Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / mdlib / sim_util.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5  * Copyright (c) 2001-2004, The GROMACS development team.
6  * Copyright (c) 2013,2014, by the GROMACS development team, led by
7  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8  * and including many others, as listed in the AUTHORS file in the
9  * top-level source directory and at http://www.gromacs.org.
10  *
11  * GROMACS is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU Lesser General Public License
13  * as published by the Free Software Foundation; either version 2.1
14  * of the License, or (at your option) any later version.
15  *
16  * GROMACS is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * Lesser General Public License for more details.
20  *
21  * You should have received a copy of the GNU Lesser General Public
22  * License along with GROMACS; if not, see
23  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
25  *
26  * If you want to redistribute modifications to GROMACS, please
27  * consider that scientific software is very special. Version
28  * control is crucial - bugs must be traceable. We will be happy to
29  * consider code for inclusion in the official distribution, but
30  * derived work must not be called official GROMACS. Details are found
31  * in the README & COPYING files - if they are missing, get the
32  * official version at http://www.gromacs.org.
33  *
34  * To help us fund GROMACS development, we humbly ask that you cite
35  * the research papers on the package. Check out http://www.gromacs.org.
36  */
37 #include "gmxpre.h"
38
39 #include "gromacs/legacyheaders/sim_util.h"
40
41 #include "config.h"
42
43 #include <assert.h>
44 #include <math.h>
45 #include <stdio.h>
46 #include <string.h>
47
48 #ifdef HAVE_SYS_TIME_H
49 #include <sys/time.h>
50 #endif
51
52 #include "gromacs/essentialdynamics/edsam.h"
53 #include "gromacs/gmxlib/nonbonded/nb_free_energy.h"
54 #include "gromacs/gmxlib/nonbonded/nb_kernel.h"
55 #include "gromacs/imd/imd.h"
56 #include "gromacs/legacyheaders/calcmu.h"
57 #include "gromacs/legacyheaders/chargegroup.h"
58 #include "gromacs/legacyheaders/constr.h"
59 #include "gromacs/legacyheaders/copyrite.h"
60 #include "gromacs/legacyheaders/disre.h"
61 #include "gromacs/legacyheaders/domdec.h"
62 #include "gromacs/legacyheaders/force.h"
63 #include "gromacs/legacyheaders/genborn.h"
64 #include "gromacs/legacyheaders/gmx_omp_nthreads.h"
65 #include "gromacs/legacyheaders/mdatoms.h"
66 #include "gromacs/legacyheaders/mdrun.h"
67 #include "gromacs/legacyheaders/names.h"
68 #include "gromacs/legacyheaders/network.h"
69 #include "gromacs/legacyheaders/nonbonded.h"
70 #include "gromacs/legacyheaders/nrnb.h"
71 #include "gromacs/legacyheaders/orires.h"
72 #include "gromacs/legacyheaders/pme.h"
73 #include "gromacs/legacyheaders/qmmm.h"
74 #include "gromacs/legacyheaders/txtdump.h"
75 #include "gromacs/legacyheaders/typedefs.h"
76 #include "gromacs/legacyheaders/update.h"
77 #include "gromacs/legacyheaders/types/commrec.h"
78 #include "gromacs/listed-forces/bonded.h"
79 #include "gromacs/math/units.h"
80 #include "gromacs/math/vec.h"
81 #include "gromacs/mdlib/nb_verlet.h"
82 #include "gromacs/mdlib/nbnxn_atomdata.h"
83 #include "gromacs/mdlib/nbnxn_search.h"
84 #include "gromacs/mdlib/nbnxn_cuda/nbnxn_cuda.h"
85 #include "gromacs/mdlib/nbnxn_cuda/nbnxn_cuda_data_mgmt.h"
86 #include "gromacs/mdlib/nbnxn_kernels/nbnxn_kernel_gpu_ref.h"
87 #include "gromacs/mdlib/nbnxn_kernels/nbnxn_kernel_ref.h"
88 #include "gromacs/mdlib/nbnxn_kernels/simd_2xnn/nbnxn_kernel_simd_2xnn.h"
89 #include "gromacs/mdlib/nbnxn_kernels/simd_4xn/nbnxn_kernel_simd_4xn.h"
90 #include "gromacs/pbcutil/ishift.h"
91 #include "gromacs/pbcutil/mshift.h"
92 #include "gromacs/pbcutil/pbc.h"
93 #include "gromacs/pulling/pull.h"
94 #include "gromacs/pulling/pull_rotation.h"
95 #include "gromacs/timing/wallcycle.h"
96 #include "gromacs/timing/walltime_accounting.h"
97 #include "gromacs/utility/cstringutil.h"
98 #include "gromacs/utility/gmxmpi.h"
99 #include "gromacs/utility/smalloc.h"
100
101 #include "adress.h"
102
103 void print_time(FILE                     *out,
104                 gmx_walltime_accounting_t walltime_accounting,
105                 gmx_int64_t               step,
106                 t_inputrec               *ir,
107                 t_commrec gmx_unused     *cr)
108 {
109     time_t finish;
110     char   timebuf[STRLEN];
111     double dt, elapsed_seconds, time_per_step;
112     char   buf[48];
113
114 #ifndef GMX_THREAD_MPI
115     if (!PAR(cr))
116 #endif
117     {
118         fprintf(out, "\r");
119     }
120     fprintf(out, "step %s", gmx_step_str(step, buf));
121     if ((step >= ir->nstlist))
122     {
123         double seconds_since_epoch = gmx_gettime();
124         elapsed_seconds = seconds_since_epoch - walltime_accounting_get_start_time_stamp(walltime_accounting);
125         time_per_step   = elapsed_seconds/(step - ir->init_step + 1);
126         dt              = (ir->nsteps + ir->init_step - step) * time_per_step;
127
128         if (ir->nsteps >= 0)
129         {
130             if (dt >= 300)
131             {
132                 finish = (time_t) (seconds_since_epoch + dt);
133                 gmx_ctime_r(&finish, timebuf, STRLEN);
134                 sprintf(buf, "%s", timebuf);
135                 buf[strlen(buf)-1] = '\0';
136                 fprintf(out, ", will finish %s", buf);
137             }
138             else
139             {
140                 fprintf(out, ", remaining wall clock time: %5d s          ", (int)dt);
141             }
142         }
143         else
144         {
145             fprintf(out, " performance: %.1f ns/day    ",
146                     ir->delta_t/1000*24*60*60/time_per_step);
147         }
148     }
149 #ifndef GMX_THREAD_MPI
150     if (PAR(cr))
151     {
152         fprintf(out, "\n");
153     }
154 #endif
155
156     fflush(out);
157 }
158
159 void print_date_and_time(FILE *fplog, int nodeid, const char *title,
160                          double the_time)
161 {
162     char   time_string[STRLEN];
163
164     if (!fplog)
165     {
166         return;
167     }
168
169     {
170         int    i;
171         char   timebuf[STRLEN];
172         time_t temp_time = (time_t) the_time;
173
174         gmx_ctime_r(&temp_time, timebuf, STRLEN);
175         for (i = 0; timebuf[i] >= ' '; i++)
176         {
177             time_string[i] = timebuf[i];
178         }
179         time_string[i] = '\0';
180     }
181
182     fprintf(fplog, "%s on rank %d %s\n", title, nodeid, time_string);
183 }
184
185 void print_start(FILE *fplog, t_commrec *cr,
186                  gmx_walltime_accounting_t walltime_accounting,
187                  const char *name)
188 {
189     char buf[STRLEN];
190
191     sprintf(buf, "Started %s", name);
192     print_date_and_time(fplog, cr->nodeid, buf,
193                         walltime_accounting_get_start_time_stamp(walltime_accounting));
194 }
195
196 static void sum_forces(int start, int end, rvec f[], rvec flr[])
197 {
198     int i;
199
200     if (gmx_debug_at)
201     {
202         pr_rvecs(debug, 0, "fsr", f+start, end-start);
203         pr_rvecs(debug, 0, "flr", flr+start, end-start);
204     }
205     for (i = start; (i < end); i++)
206     {
207         rvec_inc(f[i], flr[i]);
208     }
209 }
210
211 /*
212  * calc_f_el calculates forces due to an electric field.
213  *
214  * force is kJ mol^-1 nm^-1 = e * kJ mol^-1 nm^-1 / e
215  *
216  * Et[] contains the parameters for the time dependent
217  * part of the field (not yet used).
218  * Ex[] contains the parameters for
219  * the spatial dependent part of the field. You can have cool periodic
220  * fields in principle, but only a constant field is supported
221  * now.
222  * The function should return the energy due to the electric field
223  * (if any) but for now returns 0.
224  *
225  * WARNING:
226  * There can be problems with the virial.
227  * Since the field is not self-consistent this is unavoidable.
228  * For neutral molecules the virial is correct within this approximation.
229  * For neutral systems with many charged molecules the error is small.
230  * But for systems with a net charge or a few charged molecules
231  * the error can be significant when the field is high.
232  * Solution: implement a self-consitent electric field into PME.
233  */
234 static void calc_f_el(FILE *fp, int  start, int homenr,
235                       real charge[], rvec f[],
236                       t_cosines Ex[], t_cosines Et[], double t)
237 {
238     rvec Ext;
239     real t0;
240     int  i, m;
241
242     for (m = 0; (m < DIM); m++)
243     {
244         if (Et[m].n > 0)
245         {
246             if (Et[m].n == 3)
247             {
248                 t0     = Et[m].a[1];
249                 Ext[m] = cos(Et[m].a[0]*(t-t0))*exp(-sqr(t-t0)/(2.0*sqr(Et[m].a[2])));
250             }
251             else
252             {
253                 Ext[m] = cos(Et[m].a[0]*t);
254             }
255         }
256         else
257         {
258             Ext[m] = 1.0;
259         }
260         if (Ex[m].n > 0)
261         {
262             /* Convert the field strength from V/nm to MD-units */
263             Ext[m] *= Ex[m].a[0]*FIELDFAC;
264             for (i = start; (i < start+homenr); i++)
265             {
266                 f[i][m] += charge[i]*Ext[m];
267             }
268         }
269         else
270         {
271             Ext[m] = 0;
272         }
273     }
274     if (fp != NULL)
275     {
276         fprintf(fp, "%10g  %10g  %10g  %10g #FIELD\n", t,
277                 Ext[XX]/FIELDFAC, Ext[YY]/FIELDFAC, Ext[ZZ]/FIELDFAC);
278     }
279 }
280
281 static void calc_virial(int start, int homenr, rvec x[], rvec f[],
282                         tensor vir_part, t_graph *graph, matrix box,
283                         t_nrnb *nrnb, const t_forcerec *fr, int ePBC)
284 {
285     int    i, j;
286     tensor virtest;
287
288     /* The short-range virial from surrounding boxes */
289     clear_mat(vir_part);
290     calc_vir(SHIFTS, fr->shift_vec, fr->fshift, vir_part, ePBC == epbcSCREW, box);
291     inc_nrnb(nrnb, eNR_VIRIAL, SHIFTS);
292
293     /* Calculate partial virial, for local atoms only, based on short range.
294      * Total virial is computed in global_stat, called from do_md
295      */
296     f_calc_vir(start, start+homenr, x, f, vir_part, graph, box);
297     inc_nrnb(nrnb, eNR_VIRIAL, homenr);
298
299     /* Add position restraint contribution */
300     for (i = 0; i < DIM; i++)
301     {
302         vir_part[i][i] += fr->vir_diag_posres[i];
303     }
304
305     /* Add wall contribution */
306     for (i = 0; i < DIM; i++)
307     {
308         vir_part[i][ZZ] += fr->vir_wall_z[i];
309     }
310
311     if (debug)
312     {
313         pr_rvecs(debug, 0, "vir_part", vir_part, DIM);
314     }
315 }
316
317 static void posres_wrapper(int flags,
318                            t_inputrec *ir,
319                            t_nrnb *nrnb,
320                            gmx_localtop_t *top,
321                            matrix box, rvec x[],
322                            gmx_enerdata_t *enerd,
323                            real *lambda,
324                            t_forcerec *fr)
325 {
326     t_pbc pbc;
327     real  v, dvdl;
328     int   i;
329
330     /* Position restraints always require full pbc */
331     set_pbc(&pbc, ir->ePBC, box);
332     dvdl = 0;
333     v    = posres(top->idef.il[F_POSRES].nr, top->idef.il[F_POSRES].iatoms,
334                   top->idef.iparams_posres,
335                   (const rvec*)x, fr->f_novirsum, fr->vir_diag_posres,
336                   ir->ePBC == epbcNONE ? NULL : &pbc,
337                   lambda[efptRESTRAINT], &dvdl,
338                   fr->rc_scaling, fr->ePBC, fr->posres_com, fr->posres_comB);
339     enerd->term[F_POSRES] += v;
340     /* If just the force constant changes, the FEP term is linear,
341      * but if k changes, it is not.
342      */
343     enerd->dvdl_nonlin[efptRESTRAINT] += dvdl;
344     inc_nrnb(nrnb, eNR_POSRES, top->idef.il[F_POSRES].nr/2);
345
346     if ((ir->fepvals->n_lambda > 0) && (flags & GMX_FORCE_DHDL))
347     {
348         for (i = 0; i < enerd->n_lambda; i++)
349         {
350             real dvdl_dum, lambda_dum;
351
352             lambda_dum = (i == 0 ? lambda[efptRESTRAINT] : ir->fepvals->all_lambda[efptRESTRAINT][i-1]);
353             v          = posres(top->idef.il[F_POSRES].nr, top->idef.il[F_POSRES].iatoms,
354                                 top->idef.iparams_posres,
355                                 (const rvec*)x, NULL, NULL,
356                                 ir->ePBC == epbcNONE ? NULL : &pbc, lambda_dum, &dvdl,
357                                 fr->rc_scaling, fr->ePBC, fr->posres_com, fr->posres_comB);
358             enerd->enerpart_lambda[i] += v;
359         }
360     }
361 }
362
363 static void fbposres_wrapper(t_inputrec *ir,
364                              t_nrnb *nrnb,
365                              gmx_localtop_t *top,
366                              matrix box, rvec x[],
367                              gmx_enerdata_t *enerd,
368                              t_forcerec *fr)
369 {
370     t_pbc pbc;
371     real  v;
372
373     /* Flat-bottomed position restraints always require full pbc */
374     set_pbc(&pbc, ir->ePBC, box);
375     v = fbposres(top->idef.il[F_FBPOSRES].nr, top->idef.il[F_FBPOSRES].iatoms,
376                  top->idef.iparams_fbposres,
377                  (const rvec*)x, fr->f_novirsum, fr->vir_diag_posres,
378                  ir->ePBC == epbcNONE ? NULL : &pbc,
379                  fr->rc_scaling, fr->ePBC, fr->posres_com);
380     enerd->term[F_FBPOSRES] += v;
381     inc_nrnb(nrnb, eNR_FBPOSRES, top->idef.il[F_FBPOSRES].nr/2);
382 }
383
384 static void pull_potential_wrapper(t_commrec *cr,
385                                    t_inputrec *ir,
386                                    matrix box, rvec x[],
387                                    rvec f[],
388                                    tensor vir_force,
389                                    t_mdatoms *mdatoms,
390                                    gmx_enerdata_t *enerd,
391                                    real *lambda,
392                                    double t,
393                                    gmx_wallcycle_t wcycle)
394 {
395     t_pbc  pbc;
396     real   dvdl;
397
398     /* Calculate the center of mass forces, this requires communication,
399      * which is why pull_potential is called close to other communication.
400      * The virial contribution is calculated directly,
401      * which is why we call pull_potential after calc_virial.
402      */
403     wallcycle_start(wcycle, ewcPULLPOT);
404     set_pbc(&pbc, ir->ePBC, box);
405     dvdl                     = 0;
406     enerd->term[F_COM_PULL] +=
407         pull_potential(ir->ePull, ir->pull, mdatoms, &pbc,
408                        cr, t, lambda[efptRESTRAINT], x, f, vir_force, &dvdl);
409     enerd->dvdl_lin[efptRESTRAINT] += dvdl;
410     wallcycle_stop(wcycle, ewcPULLPOT);
411 }
412
413 static void pme_receive_force_ener(t_commrec      *cr,
414                                    gmx_wallcycle_t wcycle,
415                                    gmx_enerdata_t *enerd,
416                                    t_forcerec     *fr)
417 {
418     real   e_q, e_lj, v, dvdl_q, dvdl_lj;
419     float  cycles_ppdpme, cycles_seppme;
420
421     cycles_ppdpme = wallcycle_stop(wcycle, ewcPPDURINGPME);
422     dd_cycles_add(cr->dd, cycles_ppdpme, ddCyclPPduringPME);
423
424     /* In case of node-splitting, the PP nodes receive the long-range
425      * forces, virial and energy from the PME nodes here.
426      */
427     wallcycle_start(wcycle, ewcPP_PMEWAITRECVF);
428     dvdl_q  = 0;
429     dvdl_lj = 0;
430     gmx_pme_receive_f(cr, fr->f_novirsum, fr->vir_el_recip, &e_q,
431                       fr->vir_lj_recip, &e_lj, &dvdl_q, &dvdl_lj,
432                       &cycles_seppme);
433     enerd->term[F_COUL_RECIP] += e_q;
434     enerd->term[F_LJ_RECIP]   += e_lj;
435     enerd->dvdl_lin[efptCOUL] += dvdl_q;
436     enerd->dvdl_lin[efptVDW]  += dvdl_lj;
437
438     if (wcycle)
439     {
440         dd_cycles_add(cr->dd, cycles_seppme, ddCyclPME);
441     }
442     wallcycle_stop(wcycle, ewcPP_PMEWAITRECVF);
443 }
444
445 static void print_large_forces(FILE *fp, t_mdatoms *md, t_commrec *cr,
446                                gmx_int64_t step, real pforce, rvec *x, rvec *f)
447 {
448     int  i;
449     real pf2, fn2;
450     char buf[STEPSTRSIZE];
451
452     pf2 = sqr(pforce);
453     for (i = 0; i < md->homenr; i++)
454     {
455         fn2 = norm2(f[i]);
456         /* We also catch NAN, if the compiler does not optimize this away. */
457         if (fn2 >= pf2 || fn2 != fn2)
458         {
459             fprintf(fp, "step %s  atom %6d  x %8.3f %8.3f %8.3f  force %12.5e\n",
460                     gmx_step_str(step, buf),
461                     ddglatnr(cr->dd, i), x[i][XX], x[i][YY], x[i][ZZ], sqrt(fn2));
462         }
463     }
464 }
465
466 static void post_process_forces(t_commrec *cr,
467                                 gmx_int64_t step,
468                                 t_nrnb *nrnb, gmx_wallcycle_t wcycle,
469                                 gmx_localtop_t *top,
470                                 matrix box, rvec x[],
471                                 rvec f[],
472                                 tensor vir_force,
473                                 t_mdatoms *mdatoms,
474                                 t_graph *graph,
475                                 t_forcerec *fr, gmx_vsite_t *vsite,
476                                 int flags)
477 {
478     if (fr->bF_NoVirSum)
479     {
480         if (vsite)
481         {
482             /* Spread the mesh force on virtual sites to the other particles...
483              * This is parallellized. MPI communication is performed
484              * if the constructing atoms aren't local.
485              */
486             wallcycle_start(wcycle, ewcVSITESPREAD);
487             spread_vsite_f(vsite, x, fr->f_novirsum, NULL,
488                            (flags & GMX_FORCE_VIRIAL), fr->vir_el_recip,
489                            nrnb,
490                            &top->idef, fr->ePBC, fr->bMolPBC, graph, box, cr);
491             wallcycle_stop(wcycle, ewcVSITESPREAD);
492         }
493         if (flags & GMX_FORCE_VIRIAL)
494         {
495             /* Now add the forces, this is local */
496             if (fr->bDomDec)
497             {
498                 sum_forces(0, fr->f_novirsum_n, f, fr->f_novirsum);
499             }
500             else
501             {
502                 sum_forces(0, mdatoms->homenr,
503                            f, fr->f_novirsum);
504             }
505             if (EEL_FULL(fr->eeltype))
506             {
507                 /* Add the mesh contribution to the virial */
508                 m_add(vir_force, fr->vir_el_recip, vir_force);
509             }
510             if (EVDW_PME(fr->vdwtype))
511             {
512                 /* Add the mesh contribution to the virial */
513                 m_add(vir_force, fr->vir_lj_recip, vir_force);
514             }
515             if (debug)
516             {
517                 pr_rvecs(debug, 0, "vir_force", vir_force, DIM);
518             }
519         }
520     }
521
522     if (fr->print_force >= 0)
523     {
524         print_large_forces(stderr, mdatoms, cr, step, fr->print_force, x, f);
525     }
526 }
527
528 static void do_nb_verlet(t_forcerec *fr,
529                          interaction_const_t *ic,
530                          gmx_enerdata_t *enerd,
531                          int flags, int ilocality,
532                          int clearF,
533                          t_nrnb *nrnb,
534                          gmx_wallcycle_t wcycle)
535 {
536     int                        nnbl, kernel_type, enr_nbnxn_kernel_ljc, enr_nbnxn_kernel_lj;
537     char                      *env;
538     nonbonded_verlet_group_t  *nbvg;
539     gmx_bool                   bCUDA;
540
541     if (!(flags & GMX_FORCE_NONBONDED))
542     {
543         /* skip non-bonded calculation */
544         return;
545     }
546
547     nbvg = &fr->nbv->grp[ilocality];
548
549     /* CUDA kernel launch overhead is already timed separately */
550     if (fr->cutoff_scheme != ecutsVERLET)
551     {
552         gmx_incons("Invalid cut-off scheme passed!");
553     }
554
555     bCUDA = (nbvg->kernel_type == nbnxnk8x8x8_CUDA);
556
557     if (!bCUDA)
558     {
559         wallcycle_sub_start(wcycle, ewcsNONBONDED);
560     }
561     switch (nbvg->kernel_type)
562     {
563         case nbnxnk4x4_PlainC:
564             nbnxn_kernel_ref(&nbvg->nbl_lists,
565                              nbvg->nbat, ic,
566                              fr->shift_vec,
567                              flags,
568                              clearF,
569                              fr->fshift[0],
570                              enerd->grpp.ener[egCOULSR],
571                              fr->bBHAM ?
572                              enerd->grpp.ener[egBHAMSR] :
573                              enerd->grpp.ener[egLJSR]);
574             break;
575
576         case nbnxnk4xN_SIMD_4xN:
577             nbnxn_kernel_simd_4xn(&nbvg->nbl_lists,
578                                   nbvg->nbat, ic,
579                                   nbvg->ewald_excl,
580                                   fr->shift_vec,
581                                   flags,
582                                   clearF,
583                                   fr->fshift[0],
584                                   enerd->grpp.ener[egCOULSR],
585                                   fr->bBHAM ?
586                                   enerd->grpp.ener[egBHAMSR] :
587                                   enerd->grpp.ener[egLJSR]);
588             break;
589         case nbnxnk4xN_SIMD_2xNN:
590             nbnxn_kernel_simd_2xnn(&nbvg->nbl_lists,
591                                    nbvg->nbat, ic,
592                                    nbvg->ewald_excl,
593                                    fr->shift_vec,
594                                    flags,
595                                    clearF,
596                                    fr->fshift[0],
597                                    enerd->grpp.ener[egCOULSR],
598                                    fr->bBHAM ?
599                                    enerd->grpp.ener[egBHAMSR] :
600                                    enerd->grpp.ener[egLJSR]);
601             break;
602
603         case nbnxnk8x8x8_CUDA:
604             nbnxn_cuda_launch_kernel(fr->nbv->cu_nbv, nbvg->nbat, flags, ilocality);
605             break;
606
607         case nbnxnk8x8x8_PlainC:
608             nbnxn_kernel_gpu_ref(nbvg->nbl_lists.nbl[0],
609                                  nbvg->nbat, ic,
610                                  fr->shift_vec,
611                                  flags,
612                                  clearF,
613                                  nbvg->nbat->out[0].f,
614                                  fr->fshift[0],
615                                  enerd->grpp.ener[egCOULSR],
616                                  fr->bBHAM ?
617                                  enerd->grpp.ener[egBHAMSR] :
618                                  enerd->grpp.ener[egLJSR]);
619             break;
620
621         default:
622             gmx_incons("Invalid nonbonded kernel type passed!");
623
624     }
625     if (!bCUDA)
626     {
627         wallcycle_sub_stop(wcycle, ewcsNONBONDED);
628     }
629
630     if (EEL_RF(ic->eeltype) || ic->eeltype == eelCUT)
631     {
632         enr_nbnxn_kernel_ljc = eNR_NBNXN_LJ_RF;
633     }
634     else if ((!bCUDA && nbvg->ewald_excl == ewaldexclAnalytical) ||
635              (bCUDA && nbnxn_cuda_is_kernel_ewald_analytical(fr->nbv->cu_nbv)))
636     {
637         enr_nbnxn_kernel_ljc = eNR_NBNXN_LJ_EWALD;
638     }
639     else
640     {
641         enr_nbnxn_kernel_ljc = eNR_NBNXN_LJ_TAB;
642     }
643     enr_nbnxn_kernel_lj = eNR_NBNXN_LJ;
644     if (flags & GMX_FORCE_ENERGY)
645     {
646         /* In eNR_??? the nbnxn F+E kernels are always the F kernel + 1 */
647         enr_nbnxn_kernel_ljc += 1;
648         enr_nbnxn_kernel_lj  += 1;
649     }
650
651     inc_nrnb(nrnb, enr_nbnxn_kernel_ljc,
652              nbvg->nbl_lists.natpair_ljq);
653     inc_nrnb(nrnb, enr_nbnxn_kernel_lj,
654              nbvg->nbl_lists.natpair_lj);
655     /* The Coulomb-only kernels are offset -eNR_NBNXN_LJ_RF+eNR_NBNXN_RF */
656     inc_nrnb(nrnb, enr_nbnxn_kernel_ljc-eNR_NBNXN_LJ_RF+eNR_NBNXN_RF,
657              nbvg->nbl_lists.natpair_q);
658
659     if (ic->vdw_modifier == eintmodFORCESWITCH)
660     {
661         /* We add up the switch cost separately */
662         inc_nrnb(nrnb, eNR_NBNXN_ADD_LJ_FSW+((flags & GMX_FORCE_ENERGY) ? 1 : 0),
663                  nbvg->nbl_lists.natpair_ljq + nbvg->nbl_lists.natpair_lj);
664     }
665     if (ic->vdw_modifier == eintmodPOTSWITCH)
666     {
667         /* We add up the switch cost separately */
668         inc_nrnb(nrnb, eNR_NBNXN_ADD_LJ_PSW+((flags & GMX_FORCE_ENERGY) ? 1 : 0),
669                  nbvg->nbl_lists.natpair_ljq + nbvg->nbl_lists.natpair_lj);
670     }
671     if (ic->vdwtype == evdwPME)
672     {
673         /* We add up the LJ Ewald cost separately */
674         inc_nrnb(nrnb, eNR_NBNXN_ADD_LJ_EWALD+((flags & GMX_FORCE_ENERGY) ? 1 : 0),
675                  nbvg->nbl_lists.natpair_ljq + nbvg->nbl_lists.natpair_lj);
676     }
677 }
678
679 static void do_nb_verlet_fep(nbnxn_pairlist_set_t *nbl_lists,
680                              t_forcerec           *fr,
681                              rvec                  x[],
682                              rvec                  f[],
683                              t_mdatoms            *mdatoms,
684                              t_lambda             *fepvals,
685                              real                 *lambda,
686                              gmx_enerdata_t       *enerd,
687                              int                   flags,
688                              t_nrnb               *nrnb,
689                              gmx_wallcycle_t       wcycle)
690 {
691     int              donb_flags;
692     nb_kernel_data_t kernel_data;
693     real             lam_i[efptNR];
694     real             dvdl_nb[efptNR];
695     int              th;
696     int              i, j;
697
698     donb_flags = 0;
699     /* Add short-range interactions */
700     donb_flags |= GMX_NONBONDED_DO_SR;
701
702     /* Currently all group scheme kernels always calculate (shift-)forces */
703     if (flags & GMX_FORCE_FORCES)
704     {
705         donb_flags |= GMX_NONBONDED_DO_FORCE;
706     }
707     if (flags & GMX_FORCE_VIRIAL)
708     {
709         donb_flags |= GMX_NONBONDED_DO_SHIFTFORCE;
710     }
711     if (flags & GMX_FORCE_ENERGY)
712     {
713         donb_flags |= GMX_NONBONDED_DO_POTENTIAL;
714     }
715     if (flags & GMX_FORCE_DO_LR)
716     {
717         donb_flags |= GMX_NONBONDED_DO_LR;
718     }
719
720     kernel_data.flags  = donb_flags;
721     kernel_data.lambda = lambda;
722     kernel_data.dvdl   = dvdl_nb;
723
724     kernel_data.energygrp_elec = enerd->grpp.ener[egCOULSR];
725     kernel_data.energygrp_vdw  = enerd->grpp.ener[egLJSR];
726
727     /* reset free energy components */
728     for (i = 0; i < efptNR; i++)
729     {
730         dvdl_nb[i]  = 0;
731     }
732
733     assert(gmx_omp_nthreads_get(emntNonbonded) == nbl_lists->nnbl);
734
735     wallcycle_sub_start(wcycle, ewcsNONBONDED);
736 #pragma omp parallel for schedule(static) num_threads(nbl_lists->nnbl)
737     for (th = 0; th < nbl_lists->nnbl; th++)
738     {
739         gmx_nb_free_energy_kernel(nbl_lists->nbl_fep[th],
740                                   x, f, fr, mdatoms, &kernel_data, nrnb);
741     }
742
743     if (fepvals->sc_alpha != 0)
744     {
745         enerd->dvdl_nonlin[efptVDW]  += dvdl_nb[efptVDW];
746         enerd->dvdl_nonlin[efptCOUL] += dvdl_nb[efptCOUL];
747     }
748     else
749     {
750         enerd->dvdl_lin[efptVDW]  += dvdl_nb[efptVDW];
751         enerd->dvdl_lin[efptCOUL] += dvdl_nb[efptCOUL];
752     }
753
754     /* If we do foreign lambda and we have soft-core interactions
755      * we have to recalculate the (non-linear) energies contributions.
756      */
757     if (fepvals->n_lambda > 0 && (flags & GMX_FORCE_DHDL) && fepvals->sc_alpha != 0)
758     {
759         kernel_data.flags          = (donb_flags & ~(GMX_NONBONDED_DO_FORCE | GMX_NONBONDED_DO_SHIFTFORCE)) | GMX_NONBONDED_DO_FOREIGNLAMBDA;
760         kernel_data.lambda         = lam_i;
761         kernel_data.energygrp_elec = enerd->foreign_grpp.ener[egCOULSR];
762         kernel_data.energygrp_vdw  = enerd->foreign_grpp.ener[egLJSR];
763         /* Note that we add to kernel_data.dvdl, but ignore the result */
764
765         for (i = 0; i < enerd->n_lambda; i++)
766         {
767             for (j = 0; j < efptNR; j++)
768             {
769                 lam_i[j] = (i == 0 ? lambda[j] : fepvals->all_lambda[j][i-1]);
770             }
771             reset_foreign_enerdata(enerd);
772 #pragma omp parallel for schedule(static) num_threads(nbl_lists->nnbl)
773             for (th = 0; th < nbl_lists->nnbl; th++)
774             {
775                 gmx_nb_free_energy_kernel(nbl_lists->nbl_fep[th],
776                                           x, f, fr, mdatoms, &kernel_data, nrnb);
777             }
778
779             sum_epot(&(enerd->foreign_grpp), enerd->foreign_term);
780             enerd->enerpart_lambda[i] += enerd->foreign_term[F_EPOT];
781         }
782     }
783
784     wallcycle_sub_stop(wcycle, ewcsNONBONDED);
785 }
786
787 gmx_bool use_GPU(const nonbonded_verlet_t *nbv)
788 {
789     return nbv != NULL && nbv->bUseGPU;
790 }
791
792 void do_force_cutsVERLET(FILE *fplog, t_commrec *cr,
793                          t_inputrec *inputrec,
794                          gmx_int64_t step, t_nrnb *nrnb, gmx_wallcycle_t wcycle,
795                          gmx_localtop_t *top,
796                          gmx_groups_t gmx_unused *groups,
797                          matrix box, rvec x[], history_t *hist,
798                          rvec f[],
799                          tensor vir_force,
800                          t_mdatoms *mdatoms,
801                          gmx_enerdata_t *enerd, t_fcdata *fcd,
802                          real *lambda, t_graph *graph,
803                          t_forcerec *fr, interaction_const_t *ic,
804                          gmx_vsite_t *vsite, rvec mu_tot,
805                          double t, FILE *field, gmx_edsam_t ed,
806                          gmx_bool bBornRadii,
807                          int flags)
808 {
809     int                 cg0, cg1, i, j;
810     int                 start, homenr;
811     int                 nb_kernel_type;
812     double              mu[2*DIM];
813     gmx_bool            bStateChanged, bNS, bFillGrid, bCalcCGCM, bBS;
814     gmx_bool            bDoLongRange, bDoForces, bSepLRF, bUseGPU, bUseOrEmulGPU;
815     gmx_bool            bDiffKernels = FALSE;
816     matrix              boxs;
817     rvec                vzero, box_diag;
818     real                e, v, dvdl;
819     float               cycles_pme, cycles_force, cycles_wait_gpu;
820     nonbonded_verlet_t *nbv;
821
822     cycles_force    = 0;
823     cycles_wait_gpu = 0;
824     nbv             = fr->nbv;
825     nb_kernel_type  = fr->nbv->grp[0].kernel_type;
826
827     start  = 0;
828     homenr = mdatoms->homenr;
829
830     clear_mat(vir_force);
831
832     cg0 = 0;
833     if (DOMAINDECOMP(cr))
834     {
835         cg1 = cr->dd->ncg_tot;
836     }
837     else
838     {
839         cg1 = top->cgs.nr;
840     }
841     if (fr->n_tpi > 0)
842     {
843         cg1--;
844     }
845
846     bStateChanged = (flags & GMX_FORCE_STATECHANGED);
847     bNS           = (flags & GMX_FORCE_NS) && (fr->bAllvsAll == FALSE);
848     bFillGrid     = (bNS && bStateChanged);
849     bCalcCGCM     = (bFillGrid && !DOMAINDECOMP(cr));
850     bDoLongRange  = (fr->bTwinRange && bNS && (flags & GMX_FORCE_DO_LR));
851     bDoForces     = (flags & GMX_FORCE_FORCES);
852     bSepLRF       = (bDoLongRange && bDoForces && (flags & GMX_FORCE_SEPLRF));
853     bUseGPU       = fr->nbv->bUseGPU;
854     bUseOrEmulGPU = bUseGPU || (nbv->grp[0].kernel_type == nbnxnk8x8x8_PlainC);
855
856     if (bStateChanged)
857     {
858         update_forcerec(fr, box);
859
860         if (NEED_MUTOT(*inputrec))
861         {
862             /* Calculate total (local) dipole moment in a temporary common array.
863              * This makes it possible to sum them over nodes faster.
864              */
865             calc_mu(start, homenr,
866                     x, mdatoms->chargeA, mdatoms->chargeB, mdatoms->nChargePerturbed,
867                     mu, mu+DIM);
868         }
869     }
870
871     if (fr->ePBC != epbcNONE)
872     {
873         /* Compute shift vectors every step,
874          * because of pressure coupling or box deformation!
875          */
876         if ((flags & GMX_FORCE_DYNAMICBOX) && bStateChanged)
877         {
878             calc_shifts(box, fr->shift_vec);
879         }
880
881         if (bCalcCGCM)
882         {
883             put_atoms_in_box_omp(fr->ePBC, box, homenr, x);
884             inc_nrnb(nrnb, eNR_SHIFTX, homenr);
885         }
886         else if (EI_ENERGY_MINIMIZATION(inputrec->eI) && graph)
887         {
888             unshift_self(graph, box, x);
889         }
890     }
891
892     nbnxn_atomdata_copy_shiftvec(flags & GMX_FORCE_DYNAMICBOX,
893                                  fr->shift_vec, nbv->grp[0].nbat);
894
895 #ifdef GMX_MPI
896     if (!(cr->duty & DUTY_PME))
897     {
898         /* Send particle coordinates to the pme nodes.
899          * Since this is only implemented for domain decomposition
900          * and domain decomposition does not use the graph,
901          * we do not need to worry about shifting.
902          */
903
904         int pme_flags = 0;
905
906         wallcycle_start(wcycle, ewcPP_PMESENDX);
907
908         bBS = (inputrec->nwall == 2);
909         if (bBS)
910         {
911             copy_mat(box, boxs);
912             svmul(inputrec->wall_ewald_zfac, boxs[ZZ], boxs[ZZ]);
913         }
914
915         if (EEL_PME(fr->eeltype))
916         {
917             pme_flags |= GMX_PME_DO_COULOMB;
918         }
919
920         if (EVDW_PME(fr->vdwtype))
921         {
922             pme_flags |= GMX_PME_DO_LJ;
923         }
924
925         gmx_pme_send_coordinates(cr, bBS ? boxs : box, x,
926                                  mdatoms->nChargePerturbed, mdatoms->nTypePerturbed, lambda[efptCOUL], lambda[efptVDW],
927                                  (flags & (GMX_FORCE_VIRIAL | GMX_FORCE_ENERGY)),
928                                  pme_flags, step);
929
930         wallcycle_stop(wcycle, ewcPP_PMESENDX);
931     }
932 #endif /* GMX_MPI */
933
934     /* do gridding for pair search */
935     if (bNS)
936     {
937         if (graph && bStateChanged)
938         {
939             /* Calculate intramolecular shift vectors to make molecules whole */
940             mk_mshift(fplog, graph, fr->ePBC, box, x);
941         }
942
943         clear_rvec(vzero);
944         box_diag[XX] = box[XX][XX];
945         box_diag[YY] = box[YY][YY];
946         box_diag[ZZ] = box[ZZ][ZZ];
947
948         wallcycle_start(wcycle, ewcNS);
949         if (!fr->bDomDec)
950         {
951             wallcycle_sub_start(wcycle, ewcsNBS_GRID_LOCAL);
952             nbnxn_put_on_grid(nbv->nbs, fr->ePBC, box,
953                               0, vzero, box_diag,
954                               0, mdatoms->homenr, -1, fr->cginfo, x,
955                               0, NULL,
956                               nbv->grp[eintLocal].kernel_type,
957                               nbv->grp[eintLocal].nbat);
958             wallcycle_sub_stop(wcycle, ewcsNBS_GRID_LOCAL);
959         }
960         else
961         {
962             wallcycle_sub_start(wcycle, ewcsNBS_GRID_NONLOCAL);
963             nbnxn_put_on_grid_nonlocal(nbv->nbs, domdec_zones(cr->dd),
964                                        fr->cginfo, x,
965                                        nbv->grp[eintNonlocal].kernel_type,
966                                        nbv->grp[eintNonlocal].nbat);
967             wallcycle_sub_stop(wcycle, ewcsNBS_GRID_NONLOCAL);
968         }
969
970         if (nbv->ngrp == 1 ||
971             nbv->grp[eintNonlocal].nbat == nbv->grp[eintLocal].nbat)
972         {
973             nbnxn_atomdata_set(nbv->grp[eintLocal].nbat, eatAll,
974                                nbv->nbs, mdatoms, fr->cginfo);
975         }
976         else
977         {
978             nbnxn_atomdata_set(nbv->grp[eintLocal].nbat, eatLocal,
979                                nbv->nbs, mdatoms, fr->cginfo);
980             nbnxn_atomdata_set(nbv->grp[eintNonlocal].nbat, eatAll,
981                                nbv->nbs, mdatoms, fr->cginfo);
982         }
983         wallcycle_stop(wcycle, ewcNS);
984     }
985
986     /* initialize the GPU atom data and copy shift vector */
987     if (bUseGPU)
988     {
989         if (bNS)
990         {
991             wallcycle_start_nocount(wcycle, ewcLAUNCH_GPU_NB);
992             nbnxn_cuda_init_atomdata(nbv->cu_nbv, nbv->grp[eintLocal].nbat);
993             wallcycle_stop(wcycle, ewcLAUNCH_GPU_NB);
994         }
995
996         wallcycle_start_nocount(wcycle, ewcLAUNCH_GPU_NB);
997         nbnxn_cuda_upload_shiftvec(nbv->cu_nbv, nbv->grp[eintLocal].nbat);
998         wallcycle_stop(wcycle, ewcLAUNCH_GPU_NB);
999     }
1000
1001     /* do local pair search */
1002     if (bNS)
1003     {
1004         wallcycle_start_nocount(wcycle, ewcNS);
1005         wallcycle_sub_start(wcycle, ewcsNBS_SEARCH_LOCAL);
1006         nbnxn_make_pairlist(nbv->nbs, nbv->grp[eintLocal].nbat,
1007                             &top->excls,
1008                             ic->rlist,
1009                             nbv->min_ci_balanced,
1010                             &nbv->grp[eintLocal].nbl_lists,
1011                             eintLocal,
1012                             nbv->grp[eintLocal].kernel_type,
1013                             nrnb);
1014         wallcycle_sub_stop(wcycle, ewcsNBS_SEARCH_LOCAL);
1015
1016         if (bUseGPU)
1017         {
1018             /* initialize local pair-list on the GPU */
1019             nbnxn_cuda_init_pairlist(nbv->cu_nbv,
1020                                      nbv->grp[eintLocal].nbl_lists.nbl[0],
1021                                      eintLocal);
1022         }
1023         wallcycle_stop(wcycle, ewcNS);
1024     }
1025     else
1026     {
1027         wallcycle_start(wcycle, ewcNB_XF_BUF_OPS);
1028         wallcycle_sub_start(wcycle, ewcsNB_X_BUF_OPS);
1029         nbnxn_atomdata_copy_x_to_nbat_x(nbv->nbs, eatLocal, FALSE, x,
1030                                         nbv->grp[eintLocal].nbat);
1031         wallcycle_sub_stop(wcycle, ewcsNB_X_BUF_OPS);
1032         wallcycle_stop(wcycle, ewcNB_XF_BUF_OPS);
1033     }
1034
1035     if (bUseGPU)
1036     {
1037         wallcycle_start(wcycle, ewcLAUNCH_GPU_NB);
1038         /* launch local nonbonded F on GPU */
1039         do_nb_verlet(fr, ic, enerd, flags, eintLocal, enbvClearFNo,
1040                      nrnb, wcycle);
1041         wallcycle_stop(wcycle, ewcLAUNCH_GPU_NB);
1042     }
1043
1044     /* Communicate coordinates and sum dipole if necessary +
1045        do non-local pair search */
1046     if (DOMAINDECOMP(cr))
1047     {
1048         bDiffKernels = (nbv->grp[eintNonlocal].kernel_type !=
1049                         nbv->grp[eintLocal].kernel_type);
1050
1051         if (bDiffKernels)
1052         {
1053             /* With GPU+CPU non-bonded calculations we need to copy
1054              * the local coordinates to the non-local nbat struct
1055              * (in CPU format) as the non-local kernel call also
1056              * calculates the local - non-local interactions.
1057              */
1058             wallcycle_start(wcycle, ewcNB_XF_BUF_OPS);
1059             wallcycle_sub_start(wcycle, ewcsNB_X_BUF_OPS);
1060             nbnxn_atomdata_copy_x_to_nbat_x(nbv->nbs, eatLocal, TRUE, x,
1061                                             nbv->grp[eintNonlocal].nbat);
1062             wallcycle_sub_stop(wcycle, ewcsNB_X_BUF_OPS);
1063             wallcycle_stop(wcycle, ewcNB_XF_BUF_OPS);
1064         }
1065
1066         if (bNS)
1067         {
1068             wallcycle_start_nocount(wcycle, ewcNS);
1069             wallcycle_sub_start(wcycle, ewcsNBS_SEARCH_NONLOCAL);
1070
1071             if (bDiffKernels)
1072             {
1073                 nbnxn_grid_add_simple(nbv->nbs, nbv->grp[eintNonlocal].nbat);
1074             }
1075
1076             nbnxn_make_pairlist(nbv->nbs, nbv->grp[eintNonlocal].nbat,
1077                                 &top->excls,
1078                                 ic->rlist,
1079                                 nbv->min_ci_balanced,
1080                                 &nbv->grp[eintNonlocal].nbl_lists,
1081                                 eintNonlocal,
1082                                 nbv->grp[eintNonlocal].kernel_type,
1083                                 nrnb);
1084
1085             wallcycle_sub_stop(wcycle, ewcsNBS_SEARCH_NONLOCAL);
1086
1087             if (nbv->grp[eintNonlocal].kernel_type == nbnxnk8x8x8_CUDA)
1088             {
1089                 /* initialize non-local pair-list on the GPU */
1090                 nbnxn_cuda_init_pairlist(nbv->cu_nbv,
1091                                          nbv->grp[eintNonlocal].nbl_lists.nbl[0],
1092                                          eintNonlocal);
1093             }
1094             wallcycle_stop(wcycle, ewcNS);
1095         }
1096         else
1097         {
1098             wallcycle_start(wcycle, ewcMOVEX);
1099             dd_move_x(cr->dd, box, x);
1100
1101             /* When we don't need the total dipole we sum it in global_stat */
1102             if (bStateChanged && NEED_MUTOT(*inputrec))
1103             {
1104                 gmx_sumd(2*DIM, mu, cr);
1105             }
1106             wallcycle_stop(wcycle, ewcMOVEX);
1107
1108             wallcycle_start(wcycle, ewcNB_XF_BUF_OPS);
1109             wallcycle_sub_start(wcycle, ewcsNB_X_BUF_OPS);
1110             nbnxn_atomdata_copy_x_to_nbat_x(nbv->nbs, eatNonlocal, FALSE, x,
1111                                             nbv->grp[eintNonlocal].nbat);
1112             wallcycle_sub_stop(wcycle, ewcsNB_X_BUF_OPS);
1113             cycles_force += wallcycle_stop(wcycle, ewcNB_XF_BUF_OPS);
1114         }
1115
1116         if (bUseGPU && !bDiffKernels)
1117         {
1118             wallcycle_start(wcycle, ewcLAUNCH_GPU_NB);
1119             /* launch non-local nonbonded F on GPU */
1120             do_nb_verlet(fr, ic, enerd, flags, eintNonlocal, enbvClearFNo,
1121                          nrnb, wcycle);
1122             cycles_force += wallcycle_stop(wcycle, ewcLAUNCH_GPU_NB);
1123         }
1124     }
1125
1126     if (bUseGPU)
1127     {
1128         /* launch D2H copy-back F */
1129         wallcycle_start_nocount(wcycle, ewcLAUNCH_GPU_NB);
1130         if (DOMAINDECOMP(cr) && !bDiffKernels)
1131         {
1132             nbnxn_cuda_launch_cpyback(nbv->cu_nbv, nbv->grp[eintNonlocal].nbat,
1133                                       flags, eatNonlocal);
1134         }
1135         nbnxn_cuda_launch_cpyback(nbv->cu_nbv, nbv->grp[eintLocal].nbat,
1136                                   flags, eatLocal);
1137         cycles_force += wallcycle_stop(wcycle, ewcLAUNCH_GPU_NB);
1138     }
1139
1140     if (bStateChanged && NEED_MUTOT(*inputrec))
1141     {
1142         if (PAR(cr))
1143         {
1144             gmx_sumd(2*DIM, mu, cr);
1145         }
1146
1147         for (i = 0; i < 2; i++)
1148         {
1149             for (j = 0; j < DIM; j++)
1150             {
1151                 fr->mu_tot[i][j] = mu[i*DIM + j];
1152             }
1153         }
1154     }
1155     if (fr->efep == efepNO)
1156     {
1157         copy_rvec(fr->mu_tot[0], mu_tot);
1158     }
1159     else
1160     {
1161         for (j = 0; j < DIM; j++)
1162         {
1163             mu_tot[j] =
1164                 (1.0 - lambda[efptCOUL])*fr->mu_tot[0][j] +
1165                 lambda[efptCOUL]*fr->mu_tot[1][j];
1166         }
1167     }
1168
1169     /* Reset energies */
1170     reset_enerdata(fr, bNS, enerd, MASTER(cr));
1171     clear_rvecs(SHIFTS, fr->fshift);
1172
1173     if (DOMAINDECOMP(cr) && !(cr->duty & DUTY_PME))
1174     {
1175         wallcycle_start(wcycle, ewcPPDURINGPME);
1176         dd_force_flop_start(cr->dd, nrnb);
1177     }
1178
1179     if (inputrec->bRot)
1180     {
1181         /* Enforced rotation has its own cycle counter that starts after the collective
1182          * coordinates have been communicated. It is added to ddCyclF to allow
1183          * for proper load-balancing */
1184         wallcycle_start(wcycle, ewcROT);
1185         do_rotation(cr, inputrec, box, x, t, step, wcycle, bNS);
1186         wallcycle_stop(wcycle, ewcROT);
1187     }
1188
1189     /* Start the force cycle counter.
1190      * This counter is stopped in do_forcelow_level.
1191      * No parallel communication should occur while this counter is running,
1192      * since that will interfere with the dynamic load balancing.
1193      */
1194     wallcycle_start(wcycle, ewcFORCE);
1195     if (bDoForces)
1196     {
1197         /* Reset forces for which the virial is calculated separately:
1198          * PME/Ewald forces if necessary */
1199         if (fr->bF_NoVirSum)
1200         {
1201             if (flags & GMX_FORCE_VIRIAL)
1202             {
1203                 fr->f_novirsum = fr->f_novirsum_alloc;
1204                 if (fr->bDomDec)
1205                 {
1206                     clear_rvecs(fr->f_novirsum_n, fr->f_novirsum);
1207                 }
1208                 else
1209                 {
1210                     clear_rvecs(homenr, fr->f_novirsum+start);
1211                 }
1212             }
1213             else
1214             {
1215                 /* We are not calculating the pressure so we do not need
1216                  * a separate array for forces that do not contribute
1217                  * to the pressure.
1218                  */
1219                 fr->f_novirsum = f;
1220             }
1221         }
1222
1223         /* Clear the short- and long-range forces */
1224         clear_rvecs(fr->natoms_force_constr, f);
1225         if (bSepLRF && do_per_step(step, inputrec->nstcalclr))
1226         {
1227             clear_rvecs(fr->natoms_force_constr, fr->f_twin);
1228         }
1229
1230         clear_rvec(fr->vir_diag_posres);
1231     }
1232
1233     if (inputrec->ePull == epullCONSTRAINT)
1234     {
1235         clear_pull_forces(inputrec->pull);
1236     }
1237
1238     /* We calculate the non-bonded forces, when done on the CPU, here.
1239      * We do this before calling do_force_lowlevel, because in that
1240      * function, the listed forces are calculated before PME, which
1241      * does communication.  With this order, non-bonded and listed
1242      * force calculation imbalance can be balanced out by the domain
1243      * decomposition load balancing.
1244      */
1245
1246     if (!bUseOrEmulGPU)
1247     {
1248         /* Maybe we should move this into do_force_lowlevel */
1249         do_nb_verlet(fr, ic, enerd, flags, eintLocal, enbvClearFYes,
1250                      nrnb, wcycle);
1251     }
1252
1253     if (fr->efep != efepNO)
1254     {
1255         /* Calculate the local and non-local free energy interactions here.
1256          * Happens here on the CPU both with and without GPU.
1257          */
1258         if (fr->nbv->grp[eintLocal].nbl_lists.nbl_fep[0]->nrj > 0)
1259         {
1260             do_nb_verlet_fep(&fr->nbv->grp[eintLocal].nbl_lists,
1261                              fr, x, f, mdatoms,
1262                              inputrec->fepvals, lambda,
1263                              enerd, flags, nrnb, wcycle);
1264         }
1265
1266         if (DOMAINDECOMP(cr) &&
1267             fr->nbv->grp[eintNonlocal].nbl_lists.nbl_fep[0]->nrj > 0)
1268         {
1269             do_nb_verlet_fep(&fr->nbv->grp[eintNonlocal].nbl_lists,
1270                              fr, x, f, mdatoms,
1271                              inputrec->fepvals, lambda,
1272                              enerd, flags, nrnb, wcycle);
1273         }
1274     }
1275
1276     if (!bUseOrEmulGPU || bDiffKernels)
1277     {
1278         int aloc;
1279
1280         if (DOMAINDECOMP(cr))
1281         {
1282             do_nb_verlet(fr, ic, enerd, flags, eintNonlocal,
1283                          bDiffKernels ? enbvClearFYes : enbvClearFNo,
1284                          nrnb, wcycle);
1285         }
1286
1287         if (!bUseOrEmulGPU)
1288         {
1289             aloc = eintLocal;
1290         }
1291         else
1292         {
1293             aloc = eintNonlocal;
1294         }
1295
1296         /* Add all the non-bonded force to the normal force array.
1297          * This can be split into a local a non-local part when overlapping
1298          * communication with calculation with domain decomposition.
1299          */
1300         cycles_force += wallcycle_stop(wcycle, ewcFORCE);
1301         wallcycle_start(wcycle, ewcNB_XF_BUF_OPS);
1302         wallcycle_sub_start(wcycle, ewcsNB_F_BUF_OPS);
1303         nbnxn_atomdata_add_nbat_f_to_f(nbv->nbs, eatAll, nbv->grp[aloc].nbat, f);
1304         wallcycle_sub_stop(wcycle, ewcsNB_F_BUF_OPS);
1305         cycles_force += wallcycle_stop(wcycle, ewcNB_XF_BUF_OPS);
1306         wallcycle_start_nocount(wcycle, ewcFORCE);
1307
1308         /* if there are multiple fshift output buffers reduce them */
1309         if ((flags & GMX_FORCE_VIRIAL) &&
1310             nbv->grp[aloc].nbl_lists.nnbl > 1)
1311         {
1312             nbnxn_atomdata_add_nbat_fshift_to_fshift(nbv->grp[aloc].nbat,
1313                                                      fr->fshift);
1314         }
1315     }
1316
1317     /* update QMMMrec, if necessary */
1318     if (fr->bQMMM)
1319     {
1320         update_QMMMrec(cr, fr, x, mdatoms, box, top);
1321     }
1322
1323     if ((flags & GMX_FORCE_LISTED) && top->idef.il[F_POSRES].nr > 0)
1324     {
1325         posres_wrapper(flags, inputrec, nrnb, top, box, x,
1326                        enerd, lambda, fr);
1327     }
1328
1329     if ((flags & GMX_FORCE_LISTED) && top->idef.il[F_FBPOSRES].nr > 0)
1330     {
1331         fbposres_wrapper(inputrec, nrnb, top, box, x, enerd, fr);
1332     }
1333
1334     /* Compute the bonded and non-bonded energies and optionally forces */
1335     do_force_lowlevel(fr, inputrec, &(top->idef),
1336                       cr, nrnb, wcycle, mdatoms,
1337                       x, hist, f, bSepLRF ? fr->f_twin : f, enerd, fcd, top, fr->born,
1338                       bBornRadii, box,
1339                       inputrec->fepvals, lambda, graph, &(top->excls), fr->mu_tot,
1340                       flags, &cycles_pme);
1341
1342     if (bSepLRF)
1343     {
1344         if (do_per_step(step, inputrec->nstcalclr))
1345         {
1346             /* Add the long range forces to the short range forces */
1347             for (i = 0; i < fr->natoms_force_constr; i++)
1348             {
1349                 rvec_add(fr->f_twin[i], f[i], f[i]);
1350             }
1351         }
1352     }
1353
1354     cycles_force += wallcycle_stop(wcycle, ewcFORCE);
1355
1356     if (ed)
1357     {
1358         do_flood(cr, inputrec, x, f, ed, box, step, bNS);
1359     }
1360
1361     if (bUseOrEmulGPU && !bDiffKernels)
1362     {
1363         /* wait for non-local forces (or calculate in emulation mode) */
1364         if (DOMAINDECOMP(cr))
1365         {
1366             if (bUseGPU)
1367             {
1368                 float cycles_tmp;
1369
1370                 wallcycle_start(wcycle, ewcWAIT_GPU_NB_NL);
1371                 nbnxn_cuda_wait_gpu(nbv->cu_nbv,
1372                                     nbv->grp[eintNonlocal].nbat,
1373                                     flags, eatNonlocal,
1374                                     enerd->grpp.ener[egLJSR], enerd->grpp.ener[egCOULSR],
1375                                     fr->fshift);
1376                 cycles_tmp       = wallcycle_stop(wcycle, ewcWAIT_GPU_NB_NL);
1377                 cycles_wait_gpu += cycles_tmp;
1378                 cycles_force    += cycles_tmp;
1379             }
1380             else
1381             {
1382                 wallcycle_start_nocount(wcycle, ewcFORCE);
1383                 do_nb_verlet(fr, ic, enerd, flags, eintNonlocal, enbvClearFYes,
1384                              nrnb, wcycle);
1385                 cycles_force += wallcycle_stop(wcycle, ewcFORCE);
1386             }
1387             wallcycle_start(wcycle, ewcNB_XF_BUF_OPS);
1388             wallcycle_sub_start(wcycle, ewcsNB_F_BUF_OPS);
1389             /* skip the reduction if there was no non-local work to do */
1390             if (nbv->grp[eintLocal].nbl_lists.nbl[0]->nsci > 0)
1391             {
1392                 nbnxn_atomdata_add_nbat_f_to_f(nbv->nbs, eatNonlocal,
1393                                                nbv->grp[eintNonlocal].nbat, f);
1394             }
1395             wallcycle_sub_stop(wcycle, ewcsNB_F_BUF_OPS);
1396             cycles_force += wallcycle_stop(wcycle, ewcNB_XF_BUF_OPS);
1397         }
1398     }
1399
1400     if (bDoForces && DOMAINDECOMP(cr))
1401     {
1402         if (bUseGPU)
1403         {
1404             /* We are done with the CPU compute, but the GPU local non-bonded
1405              * kernel can still be running while we communicate the forces.
1406              * We start a counter here, so we can, hopefully, time the rest
1407              * of the GPU kernel execution and data transfer.
1408              */
1409             wallcycle_start(wcycle, ewcWAIT_GPU_NB_L_EST);
1410         }
1411
1412         /* Communicate the forces */
1413         wallcycle_start(wcycle, ewcMOVEF);
1414         dd_move_f(cr->dd, f, fr->fshift);
1415         /* Do we need to communicate the separate force array
1416          * for terms that do not contribute to the single sum virial?
1417          * Position restraints and electric fields do not introduce
1418          * inter-cg forces, only full electrostatics methods do.
1419          * When we do not calculate the virial, fr->f_novirsum = f,
1420          * so we have already communicated these forces.
1421          */
1422         if (EEL_FULL(fr->eeltype) && cr->dd->n_intercg_excl &&
1423             (flags & GMX_FORCE_VIRIAL))
1424         {
1425             dd_move_f(cr->dd, fr->f_novirsum, NULL);
1426         }
1427         if (bSepLRF)
1428         {
1429             /* We should not update the shift forces here,
1430              * since f_twin is already included in f.
1431              */
1432             dd_move_f(cr->dd, fr->f_twin, NULL);
1433         }
1434         wallcycle_stop(wcycle, ewcMOVEF);
1435     }
1436
1437     if (bUseOrEmulGPU)
1438     {
1439         /* wait for local forces (or calculate in emulation mode) */
1440         if (bUseGPU)
1441         {
1442             float       cycles_tmp, cycles_wait_est;
1443             const float cuda_api_overhead_margin = 50000.0f; /* cycles */
1444
1445             wallcycle_start(wcycle, ewcWAIT_GPU_NB_L);
1446             nbnxn_cuda_wait_gpu(nbv->cu_nbv,
1447                                 nbv->grp[eintLocal].nbat,
1448                                 flags, eatLocal,
1449                                 enerd->grpp.ener[egLJSR], enerd->grpp.ener[egCOULSR],
1450                                 fr->fshift);
1451             cycles_tmp      = wallcycle_stop(wcycle, ewcWAIT_GPU_NB_L);
1452
1453             if (bDoForces && DOMAINDECOMP(cr))
1454             {
1455                 cycles_wait_est = wallcycle_stop(wcycle, ewcWAIT_GPU_NB_L_EST);
1456
1457                 if (cycles_tmp < cuda_api_overhead_margin)
1458                 {
1459                     /* We measured few cycles, it could be that the kernel
1460                      * and transfer finished earlier and there was no actual
1461                      * wait time, only API call overhead.
1462                      * Then the actual time could be anywhere between 0 and
1463                      * cycles_wait_est. As a compromise, we use half the time.
1464                      */
1465                     cycles_wait_est *= 0.5f;
1466                 }
1467             }
1468             else
1469             {
1470                 /* No force communication so we actually timed the wait */
1471                 cycles_wait_est = cycles_tmp;
1472             }
1473             /* Even though this is after dd_move_f, the actual task we are
1474              * waiting for runs asynchronously with dd_move_f and we usually
1475              * have nothing to balance it with, so we can and should add
1476              * the time to the force time for load balancing.
1477              */
1478             cycles_force    += cycles_wait_est;
1479             cycles_wait_gpu += cycles_wait_est;
1480
1481             /* now clear the GPU outputs while we finish the step on the CPU */
1482
1483             wallcycle_start_nocount(wcycle, ewcLAUNCH_GPU_NB);
1484             nbnxn_cuda_clear_outputs(nbv->cu_nbv, flags);
1485             wallcycle_stop(wcycle, ewcLAUNCH_GPU_NB);
1486         }
1487         else
1488         {
1489             wallcycle_start_nocount(wcycle, ewcFORCE);
1490             do_nb_verlet(fr, ic, enerd, flags, eintLocal,
1491                          DOMAINDECOMP(cr) ? enbvClearFNo : enbvClearFYes,
1492                          nrnb, wcycle);
1493             wallcycle_stop(wcycle, ewcFORCE);
1494         }
1495         wallcycle_start(wcycle, ewcNB_XF_BUF_OPS);
1496         wallcycle_sub_start(wcycle, ewcsNB_F_BUF_OPS);
1497         if (nbv->grp[eintLocal].nbl_lists.nbl[0]->nsci > 0)
1498         {
1499             /* skip the reduction if there was no non-local work to do */
1500             nbnxn_atomdata_add_nbat_f_to_f(nbv->nbs, eatLocal,
1501                                            nbv->grp[eintLocal].nbat, f);
1502         }
1503         wallcycle_sub_stop(wcycle, ewcsNB_F_BUF_OPS);
1504         wallcycle_stop(wcycle, ewcNB_XF_BUF_OPS);
1505     }
1506
1507     if (DOMAINDECOMP(cr))
1508     {
1509         dd_force_flop_stop(cr->dd, nrnb);
1510         if (wcycle)
1511         {
1512             dd_cycles_add(cr->dd, cycles_force-cycles_pme, ddCyclF);
1513             if (bUseGPU)
1514             {
1515                 dd_cycles_add(cr->dd, cycles_wait_gpu, ddCyclWaitGPU);
1516             }
1517         }
1518     }
1519
1520     if (bDoForces)
1521     {
1522         if (IR_ELEC_FIELD(*inputrec))
1523         {
1524             /* Compute forces due to electric field */
1525             calc_f_el(MASTER(cr) ? field : NULL,
1526                       start, homenr, mdatoms->chargeA, fr->f_novirsum,
1527                       inputrec->ex, inputrec->et, t);
1528         }
1529
1530         /* If we have NoVirSum forces, but we do not calculate the virial,
1531          * we sum fr->f_novirum=f later.
1532          */
1533         if (vsite && !(fr->bF_NoVirSum && !(flags & GMX_FORCE_VIRIAL)))
1534         {
1535             wallcycle_start(wcycle, ewcVSITESPREAD);
1536             spread_vsite_f(vsite, x, f, fr->fshift, FALSE, NULL, nrnb,
1537                            &top->idef, fr->ePBC, fr->bMolPBC, graph, box, cr);
1538             wallcycle_stop(wcycle, ewcVSITESPREAD);
1539
1540             if (bSepLRF)
1541             {
1542                 wallcycle_start(wcycle, ewcVSITESPREAD);
1543                 spread_vsite_f(vsite, x, fr->f_twin, NULL, FALSE, NULL,
1544                                nrnb,
1545                                &top->idef, fr->ePBC, fr->bMolPBC, graph, box, cr);
1546                 wallcycle_stop(wcycle, ewcVSITESPREAD);
1547             }
1548         }
1549
1550         if (flags & GMX_FORCE_VIRIAL)
1551         {
1552             /* Calculation of the virial must be done after vsites! */
1553             calc_virial(0, mdatoms->homenr, x, f,
1554                         vir_force, graph, box, nrnb, fr, inputrec->ePBC);
1555         }
1556     }
1557
1558     if (inputrec->ePull == epullUMBRELLA || inputrec->ePull == epullCONST_F)
1559     {
1560         /* Since the COM pulling is always done mass-weighted, no forces are
1561          * applied to vsites and this call can be done after vsite spreading.
1562          */
1563         pull_potential_wrapper(cr, inputrec, box, x,
1564                                f, vir_force, mdatoms, enerd, lambda, t,
1565                                wcycle);
1566     }
1567
1568     /* Add the forces from enforced rotation potentials (if any) */
1569     if (inputrec->bRot)
1570     {
1571         wallcycle_start(wcycle, ewcROTadd);
1572         enerd->term[F_COM_PULL] += add_rot_forces(inputrec->rot, f, cr, step, t);
1573         wallcycle_stop(wcycle, ewcROTadd);
1574     }
1575
1576     /* Add forces from interactive molecular dynamics (IMD), if bIMD == TRUE. */
1577     IMD_apply_forces(inputrec->bIMD, inputrec->imd, cr, f, wcycle);
1578
1579     if (PAR(cr) && !(cr->duty & DUTY_PME))
1580     {
1581         /* In case of node-splitting, the PP nodes receive the long-range
1582          * forces, virial and energy from the PME nodes here.
1583          */
1584         pme_receive_force_ener(cr, wcycle, enerd, fr);
1585     }
1586
1587     if (bDoForces)
1588     {
1589         post_process_forces(cr, step, nrnb, wcycle,
1590                             top, box, x, f, vir_force, mdatoms, graph, fr, vsite,
1591                             flags);
1592     }
1593
1594     /* Sum the potential energy terms from group contributions */
1595     sum_epot(&(enerd->grpp), enerd->term);
1596 }
1597
1598 void do_force_cutsGROUP(FILE *fplog, t_commrec *cr,
1599                         t_inputrec *inputrec,
1600                         gmx_int64_t step, t_nrnb *nrnb, gmx_wallcycle_t wcycle,
1601                         gmx_localtop_t *top,
1602                         gmx_groups_t *groups,
1603                         matrix box, rvec x[], history_t *hist,
1604                         rvec f[],
1605                         tensor vir_force,
1606                         t_mdatoms *mdatoms,
1607                         gmx_enerdata_t *enerd, t_fcdata *fcd,
1608                         real *lambda, t_graph *graph,
1609                         t_forcerec *fr, gmx_vsite_t *vsite, rvec mu_tot,
1610                         double t, FILE *field, gmx_edsam_t ed,
1611                         gmx_bool bBornRadii,
1612                         int flags)
1613 {
1614     int        cg0, cg1, i, j;
1615     int        start, homenr;
1616     double     mu[2*DIM];
1617     gmx_bool   bStateChanged, bNS, bFillGrid, bCalcCGCM, bBS;
1618     gmx_bool   bDoLongRangeNS, bDoForces, bDoPotential, bSepLRF;
1619     gmx_bool   bDoAdressWF;
1620     matrix     boxs;
1621     rvec       vzero, box_diag;
1622     real       e, v, dvdlambda[efptNR];
1623     t_pbc      pbc;
1624     float      cycles_pme, cycles_force;
1625
1626     start  = 0;
1627     homenr = mdatoms->homenr;
1628
1629     clear_mat(vir_force);
1630
1631     cg0 = 0;
1632     if (DOMAINDECOMP(cr))
1633     {
1634         cg1 = cr->dd->ncg_tot;
1635     }
1636     else
1637     {
1638         cg1 = top->cgs.nr;
1639     }
1640     if (fr->n_tpi > 0)
1641     {
1642         cg1--;
1643     }
1644
1645     bStateChanged  = (flags & GMX_FORCE_STATECHANGED);
1646     bNS            = (flags & GMX_FORCE_NS) && (fr->bAllvsAll == FALSE);
1647     /* Should we update the long-range neighborlists at this step? */
1648     bDoLongRangeNS = fr->bTwinRange && bNS;
1649     /* Should we perform the long-range nonbonded evaluation inside the neighborsearching? */
1650     bFillGrid      = (bNS && bStateChanged);
1651     bCalcCGCM      = (bFillGrid && !DOMAINDECOMP(cr));
1652     bDoForces      = (flags & GMX_FORCE_FORCES);
1653     bDoPotential   = (flags & GMX_FORCE_ENERGY);
1654     bSepLRF        = ((inputrec->nstcalclr > 1) && bDoForces &&
1655                       (flags & GMX_FORCE_SEPLRF) && (flags & GMX_FORCE_DO_LR));
1656
1657     /* should probably move this to the forcerec since it doesn't change */
1658     bDoAdressWF   = ((fr->adress_type != eAdressOff));
1659
1660     if (bStateChanged)
1661     {
1662         update_forcerec(fr, box);
1663
1664         if (NEED_MUTOT(*inputrec))
1665         {
1666             /* Calculate total (local) dipole moment in a temporary common array.
1667              * This makes it possible to sum them over nodes faster.
1668              */
1669             calc_mu(start, homenr,
1670                     x, mdatoms->chargeA, mdatoms->chargeB, mdatoms->nChargePerturbed,
1671                     mu, mu+DIM);
1672         }
1673     }
1674
1675     if (fr->ePBC != epbcNONE)
1676     {
1677         /* Compute shift vectors every step,
1678          * because of pressure coupling or box deformation!
1679          */
1680         if ((flags & GMX_FORCE_DYNAMICBOX) && bStateChanged)
1681         {
1682             calc_shifts(box, fr->shift_vec);
1683         }
1684
1685         if (bCalcCGCM)
1686         {
1687             put_charge_groups_in_box(fplog, cg0, cg1, fr->ePBC, box,
1688                                      &(top->cgs), x, fr->cg_cm);
1689             inc_nrnb(nrnb, eNR_CGCM, homenr);
1690             inc_nrnb(nrnb, eNR_RESETX, cg1-cg0);
1691         }
1692         else if (EI_ENERGY_MINIMIZATION(inputrec->eI) && graph)
1693         {
1694             unshift_self(graph, box, x);
1695         }
1696     }
1697     else if (bCalcCGCM)
1698     {
1699         calc_cgcm(fplog, cg0, cg1, &(top->cgs), x, fr->cg_cm);
1700         inc_nrnb(nrnb, eNR_CGCM, homenr);
1701     }
1702
1703     if (bCalcCGCM && gmx_debug_at)
1704     {
1705         pr_rvecs(debug, 0, "cgcm", fr->cg_cm, top->cgs.nr);
1706     }
1707
1708 #ifdef GMX_MPI
1709     if (!(cr->duty & DUTY_PME))
1710     {
1711         /* Send particle coordinates to the pme nodes.
1712          * Since this is only implemented for domain decomposition
1713          * and domain decomposition does not use the graph,
1714          * we do not need to worry about shifting.
1715          */
1716
1717         int pme_flags = 0;
1718
1719         wallcycle_start(wcycle, ewcPP_PMESENDX);
1720
1721         bBS = (inputrec->nwall == 2);
1722         if (bBS)
1723         {
1724             copy_mat(box, boxs);
1725             svmul(inputrec->wall_ewald_zfac, boxs[ZZ], boxs[ZZ]);
1726         }
1727
1728         if (EEL_PME(fr->eeltype))
1729         {
1730             pme_flags |= GMX_PME_DO_COULOMB;
1731         }
1732
1733         if (EVDW_PME(fr->vdwtype))
1734         {
1735             pme_flags |= GMX_PME_DO_LJ;
1736         }
1737
1738         gmx_pme_send_coordinates(cr, bBS ? boxs : box, x,
1739                                  mdatoms->nChargePerturbed, mdatoms->nTypePerturbed, lambda[efptCOUL], lambda[efptVDW],
1740                                  (flags & (GMX_FORCE_VIRIAL | GMX_FORCE_ENERGY)),
1741                                  pme_flags, step);
1742
1743         wallcycle_stop(wcycle, ewcPP_PMESENDX);
1744     }
1745 #endif /* GMX_MPI */
1746
1747     /* Communicate coordinates and sum dipole if necessary */
1748     if (DOMAINDECOMP(cr))
1749     {
1750         wallcycle_start(wcycle, ewcMOVEX);
1751         dd_move_x(cr->dd, box, x);
1752         wallcycle_stop(wcycle, ewcMOVEX);
1753     }
1754
1755     /* update adress weight beforehand */
1756     if (bStateChanged && bDoAdressWF)
1757     {
1758         /* need pbc for adress weight calculation with pbc_dx */
1759         set_pbc(&pbc, inputrec->ePBC, box);
1760         if (fr->adress_site == eAdressSITEcog)
1761         {
1762             update_adress_weights_cog(top->idef.iparams, top->idef.il, x, fr, mdatoms,
1763                                       inputrec->ePBC == epbcNONE ? NULL : &pbc);
1764         }
1765         else if (fr->adress_site == eAdressSITEcom)
1766         {
1767             update_adress_weights_com(fplog, cg0, cg1, &(top->cgs), x, fr, mdatoms,
1768                                       inputrec->ePBC == epbcNONE ? NULL : &pbc);
1769         }
1770         else if (fr->adress_site == eAdressSITEatomatom)
1771         {
1772             update_adress_weights_atom_per_atom(cg0, cg1, &(top->cgs), x, fr, mdatoms,
1773                                                 inputrec->ePBC == epbcNONE ? NULL : &pbc);
1774         }
1775         else
1776         {
1777             update_adress_weights_atom(cg0, cg1, &(top->cgs), x, fr, mdatoms,
1778                                        inputrec->ePBC == epbcNONE ? NULL : &pbc);
1779         }
1780     }
1781
1782     if (NEED_MUTOT(*inputrec))
1783     {
1784
1785         if (bStateChanged)
1786         {
1787             if (PAR(cr))
1788             {
1789                 gmx_sumd(2*DIM, mu, cr);
1790             }
1791             for (i = 0; i < 2; i++)
1792             {
1793                 for (j = 0; j < DIM; j++)
1794                 {
1795                     fr->mu_tot[i][j] = mu[i*DIM + j];
1796                 }
1797             }
1798         }
1799         if (fr->efep == efepNO)
1800         {
1801             copy_rvec(fr->mu_tot[0], mu_tot);
1802         }
1803         else
1804         {
1805             for (j = 0; j < DIM; j++)
1806             {
1807                 mu_tot[j] =
1808                     (1.0 - lambda[efptCOUL])*fr->mu_tot[0][j] + lambda[efptCOUL]*fr->mu_tot[1][j];
1809             }
1810         }
1811     }
1812
1813     /* Reset energies */
1814     reset_enerdata(fr, bNS, enerd, MASTER(cr));
1815     clear_rvecs(SHIFTS, fr->fshift);
1816
1817     if (bNS)
1818     {
1819         wallcycle_start(wcycle, ewcNS);
1820
1821         if (graph && bStateChanged)
1822         {
1823             /* Calculate intramolecular shift vectors to make molecules whole */
1824             mk_mshift(fplog, graph, fr->ePBC, box, x);
1825         }
1826
1827         /* Do the actual neighbour searching */
1828         ns(fplog, fr, box,
1829            groups, top, mdatoms,
1830            cr, nrnb, bFillGrid,
1831            bDoLongRangeNS);
1832
1833         wallcycle_stop(wcycle, ewcNS);
1834     }
1835
1836     if (inputrec->implicit_solvent && bNS)
1837     {
1838         make_gb_nblist(cr, inputrec->gb_algorithm,
1839                        x, box, fr, &top->idef, graph, fr->born);
1840     }
1841
1842     if (DOMAINDECOMP(cr) && !(cr->duty & DUTY_PME))
1843     {
1844         wallcycle_start(wcycle, ewcPPDURINGPME);
1845         dd_force_flop_start(cr->dd, nrnb);
1846     }
1847
1848     if (inputrec->bRot)
1849     {
1850         /* Enforced rotation has its own cycle counter that starts after the collective
1851          * coordinates have been communicated. It is added to ddCyclF to allow
1852          * for proper load-balancing */
1853         wallcycle_start(wcycle, ewcROT);
1854         do_rotation(cr, inputrec, box, x, t, step, wcycle, bNS);
1855         wallcycle_stop(wcycle, ewcROT);
1856     }
1857
1858     /* Start the force cycle counter.
1859      * This counter is stopped in do_forcelow_level.
1860      * No parallel communication should occur while this counter is running,
1861      * since that will interfere with the dynamic load balancing.
1862      */
1863     wallcycle_start(wcycle, ewcFORCE);
1864
1865     if (bDoForces)
1866     {
1867         /* Reset forces for which the virial is calculated separately:
1868          * PME/Ewald forces if necessary */
1869         if (fr->bF_NoVirSum)
1870         {
1871             if (flags & GMX_FORCE_VIRIAL)
1872             {
1873                 fr->f_novirsum = fr->f_novirsum_alloc;
1874                 if (fr->bDomDec)
1875                 {
1876                     clear_rvecs(fr->f_novirsum_n, fr->f_novirsum);
1877                 }
1878                 else
1879                 {
1880                     clear_rvecs(homenr, fr->f_novirsum+start);
1881                 }
1882             }
1883             else
1884             {
1885                 /* We are not calculating the pressure so we do not need
1886                  * a separate array for forces that do not contribute
1887                  * to the pressure.
1888                  */
1889                 fr->f_novirsum = f;
1890             }
1891         }
1892
1893         /* Clear the short- and long-range forces */
1894         clear_rvecs(fr->natoms_force_constr, f);
1895         if (bSepLRF && do_per_step(step, inputrec->nstcalclr))
1896         {
1897             clear_rvecs(fr->natoms_force_constr, fr->f_twin);
1898         }
1899
1900         clear_rvec(fr->vir_diag_posres);
1901     }
1902     if (inputrec->ePull == epullCONSTRAINT)
1903     {
1904         clear_pull_forces(inputrec->pull);
1905     }
1906
1907     /* update QMMMrec, if necessary */
1908     if (fr->bQMMM)
1909     {
1910         update_QMMMrec(cr, fr, x, mdatoms, box, top);
1911     }
1912
1913     if ((flags & GMX_FORCE_LISTED) && top->idef.il[F_POSRES].nr > 0)
1914     {
1915         posres_wrapper(flags, inputrec, nrnb, top, box, x,
1916                        enerd, lambda, fr);
1917     }
1918
1919     if ((flags & GMX_FORCE_LISTED) && top->idef.il[F_FBPOSRES].nr > 0)
1920     {
1921         fbposres_wrapper(inputrec, nrnb, top, box, x, enerd, fr);
1922     }
1923
1924     /* Compute the bonded and non-bonded energies and optionally forces */
1925     do_force_lowlevel(fr, inputrec, &(top->idef),
1926                       cr, nrnb, wcycle, mdatoms,
1927                       x, hist, f, bSepLRF ? fr->f_twin : f, enerd, fcd, top, fr->born,
1928                       bBornRadii, box,
1929                       inputrec->fepvals, lambda,
1930                       graph, &(top->excls), fr->mu_tot,
1931                       flags,
1932                       &cycles_pme);
1933
1934     if (bSepLRF)
1935     {
1936         if (do_per_step(step, inputrec->nstcalclr))
1937         {
1938             /* Add the long range forces to the short range forces */
1939             for (i = 0; i < fr->natoms_force_constr; i++)
1940             {
1941                 rvec_add(fr->f_twin[i], f[i], f[i]);
1942             }
1943         }
1944     }
1945
1946     cycles_force = wallcycle_stop(wcycle, ewcFORCE);
1947
1948     if (ed)
1949     {
1950         do_flood(cr, inputrec, x, f, ed, box, step, bNS);
1951     }
1952
1953     if (DOMAINDECOMP(cr))
1954     {
1955         dd_force_flop_stop(cr->dd, nrnb);
1956         if (wcycle)
1957         {
1958             dd_cycles_add(cr->dd, cycles_force-cycles_pme, ddCyclF);
1959         }
1960     }
1961
1962     if (bDoForces)
1963     {
1964         if (IR_ELEC_FIELD(*inputrec))
1965         {
1966             /* Compute forces due to electric field */
1967             calc_f_el(MASTER(cr) ? field : NULL,
1968                       start, homenr, mdatoms->chargeA, fr->f_novirsum,
1969                       inputrec->ex, inputrec->et, t);
1970         }
1971
1972         if (bDoAdressWF && fr->adress_icor == eAdressICThermoForce)
1973         {
1974             /* Compute thermodynamic force in hybrid AdResS region */
1975             adress_thermo_force(start, homenr, &(top->cgs), x, fr->f_novirsum, fr, mdatoms,
1976                                 inputrec->ePBC == epbcNONE ? NULL : &pbc);
1977         }
1978
1979         /* Communicate the forces */
1980         if (DOMAINDECOMP(cr))
1981         {
1982             wallcycle_start(wcycle, ewcMOVEF);
1983             dd_move_f(cr->dd, f, fr->fshift);
1984             /* Do we need to communicate the separate force array
1985              * for terms that do not contribute to the single sum virial?
1986              * Position restraints and electric fields do not introduce
1987              * inter-cg forces, only full electrostatics methods do.
1988              * When we do not calculate the virial, fr->f_novirsum = f,
1989              * so we have already communicated these forces.
1990              */
1991             if (EEL_FULL(fr->eeltype) && cr->dd->n_intercg_excl &&
1992                 (flags & GMX_FORCE_VIRIAL))
1993             {
1994                 dd_move_f(cr->dd, fr->f_novirsum, NULL);
1995             }
1996             if (bSepLRF)
1997             {
1998                 /* We should not update the shift forces here,
1999                  * since f_twin is already included in f.
2000                  */
2001                 dd_move_f(cr->dd, fr->f_twin, NULL);
2002             }
2003             wallcycle_stop(wcycle, ewcMOVEF);
2004         }
2005
2006         /* If we have NoVirSum forces, but we do not calculate the virial,
2007          * we sum fr->f_novirum=f later.
2008          */
2009         if (vsite && !(fr->bF_NoVirSum && !(flags & GMX_FORCE_VIRIAL)))
2010         {
2011             wallcycle_start(wcycle, ewcVSITESPREAD);
2012             spread_vsite_f(vsite, x, f, fr->fshift, FALSE, NULL, nrnb,
2013                            &top->idef, fr->ePBC, fr->bMolPBC, graph, box, cr);
2014             wallcycle_stop(wcycle, ewcVSITESPREAD);
2015
2016             if (bSepLRF)
2017             {
2018                 wallcycle_start(wcycle, ewcVSITESPREAD);
2019                 spread_vsite_f(vsite, x, fr->f_twin, NULL, FALSE, NULL,
2020                                nrnb,
2021                                &top->idef, fr->ePBC, fr->bMolPBC, graph, box, cr);
2022                 wallcycle_stop(wcycle, ewcVSITESPREAD);
2023             }
2024         }
2025
2026         if (flags & GMX_FORCE_VIRIAL)
2027         {
2028             /* Calculation of the virial must be done after vsites! */
2029             calc_virial(0, mdatoms->homenr, x, f,
2030                         vir_force, graph, box, nrnb, fr, inputrec->ePBC);
2031         }
2032     }
2033
2034     if (inputrec->ePull == epullUMBRELLA || inputrec->ePull == epullCONST_F)
2035     {
2036         pull_potential_wrapper(cr, inputrec, box, x,
2037                                f, vir_force, mdatoms, enerd, lambda, t,
2038                                wcycle);
2039     }
2040
2041     /* Add the forces from enforced rotation potentials (if any) */
2042     if (inputrec->bRot)
2043     {
2044         wallcycle_start(wcycle, ewcROTadd);
2045         enerd->term[F_COM_PULL] += add_rot_forces(inputrec->rot, f, cr, step, t);
2046         wallcycle_stop(wcycle, ewcROTadd);
2047     }
2048
2049     /* Add forces from interactive molecular dynamics (IMD), if bIMD == TRUE. */
2050     IMD_apply_forces(inputrec->bIMD, inputrec->imd, cr, f, wcycle);
2051
2052     if (PAR(cr) && !(cr->duty & DUTY_PME))
2053     {
2054         /* In case of node-splitting, the PP nodes receive the long-range
2055          * forces, virial and energy from the PME nodes here.
2056          */
2057         pme_receive_force_ener(cr, wcycle, enerd, fr);
2058     }
2059
2060     if (bDoForces)
2061     {
2062         post_process_forces(cr, step, nrnb, wcycle,
2063                             top, box, x, f, vir_force, mdatoms, graph, fr, vsite,
2064                             flags);
2065     }
2066
2067     /* Sum the potential energy terms from group contributions */
2068     sum_epot(&(enerd->grpp), enerd->term);
2069 }
2070
2071 void do_force(FILE *fplog, t_commrec *cr,
2072               t_inputrec *inputrec,
2073               gmx_int64_t step, t_nrnb *nrnb, gmx_wallcycle_t wcycle,
2074               gmx_localtop_t *top,
2075               gmx_groups_t *groups,
2076               matrix box, rvec x[], history_t *hist,
2077               rvec f[],
2078               tensor vir_force,
2079               t_mdatoms *mdatoms,
2080               gmx_enerdata_t *enerd, t_fcdata *fcd,
2081               real *lambda, t_graph *graph,
2082               t_forcerec *fr,
2083               gmx_vsite_t *vsite, rvec mu_tot,
2084               double t, FILE *field, gmx_edsam_t ed,
2085               gmx_bool bBornRadii,
2086               int flags)
2087 {
2088     /* modify force flag if not doing nonbonded */
2089     if (!fr->bNonbonded)
2090     {
2091         flags &= ~GMX_FORCE_NONBONDED;
2092     }
2093
2094     switch (inputrec->cutoff_scheme)
2095     {
2096         case ecutsVERLET:
2097             do_force_cutsVERLET(fplog, cr, inputrec,
2098                                 step, nrnb, wcycle,
2099                                 top,
2100                                 groups,
2101                                 box, x, hist,
2102                                 f, vir_force,
2103                                 mdatoms,
2104                                 enerd, fcd,
2105                                 lambda, graph,
2106                                 fr, fr->ic,
2107                                 vsite, mu_tot,
2108                                 t, field, ed,
2109                                 bBornRadii,
2110                                 flags);
2111             break;
2112         case ecutsGROUP:
2113             do_force_cutsGROUP(fplog, cr, inputrec,
2114                                step, nrnb, wcycle,
2115                                top,
2116                                groups,
2117                                box, x, hist,
2118                                f, vir_force,
2119                                mdatoms,
2120                                enerd, fcd,
2121                                lambda, graph,
2122                                fr, vsite, mu_tot,
2123                                t, field, ed,
2124                                bBornRadii,
2125                                flags);
2126             break;
2127         default:
2128             gmx_incons("Invalid cut-off scheme passed!");
2129     }
2130 }
2131
2132
2133 void do_constrain_first(FILE *fplog, gmx_constr_t constr,
2134                         t_inputrec *ir, t_mdatoms *md,
2135                         t_state *state, t_commrec *cr, t_nrnb *nrnb,
2136                         t_forcerec *fr, gmx_localtop_t *top)
2137 {
2138     int             i, m, start, end;
2139     gmx_int64_t     step;
2140     real            dt = ir->delta_t;
2141     real            dvdl_dum;
2142     rvec           *savex;
2143
2144     snew(savex, state->natoms);
2145
2146     start = 0;
2147     end   = md->homenr;
2148
2149     if (debug)
2150     {
2151         fprintf(debug, "vcm: start=%d, homenr=%d, end=%d\n",
2152                 start, md->homenr, end);
2153     }
2154     /* Do a first constrain to reset particles... */
2155     step = ir->init_step;
2156     if (fplog)
2157     {
2158         char buf[STEPSTRSIZE];
2159         fprintf(fplog, "\nConstraining the starting coordinates (step %s)\n",
2160                 gmx_step_str(step, buf));
2161     }
2162     dvdl_dum = 0;
2163
2164     /* constrain the current position */
2165     constrain(NULL, TRUE, FALSE, constr, &(top->idef),
2166               ir, NULL, cr, step, 0, 1.0, md,
2167               state->x, state->x, NULL,
2168               fr->bMolPBC, state->box,
2169               state->lambda[efptBONDED], &dvdl_dum,
2170               NULL, NULL, nrnb, econqCoord,
2171               ir->epc == epcMTTK, state->veta, state->veta);
2172     if (EI_VV(ir->eI))
2173     {
2174         /* constrain the inital velocity, and save it */
2175         /* also may be useful if we need the ekin from the halfstep for velocity verlet */
2176         /* might not yet treat veta correctly */
2177         constrain(NULL, TRUE, FALSE, constr, &(top->idef),
2178                   ir, NULL, cr, step, 0, 1.0, md,
2179                   state->x, state->v, state->v,
2180                   fr->bMolPBC, state->box,
2181                   state->lambda[efptBONDED], &dvdl_dum,
2182                   NULL, NULL, nrnb, econqVeloc,
2183                   ir->epc == epcMTTK, state->veta, state->veta);
2184     }
2185     /* constrain the inital velocities at t-dt/2 */
2186     if (EI_STATE_VELOCITY(ir->eI) && ir->eI != eiVV)
2187     {
2188         for (i = start; (i < end); i++)
2189         {
2190             for (m = 0; (m < DIM); m++)
2191             {
2192                 /* Reverse the velocity */
2193                 state->v[i][m] = -state->v[i][m];
2194                 /* Store the position at t-dt in buf */
2195                 savex[i][m] = state->x[i][m] + dt*state->v[i][m];
2196             }
2197         }
2198         /* Shake the positions at t=-dt with the positions at t=0
2199          * as reference coordinates.
2200          */
2201         if (fplog)
2202         {
2203             char buf[STEPSTRSIZE];
2204             fprintf(fplog, "\nConstraining the coordinates at t0-dt (step %s)\n",
2205                     gmx_step_str(step, buf));
2206         }
2207         dvdl_dum = 0;
2208         constrain(NULL, TRUE, FALSE, constr, &(top->idef),
2209                   ir, NULL, cr, step, -1, 1.0, md,
2210                   state->x, savex, NULL,
2211                   fr->bMolPBC, state->box,
2212                   state->lambda[efptBONDED], &dvdl_dum,
2213                   state->v, NULL, nrnb, econqCoord,
2214                   ir->epc == epcMTTK, state->veta, state->veta);
2215
2216         for (i = start; i < end; i++)
2217         {
2218             for (m = 0; m < DIM; m++)
2219             {
2220                 /* Re-reverse the velocities */
2221                 state->v[i][m] = -state->v[i][m];
2222             }
2223         }
2224     }
2225     sfree(savex);
2226 }
2227
2228
2229 static void
2230 integrate_table(real vdwtab[], real scale, int offstart, int rstart, int rend,
2231                 double *enerout, double *virout)
2232 {
2233     double enersum, virsum;
2234     double invscale, invscale2, invscale3;
2235     double r, ea, eb, ec, pa, pb, pc, pd;
2236     double y0, f, g, h;
2237     int    ri, offset, tabfactor;
2238
2239     invscale  = 1.0/scale;
2240     invscale2 = invscale*invscale;
2241     invscale3 = invscale*invscale2;
2242
2243     /* Following summation derived from cubic spline definition,
2244      * Numerical Recipies in C, second edition, p. 113-116.  Exact for
2245      * the cubic spline.  We first calculate the negative of the
2246      * energy from rvdw to rvdw_switch, assuming that g(r)=1, and then
2247      * add the more standard, abrupt cutoff correction to that result,
2248      * yielding the long-range correction for a switched function.  We
2249      * perform both the pressure and energy loops at the same time for
2250      * simplicity, as the computational cost is low. */
2251
2252     if (offstart == 0)
2253     {
2254         /* Since the dispersion table has been scaled down a factor
2255          * 6.0 and the repulsion a factor 12.0 to compensate for the
2256          * c6/c12 parameters inside nbfp[] being scaled up (to save
2257          * flops in kernels), we need to correct for this.
2258          */
2259         tabfactor = 6.0;
2260     }
2261     else
2262     {
2263         tabfactor = 12.0;
2264     }
2265
2266     enersum = 0.0;
2267     virsum  = 0.0;
2268     for (ri = rstart; ri < rend; ++ri)
2269     {
2270         r  = ri*invscale;
2271         ea = invscale3;
2272         eb = 2.0*invscale2*r;
2273         ec = invscale*r*r;
2274
2275         pa = invscale3;
2276         pb = 3.0*invscale2*r;
2277         pc = 3.0*invscale*r*r;
2278         pd = r*r*r;
2279
2280         /* this "8" is from the packing in the vdwtab array - perhaps
2281            should be defined? */
2282
2283         offset = 8*ri + offstart;
2284         y0     = vdwtab[offset];
2285         f      = vdwtab[offset+1];
2286         g      = vdwtab[offset+2];
2287         h      = vdwtab[offset+3];
2288
2289         enersum += y0*(ea/3 + eb/2 + ec) + f*(ea/4 + eb/3 + ec/2) + g*(ea/5 + eb/4 + ec/3) + h*(ea/6 + eb/5 + ec/4);
2290         virsum  +=  f*(pa/4 + pb/3 + pc/2 + pd) + 2*g*(pa/5 + pb/4 + pc/3 + pd/2) + 3*h*(pa/6 + pb/5 + pc/4 + pd/3);
2291     }
2292     *enerout = 4.0*M_PI*enersum*tabfactor;
2293     *virout  = 4.0*M_PI*virsum*tabfactor;
2294 }
2295
2296 void calc_enervirdiff(FILE *fplog, int eDispCorr, t_forcerec *fr)
2297 {
2298     double   eners[2], virs[2], enersum, virsum, y0, f, g, h;
2299     double   r0, r1, r, rc3, rc9, ea, eb, ec, pa, pb, pc, pd;
2300     double   invscale, invscale2, invscale3;
2301     int      ri0, ri1, ri, i, offstart, offset;
2302     real     scale, *vdwtab, tabfactor, tmp;
2303
2304     fr->enershiftsix    = 0;
2305     fr->enershifttwelve = 0;
2306     fr->enerdiffsix     = 0;
2307     fr->enerdifftwelve  = 0;
2308     fr->virdiffsix      = 0;
2309     fr->virdifftwelve   = 0;
2310
2311     if (eDispCorr != edispcNO)
2312     {
2313         for (i = 0; i < 2; i++)
2314         {
2315             eners[i] = 0;
2316             virs[i]  = 0;
2317         }
2318         if ((fr->vdw_modifier == eintmodPOTSHIFT) ||
2319             (fr->vdw_modifier == eintmodPOTSWITCH) ||
2320             (fr->vdw_modifier == eintmodFORCESWITCH) ||
2321             (fr->vdwtype == evdwSHIFT) ||
2322             (fr->vdwtype == evdwSWITCH))
2323         {
2324             if (((fr->vdw_modifier == eintmodPOTSWITCH) ||
2325                  (fr->vdw_modifier == eintmodFORCESWITCH) ||
2326                  (fr->vdwtype == evdwSWITCH)) && fr->rvdw_switch == 0)
2327             {
2328                 gmx_fatal(FARGS,
2329                           "With dispersion correction rvdw-switch can not be zero "
2330                           "for vdw-type = %s", evdw_names[fr->vdwtype]);
2331             }
2332
2333             scale  = fr->nblists[0].table_vdw.scale;
2334             vdwtab = fr->nblists[0].table_vdw.data;
2335
2336             /* Round the cut-offs to exact table values for precision */
2337             ri0  = floor(fr->rvdw_switch*scale);
2338             ri1  = ceil(fr->rvdw*scale);
2339
2340             /* The code below has some support for handling force-switching, i.e.
2341              * when the force (instead of potential) is switched over a limited
2342              * region. This leads to a constant shift in the potential inside the
2343              * switching region, which we can handle by adding a constant energy
2344              * term in the force-switch case just like when we do potential-shift.
2345              *
2346              * For now this is not enabled, but to keep the functionality in the
2347              * code we check separately for switch and shift. When we do force-switch
2348              * the shifting point is rvdw_switch, while it is the cutoff when we
2349              * have a classical potential-shift.
2350              *
2351              * For a pure potential-shift the potential has a constant shift
2352              * all the way out to the cutoff, and that is it. For other forms
2353              * we need to calculate the constant shift up to the point where we
2354              * start modifying the potential.
2355              */
2356             ri0  = (fr->vdw_modifier == eintmodPOTSHIFT) ? ri1 : ri0;
2357
2358             r0   = ri0/scale;
2359             r1   = ri1/scale;
2360             rc3  = r0*r0*r0;
2361             rc9  = rc3*rc3*rc3;
2362
2363             if ((fr->vdw_modifier == eintmodFORCESWITCH) ||
2364                 (fr->vdwtype == evdwSHIFT))
2365             {
2366                 /* Determine the constant energy shift below rvdw_switch.
2367                  * Table has a scale factor since we have scaled it down to compensate
2368                  * for scaling-up c6/c12 with the derivative factors to save flops in analytical kernels.
2369                  */
2370                 fr->enershiftsix    = (real)(-1.0/(rc3*rc3)) - 6.0*vdwtab[8*ri0];
2371                 fr->enershifttwelve = (real)( 1.0/(rc9*rc3)) - 12.0*vdwtab[8*ri0 + 4];
2372             }
2373             else if (fr->vdw_modifier == eintmodPOTSHIFT)
2374             {
2375                 fr->enershiftsix    = (real)(-1.0/(rc3*rc3));
2376                 fr->enershifttwelve = (real)( 1.0/(rc9*rc3));
2377             }
2378
2379             /* Add the constant part from 0 to rvdw_switch.
2380              * This integration from 0 to rvdw_switch overcounts the number
2381              * of interactions by 1, as it also counts the self interaction.
2382              * We will correct for this later.
2383              */
2384             eners[0] += 4.0*M_PI*fr->enershiftsix*rc3/3.0;
2385             eners[1] += 4.0*M_PI*fr->enershifttwelve*rc3/3.0;
2386
2387             /* Calculate the contribution in the range [r0,r1] where we
2388              * modify the potential. For a pure potential-shift modifier we will
2389              * have ri0==ri1, and there will not be any contribution here.
2390              */
2391             for (i = 0; i < 2; i++)
2392             {
2393                 enersum = 0;
2394                 virsum  = 0;
2395                 integrate_table(vdwtab, scale, (i == 0 ? 0 : 4), ri0, ri1, &enersum, &virsum);
2396                 eners[i] -= enersum;
2397                 virs[i]  -= virsum;
2398             }
2399
2400             /* Alright: Above we compensated by REMOVING the parts outside r0
2401              * corresponding to the ideal VdW 1/r6 and /r12 potentials.
2402              *
2403              * Regardless of whether r0 is the point where we start switching,
2404              * or the cutoff where we calculated the constant shift, we include
2405              * all the parts we are missing out to infinity from r0 by
2406              * calculating the analytical dispersion correction.
2407              */
2408             eners[0] += -4.0*M_PI/(3.0*rc3);
2409             eners[1] +=  4.0*M_PI/(9.0*rc9);
2410             virs[0]  +=  8.0*M_PI/rc3;
2411             virs[1]  += -16.0*M_PI/(3.0*rc9);
2412         }
2413         else if (fr->vdwtype == evdwCUT ||
2414                  EVDW_PME(fr->vdwtype) ||
2415                  fr->vdwtype == evdwUSER)
2416         {
2417             if (fr->vdwtype == evdwUSER && fplog)
2418             {
2419                 fprintf(fplog,
2420                         "WARNING: using dispersion correction with user tables\n");
2421             }
2422
2423             /* Note that with LJ-PME, the dispersion correction is multiplied
2424              * by the difference between the actual C6 and the value of C6
2425              * that would produce the combination rule.
2426              * This means the normal energy and virial difference formulas
2427              * can be used here.
2428              */
2429
2430             rc3  = fr->rvdw*fr->rvdw*fr->rvdw;
2431             rc9  = rc3*rc3*rc3;
2432             /* Contribution beyond the cut-off */
2433             eners[0] += -4.0*M_PI/(3.0*rc3);
2434             eners[1] +=  4.0*M_PI/(9.0*rc9);
2435             if (fr->vdw_modifier == eintmodPOTSHIFT)
2436             {
2437                 /* Contribution within the cut-off */
2438                 eners[0] += -4.0*M_PI/(3.0*rc3);
2439                 eners[1] +=  4.0*M_PI/(3.0*rc9);
2440             }
2441             /* Contribution beyond the cut-off */
2442             virs[0]  +=  8.0*M_PI/rc3;
2443             virs[1]  += -16.0*M_PI/(3.0*rc9);
2444         }
2445         else
2446         {
2447             gmx_fatal(FARGS,
2448                       "Dispersion correction is not implemented for vdw-type = %s",
2449                       evdw_names[fr->vdwtype]);
2450         }
2451
2452         /* When we deprecate the group kernels the code below can go too */
2453         if (fr->vdwtype == evdwPME && fr->cutoff_scheme == ecutsGROUP)
2454         {
2455             /* Calculate self-interaction coefficient (assuming that
2456              * the reciprocal-space contribution is constant in the
2457              * region that contributes to the self-interaction).
2458              */
2459             fr->enershiftsix = pow(fr->ewaldcoeff_lj, 6) / 6.0;
2460
2461             eners[0] += -pow(sqrt(M_PI)*fr->ewaldcoeff_lj, 3)/3.0;
2462             virs[0]  +=  pow(sqrt(M_PI)*fr->ewaldcoeff_lj, 3);
2463         }
2464
2465         fr->enerdiffsix    = eners[0];
2466         fr->enerdifftwelve = eners[1];
2467         /* The 0.5 is due to the Gromacs definition of the virial */
2468         fr->virdiffsix     = 0.5*virs[0];
2469         fr->virdifftwelve  = 0.5*virs[1];
2470     }
2471 }
2472
2473 void calc_dispcorr(t_inputrec *ir, t_forcerec *fr,
2474                    int natoms,
2475                    matrix box, real lambda, tensor pres, tensor virial,
2476                    real *prescorr, real *enercorr, real *dvdlcorr)
2477 {
2478     gmx_bool bCorrAll, bCorrPres;
2479     real     dvdlambda, invvol, dens, ninter, avcsix, avctwelve, enerdiff, svir = 0, spres = 0;
2480     int      m;
2481
2482     *prescorr = 0;
2483     *enercorr = 0;
2484     *dvdlcorr = 0;
2485
2486     clear_mat(virial);
2487     clear_mat(pres);
2488
2489     if (ir->eDispCorr != edispcNO)
2490     {
2491         bCorrAll  = (ir->eDispCorr == edispcAllEner ||
2492                      ir->eDispCorr == edispcAllEnerPres);
2493         bCorrPres = (ir->eDispCorr == edispcEnerPres ||
2494                      ir->eDispCorr == edispcAllEnerPres);
2495
2496         invvol = 1/det(box);
2497         if (fr->n_tpi)
2498         {
2499             /* Only correct for the interactions with the inserted molecule */
2500             dens   = (natoms - fr->n_tpi)*invvol;
2501             ninter = fr->n_tpi;
2502         }
2503         else
2504         {
2505             dens   = natoms*invvol;
2506             ninter = 0.5*natoms;
2507         }
2508
2509         if (ir->efep == efepNO)
2510         {
2511             avcsix    = fr->avcsix[0];
2512             avctwelve = fr->avctwelve[0];
2513         }
2514         else
2515         {
2516             avcsix    = (1 - lambda)*fr->avcsix[0]    + lambda*fr->avcsix[1];
2517             avctwelve = (1 - lambda)*fr->avctwelve[0] + lambda*fr->avctwelve[1];
2518         }
2519
2520         enerdiff   = ninter*(dens*fr->enerdiffsix - fr->enershiftsix);
2521         *enercorr += avcsix*enerdiff;
2522         dvdlambda  = 0.0;
2523         if (ir->efep != efepNO)
2524         {
2525             dvdlambda += (fr->avcsix[1] - fr->avcsix[0])*enerdiff;
2526         }
2527         if (bCorrAll)
2528         {
2529             enerdiff   = ninter*(dens*fr->enerdifftwelve - fr->enershifttwelve);
2530             *enercorr += avctwelve*enerdiff;
2531             if (fr->efep != efepNO)
2532             {
2533                 dvdlambda += (fr->avctwelve[1] - fr->avctwelve[0])*enerdiff;
2534             }
2535         }
2536
2537         if (bCorrPres)
2538         {
2539             svir = ninter*dens*avcsix*fr->virdiffsix/3.0;
2540             if (ir->eDispCorr == edispcAllEnerPres)
2541             {
2542                 svir += ninter*dens*avctwelve*fr->virdifftwelve/3.0;
2543             }
2544             /* The factor 2 is because of the Gromacs virial definition */
2545             spres = -2.0*invvol*svir*PRESFAC;
2546
2547             for (m = 0; m < DIM; m++)
2548             {
2549                 virial[m][m] += svir;
2550                 pres[m][m]   += spres;
2551             }
2552             *prescorr += spres;
2553         }
2554
2555         /* Can't currently control when it prints, for now, just print when degugging */
2556         if (debug)
2557         {
2558             if (bCorrAll)
2559             {
2560                 fprintf(debug, "Long Range LJ corr.: <C6> %10.4e, <C12> %10.4e\n",
2561                         avcsix, avctwelve);
2562             }
2563             if (bCorrPres)
2564             {
2565                 fprintf(debug,
2566                         "Long Range LJ corr.: Epot %10g, Pres: %10g, Vir: %10g\n",
2567                         *enercorr, spres, svir);
2568             }
2569             else
2570             {
2571                 fprintf(debug, "Long Range LJ corr.: Epot %10g\n", *enercorr);
2572             }
2573         }
2574
2575         if (fr->efep != efepNO)
2576         {
2577             *dvdlcorr += dvdlambda;
2578         }
2579     }
2580 }
2581
2582 void do_pbc_first(FILE *fplog, matrix box, t_forcerec *fr,
2583                   t_graph *graph, rvec x[])
2584 {
2585     if (fplog)
2586     {
2587         fprintf(fplog, "Removing pbc first time\n");
2588     }
2589     calc_shifts(box, fr->shift_vec);
2590     if (graph)
2591     {
2592         mk_mshift(fplog, graph, fr->ePBC, box, x);
2593         if (gmx_debug_at)
2594         {
2595             p_graph(debug, "do_pbc_first 1", graph);
2596         }
2597         shift_self(graph, box, x);
2598         /* By doing an extra mk_mshift the molecules that are broken
2599          * because they were e.g. imported from another software
2600          * will be made whole again. Such are the healing powers
2601          * of GROMACS.
2602          */
2603         mk_mshift(fplog, graph, fr->ePBC, box, x);
2604         if (gmx_debug_at)
2605         {
2606             p_graph(debug, "do_pbc_first 2", graph);
2607         }
2608     }
2609     if (fplog)
2610     {
2611         fprintf(fplog, "Done rmpbc\n");
2612     }
2613 }
2614
2615 static void low_do_pbc_mtop(FILE *fplog, int ePBC, matrix box,
2616                             gmx_mtop_t *mtop, rvec x[],
2617                             gmx_bool bFirst)
2618 {
2619     t_graph        *graph;
2620     int             mb, as, mol;
2621     gmx_molblock_t *molb;
2622
2623     if (bFirst && fplog)
2624     {
2625         fprintf(fplog, "Removing pbc first time\n");
2626     }
2627
2628     snew(graph, 1);
2629     as = 0;
2630     for (mb = 0; mb < mtop->nmolblock; mb++)
2631     {
2632         molb = &mtop->molblock[mb];
2633         if (molb->natoms_mol == 1 ||
2634             (!bFirst && mtop->moltype[molb->type].cgs.nr == 1))
2635         {
2636             /* Just one atom or charge group in the molecule, no PBC required */
2637             as += molb->nmol*molb->natoms_mol;
2638         }
2639         else
2640         {
2641             /* Pass NULL iso fplog to avoid graph prints for each molecule type */
2642             mk_graph_ilist(NULL, mtop->moltype[molb->type].ilist,
2643                            0, molb->natoms_mol, FALSE, FALSE, graph);
2644
2645             for (mol = 0; mol < molb->nmol; mol++)
2646             {
2647                 mk_mshift(fplog, graph, ePBC, box, x+as);
2648
2649                 shift_self(graph, box, x+as);
2650                 /* The molecule is whole now.
2651                  * We don't need the second mk_mshift call as in do_pbc_first,
2652                  * since we no longer need this graph.
2653                  */
2654
2655                 as += molb->natoms_mol;
2656             }
2657             done_graph(graph);
2658         }
2659     }
2660     sfree(graph);
2661 }
2662
2663 void do_pbc_first_mtop(FILE *fplog, int ePBC, matrix box,
2664                        gmx_mtop_t *mtop, rvec x[])
2665 {
2666     low_do_pbc_mtop(fplog, ePBC, box, mtop, x, TRUE);
2667 }
2668
2669 void do_pbc_mtop(FILE *fplog, int ePBC, matrix box,
2670                  gmx_mtop_t *mtop, rvec x[])
2671 {
2672     low_do_pbc_mtop(fplog, ePBC, box, mtop, x, FALSE);
2673 }
2674
2675 void finish_run(FILE *fplog, t_commrec *cr,
2676                 t_inputrec *inputrec,
2677                 t_nrnb nrnb[], gmx_wallcycle_t wcycle,
2678                 gmx_walltime_accounting_t walltime_accounting,
2679                 nonbonded_verlet_t *nbv,
2680                 gmx_bool bWriteStat)
2681 {
2682     int     i, j;
2683     t_nrnb *nrnb_tot = NULL;
2684     real    delta_t;
2685     double  nbfs, mflop;
2686     double  elapsed_time,
2687             elapsed_time_over_all_ranks,
2688             elapsed_time_over_all_threads,
2689             elapsed_time_over_all_threads_over_all_ranks;
2690     wallcycle_sum(cr, wcycle);
2691
2692     if (cr->nnodes > 1)
2693     {
2694         snew(nrnb_tot, 1);
2695 #ifdef GMX_MPI
2696         MPI_Allreduce(nrnb->n, nrnb_tot->n, eNRNB, MPI_DOUBLE, MPI_SUM,
2697                       cr->mpi_comm_mysim);
2698 #endif
2699     }
2700     else
2701     {
2702         nrnb_tot = nrnb;
2703     }
2704
2705     elapsed_time                                 = walltime_accounting_get_elapsed_time(walltime_accounting);
2706     elapsed_time_over_all_ranks                  = elapsed_time;
2707     elapsed_time_over_all_threads                = walltime_accounting_get_elapsed_time_over_all_threads(walltime_accounting);
2708     elapsed_time_over_all_threads_over_all_ranks = elapsed_time_over_all_threads;
2709 #ifdef GMX_MPI
2710     if (cr->nnodes > 1)
2711     {
2712         /* reduce elapsed_time over all MPI ranks in the current simulation */
2713         MPI_Allreduce(&elapsed_time,
2714                       &elapsed_time_over_all_ranks,
2715                       1, MPI_DOUBLE, MPI_SUM,
2716                       cr->mpi_comm_mysim);
2717         elapsed_time_over_all_ranks /= cr->nnodes;
2718         /* Reduce elapsed_time_over_all_threads over all MPI ranks in the
2719          * current simulation. */
2720         MPI_Allreduce(&elapsed_time_over_all_threads,
2721                       &elapsed_time_over_all_threads_over_all_ranks,
2722                       1, MPI_DOUBLE, MPI_SUM,
2723                       cr->mpi_comm_mysim);
2724     }
2725 #endif
2726
2727     if (SIMMASTER(cr))
2728     {
2729         print_flop(fplog, nrnb_tot, &nbfs, &mflop);
2730     }
2731     if (cr->nnodes > 1)
2732     {
2733         sfree(nrnb_tot);
2734     }
2735
2736     if ((cr->duty & DUTY_PP) && DOMAINDECOMP(cr))
2737     {
2738         print_dd_statistics(cr, inputrec, fplog);
2739     }
2740
2741     if (SIMMASTER(cr))
2742     {
2743         wallclock_gpu_t* gputimes = use_GPU(nbv) ?
2744             nbnxn_cuda_get_timings(nbv->cu_nbv) : NULL;
2745         wallcycle_print(fplog, cr->nnodes, cr->npmenodes,
2746                         elapsed_time_over_all_ranks,
2747                         wcycle, gputimes);
2748
2749         if (EI_DYNAMICS(inputrec->eI))
2750         {
2751             delta_t = inputrec->delta_t;
2752         }
2753         else
2754         {
2755             delta_t = 0;
2756         }
2757
2758         if (fplog)
2759         {
2760             print_perf(fplog, elapsed_time_over_all_threads_over_all_ranks,
2761                        elapsed_time_over_all_ranks,
2762                        walltime_accounting_get_nsteps_done(walltime_accounting),
2763                        delta_t, nbfs, mflop);
2764         }
2765         if (bWriteStat)
2766         {
2767             print_perf(stderr, elapsed_time_over_all_threads_over_all_ranks,
2768                        elapsed_time_over_all_ranks,
2769                        walltime_accounting_get_nsteps_done(walltime_accounting),
2770                        delta_t, nbfs, mflop);
2771         }
2772     }
2773 }
2774
2775 extern void initialize_lambdas(FILE *fplog, t_inputrec *ir, int *fep_state, real *lambda, double *lam0)
2776 {
2777     /* this function works, but could probably use a logic rewrite to keep all the different
2778        types of efep straight. */
2779
2780     int       i;
2781     t_lambda *fep = ir->fepvals;
2782
2783     if ((ir->efep == efepNO) && (ir->bSimTemp == FALSE))
2784     {
2785         for (i = 0; i < efptNR; i++)
2786         {
2787             lambda[i] = 0.0;
2788             if (lam0)
2789             {
2790                 lam0[i] = 0.0;
2791             }
2792         }
2793         return;
2794     }
2795     else
2796     {
2797         *fep_state = fep->init_fep_state; /* this might overwrite the checkpoint
2798                                              if checkpoint is set -- a kludge is in for now
2799                                              to prevent this.*/
2800         for (i = 0; i < efptNR; i++)
2801         {
2802             /* overwrite lambda state with init_lambda for now for backwards compatibility */
2803             if (fep->init_lambda >= 0) /* if it's -1, it was never initializd */
2804             {
2805                 lambda[i] = fep->init_lambda;
2806                 if (lam0)
2807                 {
2808                     lam0[i] = lambda[i];
2809                 }
2810             }
2811             else
2812             {
2813                 lambda[i] = fep->all_lambda[i][*fep_state];
2814                 if (lam0)
2815                 {
2816                     lam0[i] = lambda[i];
2817                 }
2818             }
2819         }
2820         if (ir->bSimTemp)
2821         {
2822             /* need to rescale control temperatures to match current state */
2823             for (i = 0; i < ir->opts.ngtc; i++)
2824             {
2825                 if (ir->opts.ref_t[i] > 0)
2826                 {
2827                     ir->opts.ref_t[i] = ir->simtempvals->temperatures[*fep_state];
2828                 }
2829             }
2830         }
2831     }
2832
2833     /* Send to the log the information on the current lambdas */
2834     if (fplog != NULL)
2835     {
2836         fprintf(fplog, "Initial vector of lambda components:[ ");
2837         for (i = 0; i < efptNR; i++)
2838         {
2839             fprintf(fplog, "%10.4f ", lambda[i]);
2840         }
2841         fprintf(fplog, "]\n");
2842     }
2843     return;
2844 }
2845
2846
2847 void init_md(FILE *fplog,
2848              t_commrec *cr, t_inputrec *ir, const output_env_t oenv,
2849              double *t, double *t0,
2850              real *lambda, int *fep_state, double *lam0,
2851              t_nrnb *nrnb, gmx_mtop_t *mtop,
2852              gmx_update_t *upd,
2853              int nfile, const t_filenm fnm[],
2854              gmx_mdoutf_t *outf, t_mdebin **mdebin,
2855              tensor force_vir, tensor shake_vir, rvec mu_tot,
2856              gmx_bool *bSimAnn, t_vcm **vcm, unsigned long Flags,
2857              gmx_wallcycle_t wcycle)
2858 {
2859     int  i, j, n;
2860     real tmpt, mod;
2861
2862     /* Initial values */
2863     *t = *t0       = ir->init_t;
2864
2865     *bSimAnn = FALSE;
2866     for (i = 0; i < ir->opts.ngtc; i++)
2867     {
2868         /* set bSimAnn if any group is being annealed */
2869         if (ir->opts.annealing[i] != eannNO)
2870         {
2871             *bSimAnn = TRUE;
2872         }
2873     }
2874     if (*bSimAnn)
2875     {
2876         update_annealing_target_temp(&(ir->opts), ir->init_t);
2877     }
2878
2879     /* Initialize lambda variables */
2880     initialize_lambdas(fplog, ir, fep_state, lambda, lam0);
2881
2882     if (upd)
2883     {
2884         *upd = init_update(ir);
2885     }
2886
2887
2888     if (vcm != NULL)
2889     {
2890         *vcm = init_vcm(fplog, &mtop->groups, ir);
2891     }
2892
2893     if (EI_DYNAMICS(ir->eI) && !(Flags & MD_APPENDFILES))
2894     {
2895         if (ir->etc == etcBERENDSEN)
2896         {
2897             please_cite(fplog, "Berendsen84a");
2898         }
2899         if (ir->etc == etcVRESCALE)
2900         {
2901             please_cite(fplog, "Bussi2007a");
2902         }
2903         if (ir->eI == eiSD1)
2904         {
2905             please_cite(fplog, "Goga2012");
2906         }
2907     }
2908
2909     init_nrnb(nrnb);
2910
2911     if (nfile != -1)
2912     {
2913         *outf = init_mdoutf(fplog, nfile, fnm, Flags, cr, ir, mtop, oenv, wcycle);
2914
2915         *mdebin = init_mdebin((Flags & MD_APPENDFILES) ? NULL : mdoutf_get_fp_ene(*outf),
2916                               mtop, ir, mdoutf_get_fp_dhdl(*outf));
2917     }
2918
2919     if (ir->bAdress)
2920     {
2921         please_cite(fplog, "Fritsch12");
2922         please_cite(fplog, "Junghans10");
2923     }
2924     /* Initiate variables */
2925     clear_mat(force_vir);
2926     clear_mat(shake_vir);
2927     clear_rvec(mu_tot);
2928
2929     debug_gmx();
2930 }