSupercl));
 +
 +                    cj      = cjs[jm + (tidxj & 4) * c_nbnxnGpuJgroupSize/c_splitClSize];
 +                    aj      = cj * c_clSize + tidxj;
 +
 +                    /* load j atom data */
 +                    xqbuf   = xq[aj];
 +                    xj      = make_float3(xqbuf.x, xqbuf.y, xqbuf.z);
 +                    qj_f    = xqbuf.w;
 +#ifndef LJ_COMB
 +                    typej   = atom_types[aj];
 +#else
 +                    ljcp_j  = lj_comb[aj];
 +#endif
 +
 +                    fcj_buf = make_float3(0.0f);
 +
 +#if !defined PRUNE_NBL
 +#pragma unroll 8
 +#endif
 +                    for (i = 0; i < c_numClPerSupercl; i++)
 +                    {
 +                        if (imask & mask_ji)
 +                        {
 +                            ci      = sci * c_numClPerSupercl + i; /* i cluster index */
 +                            ai      = ci * c_clSize + tidxi;       /* i atom index */
 +
 +                            /* all threads load an atom from i cluster ci into shmem! */
 +                            xqbuf   = xqib[i * c_clSize + tidxi];
 +                            xi      = make_float3(xqbuf.x, xqbuf.y, xqbuf.z);
 +
 +                            /* distance between i and j atoms */
 +                            rv      = xi - xj;
 +                            r2      = norm2(rv);
 +
 +#ifdef PRUNE_NBL
 +                            /* If _none_ of the atoms pairs are in cutoff range,
 +                               the bit corresponding to the current
 +                               cluster-pair in imask gets set to 0. */
 +                            if (!__any(r2 < rlist_sq))
 +                            {
 +                                imask &= ~mask_ji;
 +                            }
 +#endif
 +
 +                            int_bit = (wexcl & mask_ji) ? 1.0f : 0.0f;
 +
 +                            /* cutoff & exclusion check */
 +#ifdef EXCLUSION_FORCES
 +                            if (r2 < rcoulomb_sq *
 +                                (nb_sci.shift != CENTRAL || ci != cj || tidxj > tidxi))
 +#else
 +                            if (r2 < rcoulomb_sq * int_bit)
 +#endif
 +                            {
 +                                /* load the rest of the i-atom parameters */
 +                                qi      = xqbuf.w;
 +
 +#ifndef LJ_COMB
 +                                /* LJ 6*C6 and 12*C12 */
 +                                typei   = atom_types[ai];
 +                                c6      = tex1Dfetch(nbfp_texref, 2 * (ntypes * typei + typej));
 +                                c12     = tex1Dfetch(nbfp_texref, 2 * (ntypes * typei + typej) + 1);
 +#else
 +                                ljcp_i  = lj_comb[ai];
 +#ifdef LJ_COMB_GEOM
 +                                c6      = ljcp_i.x * ljcp_j.x;
 +                                c12     = ljcp_i.y * ljcp_j.y;
 +#else
 +                                /* LJ 2^(1/6)*sigma and 12*epsilon */
 +                                sigma   = ljcp_i.x + ljcp_j.x;
 +                                epsilon = ljcp_i.y * ljcp_j.y;
 +#if defined CALC_ENERGIES || defined LJ_FORCE_SWITCH || defined LJ_POT_SWITCH
 +                                convert_sigma_epsilon_to_c6_c12(sigma, epsilon, &c6, &c12);
 +#endif
 +#endif                          /* LJ_COMB_GEOM */
 +#endif                          /* LJ_COMB */
 +
 +                                // Ensure distance do not become so small that r^-12 overflows
 +                                r2      = max(r2, NBNXN_MIN_RSQ);
 +
 +                                inv_r   = rsqrt(r2);
 +                                inv_r2  = inv_r * inv_r;
 +#if !defined LJ_COMB_LB || defined CALC_ENERGIES
 +                                inv_r6  = inv_r2 * inv_r2 * inv_r2;
 +#ifdef EXCLUSION_FORCES
 +                                /* We could mask inv_r2, but with Ewald
 +                                 * masking both inv_r6 and F_invr is faster */
 +                                inv_r6  *= int_bit;
 +#endif                          /* EXCLUSION_FORCES */
 +
 +                                F_invr  = inv_r6 * (c12 * inv_r6 - c6) * inv_r2;
 +#if defined CALC_ENERGIES || defined LJ_POT_SWITCH
 +                                E_lj_p  = int_bit * (c12 * (inv_r6 * inv_r6 + nbparam.repulsion_shift.cpot)*c_oneTwelveth -
 +                                                     c6 * (inv_r6 + nbparam.dispersion_shift.cpot)*c_oneSixth);
 +#endif
 +#else                           /* !LJ_COMB_LB || CALC_ENERGIES */
 +                                float sig_r  = sigma*inv_r;
 +                                float sig_r2 = sig_r*sig_r;
 +                                float sig_r6 = sig_r2*sig_r2*sig_r2;
 +#ifdef EXCLUSION_FORCES
 +                                sig_r6 *= int_bit;
 +#endif                          /* EXCLUSION_FORCES */
 +
 +                                F_invr  = epsilon * sig_r6 * (sig_r6 - 1.0f) * inv_r2;
 +#endif                          /* !LJ_COMB_LB || CALC_ENERGIES */
 +
 +#ifdef LJ_FORCE_SWITCH
 +#ifdef CALC_ENERGIES
 +                                calculate_force_switch_F_E(nbparam, c6, c12, inv_r, r2, &F_invr, &E_lj_p);
 +#else
 +                                calculate_force_switch_F(nbparam, c6, c12, inv_r, r2, &F_invr);
 +#endif /* CALC_ENERGIES */
 +#endif /* LJ_FORCE_SWITCH */
 +
 +
 +#ifdef LJ_EWALD
 +#ifdef LJ_EWALD_COMB_GEOM
 +#ifdef CALC_ENERGIES
 +                                calculate_lj_ewald_comb_geom_F_E(nbparam, typei, typej, r2, inv_r2, lje_coeff2, lje_coeff6_6, int_bit, &F_invr, &E_lj_p);
 +#else
 +                                calculate_lj_ewald_comb_geom_F(nbparam, typei, typej, r2, inv_r2, lje_coeff2, lje_coeff6_6, &F_invr);
 +#endif                          /* CALC_ENERGIES */
 +#elif defined LJ_EWALD_COMB_LB
 +                                calculate_lj_ewald_comb_LB_F_E(nbparam, typei, typej, r2, inv_r2, lje_coeff2, lje_coeff6_6,
 +#ifdef CALC_ENERGIES
 +                                                               int_bit, &F_invr, &E_lj_p
 +#else
 +                                                               0, &F_invr, NULL
 +#endif /* CALC_ENERGIES */
 +                                                               );
 +#endif /* LJ_EWALD_COMB_GEOM */
 +#endif /* LJ_EWALD */
 +
++#ifdef LJ_POT_SWITCH
++#ifdef CALC_ENERGIES
++                                calculate_potential_switch_F_E(nbparam, c6, c12, inv_r, r2, &F_invr, &E_lj_p);
++#else
++                                calculate_potential_switch_F(nbparam, c6, c12, inv_r, r2, &F_invr, &E_lj_p);
++#endif /* CALC_ENERGIES */
++#endif /* LJ_POT_SWITCH */
++
 +#ifdef VDW_CUTOFF_CHECK
 +                                /* Separate VDW cut-off check to enable twin-range cut-offs
 +                                 * (rvdw < rcoulomb <= rlist)
 +                                 */
 +                                vdw_in_range  = (r2 < rvdw_sq) ? 1.0f : 0.0f;
 +                                F_invr       *= vdw_in_range;
 +#ifdef CALC_ENERGIES
 +                                E_lj_p       *= vdw_in_range;
 +#endif
 +#endif                          /* VDW_CUTOFF_CHECK */
 +
 +#ifdef CALC_ENERGIES
 +                                E_lj    += E_lj_p;
 +#endif
 +
 +
 +#ifdef EL_CUTOFF
 +#ifdef EXCLUSION_FORCES
 +                                F_invr  += qi * qj_f * int_bit * inv_r2 * inv_r;
 +#else
 +                                F_invr  += qi * qj_f * inv_r2 * inv_r;
 +#endif
 +#endif
 +#ifdef EL_RF
 +                                F_invr  += qi * qj_f * (int_bit*inv_r2 * inv_r - two_k_rf);
 +#endif
 +#if defined EL_EWALD_ANA
 +                                F_invr  += qi * qj_f * (int_bit*inv_r2*inv_r + pmecorrF(beta2*r2)*beta3);
 +#elif defined EL_EWALD_TAB
 +                                F_invr  += qi * qj_f * (int_bit*inv_r2 -
 +                                                        interpolate_coulomb_force_r(r2 * inv_r, coulomb_tab_scale)) * inv_r;
 +#endif                          /* EL_EWALD_ANA/TAB */
 +
 +#ifdef CALC_ENERGIES
 +#ifdef EL_CUTOFF
 +                                E_el    += qi * qj_f * (int_bit*inv_r - c_rf);
 +#endif
 +#ifdef EL_RF
 +                                E_el    += qi * qj_f * (int_bit*inv_r + 0.5f * two_k_rf * r2 - c_rf);
 +#endif
 +#ifdef EL_EWALD_ANY
 +                                /* 1.0f - erff is faster than erfcf */
 +                                E_el    += qi * qj_f * (inv_r * (int_bit - erff(r2 * inv_r * beta)) - int_bit * ewald_shift);
 +#endif                          /* EL_EWALD_ANY */
 +#endif
 +                                f_ij    = rv * F_invr;
 +
 +                                /* accumulate j forces in registers */
 +                                fcj_buf -= f_ij;
 +
 +                                /* accumulate i forces in registers */
 +                                fci_buf[i] += f_ij;
 +                            }
 +                        }
 +
 +                        /* shift the mask bit by 1 */
 +                        mask_ji += mask_ji;
 +                    }
 +
 +                    /* reduce j forces */
 +                    /* store j forces in shmem */
 +                    f_buf[                   tidx] = fcj_buf.x;
 +                    f_buf[    c_fbufStride + tidx] = fcj_buf.y;
 +                    f_buf[2 * c_fbufStride + tidx] = fcj_buf.z;
 +
 +                    reduce_force_j_generic(f_buf, f, tidxi, tidxj, aj);
 +                }
 +            }
 +#ifdef PRUNE_NBL
 +            /* Update the imask with the new one which does not contain the
 +               out of range clusters anymore. */
 +            pl_cj4[j4].imei[widx].imask = imask;
 +#endif
 +        }
 +    }
 +
 +    /* skip central shifts when summing shift forces */
 +    if (nb_sci.shift == CENTRAL)
 +    {
 +        bCalcFshift = false;
 +    }
 +
 +    float fshift_buf = 0.0f;
 +
 +    /* reduce i forces */
 +    for (i = 0; i < c_numClPerSupercl; i++)
 +    {
 +        ai  = (sci * c_numClPerSupercl + i) * c_clSize + tidxi;
 +        f_buf[                   tidx] = fci_buf[i].x;
 +        f_buf[    c_fbufStride + tidx] = fci_buf[i].y;
 +        f_buf[2 * c_fbufStride + tidx] = fci_buf[i].z;
 +        __syncthreads();
 +        reduce_force_i(f_buf, f,
 +                       &fshift_buf, bCalcFshift,
 +                       tidxi, tidxj, ai);
 +        __syncthreads();
 +    }
 +
 +    /* add up local shift forces into global mem, tidxj indexes x,y,z */
 +    if (bCalcFshift && tidxj < 3)
 +    {
 +        atomicAdd(&(atdat.fshift[nb_sci.shift].x) + tidxj, fshift_buf);
 +    }
 +
 +#ifdef CALC_ENERGIES
 +    /* flush the energies to shmem and reduce them */
 +    f_buf[               tidx] = E_lj;
 +    f_buf[c_fbufStride + tidx] = E_el;
 +    reduce_energy_pow2(f_buf + (tidx & warp_size), e_lj, e_el, tidx & ~warp_size);
 +#endif
 +}
 +#endif /* FUNCTION_DECLARATION_ONLY */
 +
 +#undef THREADS_PER_BLOCK
 +
 +#undef EL_EWALD_ANY
 +#undef EXCLUSION_FORCES
 +#undef LJ_EWALD
 +
 +#undef LJ_COMB