632c2f3a4664ffb00ae72262bcdcf0c6e0dd905a
[alexxy/gromacs.git] / src / gromacs / mdlib / force.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5  * Copyright (c) 2001-2004, The GROMACS development team.
6  * Copyright (c) 2013,2014, by the GROMACS development team, led by
7  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8  * and including many others, as listed in the AUTHORS file in the
9  * top-level source directory and at http://www.gromacs.org.
10  *
11  * GROMACS is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU Lesser General Public License
13  * as published by the Free Software Foundation; either version 2.1
14  * of the License, or (at your option) any later version.
15  *
16  * GROMACS is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * Lesser General Public License for more details.
20  *
21  * You should have received a copy of the GNU Lesser General Public
22  * License along with GROMACS; if not, see
23  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
25  *
26  * If you want to redistribute modifications to GROMACS, please
27  * consider that scientific software is very special. Version
28  * control is crucial - bugs must be traceable. We will be happy to
29  * consider code for inclusion in the official distribution, but
30  * derived work must not be called official GROMACS. Details are found
31  * in the README & COPYING files - if they are missing, get the
32  * official version at http://www.gromacs.org.
33  *
34  * To help us fund GROMACS development, we humbly ask that you cite
35  * the research papers on the package. Check out http://www.gromacs.org.
36  */
37 #ifdef HAVE_CONFIG_H
38 #include <config.h>
39 #endif
40
41 #include <math.h>
42 #include <string.h>
43 #include <assert.h>
44 #include "sysstuff.h"
45 #include "typedefs.h"
46 #include "macros.h"
47 #include "gromacs/utility/smalloc.h"
48 #include "macros.h"
49 #include "physics.h"
50 #include "force.h"
51 #include "nonbonded.h"
52 #include "names.h"
53 #include "network.h"
54 #include "pbc.h"
55 #include "ns.h"
56 #include "nrnb.h"
57 #include "bondf.h"
58 #include "mshift.h"
59 #include "txtdump.h"
60 #include "coulomb.h"
61 #include "pme.h"
62 #include "mdrun.h"
63 #include "domdec.h"
64 #include "qmmm.h"
65 #include "gmx_omp_nthreads.h"
66
67 #include "gromacs/timing/wallcycle.h"
68 #include "gmx_fatal.h"
69
70 void ns(FILE              *fp,
71         t_forcerec        *fr,
72         matrix             box,
73         gmx_groups_t      *groups,
74         gmx_localtop_t    *top,
75         t_mdatoms         *md,
76         t_commrec         *cr,
77         t_nrnb            *nrnb,
78         gmx_bool           bFillGrid,
79         gmx_bool           bDoLongRangeNS)
80 {
81     char   *ptr;
82     int     nsearch;
83
84
85     if (!fr->ns.nblist_initialized)
86     {
87         init_neighbor_list(fp, fr, md->homenr);
88     }
89
90     if (fr->bTwinRange)
91     {
92         fr->nlr = 0;
93     }
94
95     nsearch = search_neighbours(fp, fr, box, top, groups, cr, nrnb, md,
96                                 bFillGrid, bDoLongRangeNS);
97     if (debug)
98     {
99         fprintf(debug, "nsearch = %d\n", nsearch);
100     }
101
102     /* Check whether we have to do dynamic load balancing */
103     /*if ((nsb->nstDlb > 0) && (mod(step,nsb->nstDlb) == 0))
104        count_nb(cr,nsb,&(top->blocks[ebCGS]),nns,fr->nlr,
105        &(top->idef),opts->ngener);
106      */
107     if (fr->ns.dump_nl > 0)
108     {
109         dump_nblist(fp, cr, fr, fr->ns.dump_nl);
110     }
111 }
112
113 static void reduce_thread_forces(int n, rvec *f,
114                                  tensor vir_q, tensor vir_lj,
115                                  real *Vcorr_q, real *Vcorr_lj,
116                                  real *dvdl_q, real *dvdl_lj,
117                                  int nthreads, f_thread_t *f_t)
118 {
119     int t, i;
120
121     /* This reduction can run over any number of threads */
122 #pragma omp parallel for num_threads(gmx_omp_nthreads_get(emntBonded)) private(t) schedule(static)
123     for (i = 0; i < n; i++)
124     {
125         for (t = 1; t < nthreads; t++)
126         {
127             rvec_inc(f[i], f_t[t].f[i]);
128         }
129     }
130     for (t = 1; t < nthreads; t++)
131     {
132         *Vcorr_q  += f_t[t].Vcorr_q;
133         *Vcorr_lj += f_t[t].Vcorr_lj;
134         *dvdl_q   += f_t[t].dvdl[efptCOUL];
135         *dvdl_lj  += f_t[t].dvdl[efptVDW];
136         m_add(vir_q, f_t[t].vir_q, vir_q);
137         m_add(vir_lj, f_t[t].vir_lj, vir_lj);
138     }
139 }
140
141 void gmx_print_sepdvdl(FILE *fplog, const char *s, real v, real dvdlambda)
142 {
143     fprintf(fplog, "  %-30s V %12.5e  dVdl %12.5e\n", s, v, dvdlambda);
144 }
145
146 void do_force_lowlevel(FILE       *fplog,   gmx_int64_t step,
147                        t_forcerec *fr,      t_inputrec *ir,
148                        t_idef     *idef,    t_commrec  *cr,
149                        t_nrnb     *nrnb,    gmx_wallcycle_t wcycle,
150                        t_mdatoms  *md,
151                        rvec       x[],      history_t  *hist,
152                        rvec       f[],
153                        rvec       f_longrange[],
154                        gmx_enerdata_t *enerd,
155                        t_fcdata   *fcd,
156                        gmx_localtop_t *top,
157                        gmx_genborn_t *born,
158                        t_atomtypes *atype,
159                        gmx_bool       bBornRadii,
160                        matrix     box,
161                        t_lambda   *fepvals,
162                        real       *lambda,
163                        t_graph    *graph,
164                        t_blocka   *excl,
165                        rvec       mu_tot[],
166                        int        flags,
167                        float      *cycles_pme)
168 {
169     int         i, j;
170     int         donb_flags;
171     gmx_bool    bDoEpot, bSepDVDL, bSB;
172     int         pme_flags;
173     matrix      boxs;
174     rvec        box_size;
175     t_pbc       pbc;
176     char        buf[22];
177     double      clam_i, vlam_i;
178     real        dvdl_dum[efptNR], dvdl_nb[efptNR], lam_i[efptNR];
179     real        dvdl_q, dvdl_lj;
180
181 #ifdef GMX_MPI
182     double  t0 = 0.0, t1, t2, t3; /* time measurement for coarse load balancing */
183 #endif
184
185 #define PRINT_SEPDVDL(s, v, dvdlambda) if (bSepDVDL) { gmx_print_sepdvdl(fplog, s, v, dvdlambda); }
186
187     set_pbc(&pbc, fr->ePBC, box);
188
189     /* reset free energy components */
190     for (i = 0; i < efptNR; i++)
191     {
192         dvdl_nb[i]  = 0;
193         dvdl_dum[i] = 0;
194     }
195
196     /* Reset box */
197     for (i = 0; (i < DIM); i++)
198     {
199         box_size[i] = box[i][i];
200     }
201
202     bSepDVDL = (fr->bSepDVDL && do_per_step(step, ir->nstlog));
203     debug_gmx();
204
205     /* do QMMM first if requested */
206     if (fr->bQMMM)
207     {
208         enerd->term[F_EQM] = calculate_QMMM(cr, x, f, fr);
209     }
210
211     if (bSepDVDL)
212     {
213         fprintf(fplog, "Step %s: non-bonded V and dVdl for rank %d:\n",
214                 gmx_step_str(step, buf), cr->nodeid);
215     }
216
217     /* Call the short range functions all in one go. */
218
219 #ifdef GMX_MPI
220     /*#define TAKETIME ((cr->npmenodes) && (fr->timesteps < 12))*/
221 #define TAKETIME FALSE
222     if (TAKETIME)
223     {
224         MPI_Barrier(cr->mpi_comm_mygroup);
225         t0 = MPI_Wtime();
226     }
227 #endif
228
229     if (ir->nwall)
230     {
231         /* foreign lambda component for walls */
232         real dvdl_walls = do_walls(ir, fr, box, md, x, f, lambda[efptVDW],
233                                    enerd->grpp.ener[egLJSR], nrnb);
234         PRINT_SEPDVDL("Walls", 0.0, dvdl_walls);
235         enerd->dvdl_lin[efptVDW] += dvdl_walls;
236     }
237
238     /* If doing GB, reset dvda and calculate the Born radii */
239     if (ir->implicit_solvent)
240     {
241         wallcycle_sub_start(wcycle, ewcsNONBONDED);
242
243         for (i = 0; i < born->nr; i++)
244         {
245             fr->dvda[i] = 0;
246         }
247
248         if (bBornRadii)
249         {
250             calc_gb_rad(cr, fr, ir, top, x, &(fr->gblist), born, md, nrnb);
251         }
252
253         wallcycle_sub_stop(wcycle, ewcsNONBONDED);
254     }
255
256     where();
257     /* We only do non-bonded calculation with group scheme here, the verlet
258      * calls are done from do_force_cutsVERLET(). */
259     if (fr->cutoff_scheme == ecutsGROUP && (flags & GMX_FORCE_NONBONDED))
260     {
261         donb_flags = 0;
262         /* Add short-range interactions */
263         donb_flags |= GMX_NONBONDED_DO_SR;
264
265         /* Currently all group scheme kernels always calculate (shift-)forces */
266         if (flags & GMX_FORCE_FORCES)
267         {
268             donb_flags |= GMX_NONBONDED_DO_FORCE;
269         }
270         if (flags & GMX_FORCE_VIRIAL)
271         {
272             donb_flags |= GMX_NONBONDED_DO_SHIFTFORCE;
273         }
274         if (flags & GMX_FORCE_ENERGY)
275         {
276             donb_flags |= GMX_NONBONDED_DO_POTENTIAL;
277         }
278         if (flags & GMX_FORCE_DO_LR)
279         {
280             donb_flags |= GMX_NONBONDED_DO_LR;
281         }
282
283         wallcycle_sub_start(wcycle, ewcsNONBONDED);
284         do_nonbonded(fr, x, f, f_longrange, md, excl,
285                      &enerd->grpp, nrnb,
286                      lambda, dvdl_nb, -1, -1, donb_flags);
287
288         /* If we do foreign lambda and we have soft-core interactions
289          * we have to recalculate the (non-linear) energies contributions.
290          */
291         if (fepvals->n_lambda > 0 && (flags & GMX_FORCE_DHDL) && fepvals->sc_alpha != 0)
292         {
293             for (i = 0; i < enerd->n_lambda; i++)
294             {
295                 for (j = 0; j < efptNR; j++)
296                 {
297                     lam_i[j] = (i == 0 ? lambda[j] : fepvals->all_lambda[j][i-1]);
298                 }
299                 reset_foreign_enerdata(enerd);
300                 do_nonbonded(fr, x, f, f_longrange, md, excl,
301                              &(enerd->foreign_grpp), nrnb,
302                              lam_i, dvdl_dum, -1, -1,
303                              (donb_flags & ~GMX_NONBONDED_DO_FORCE) | GMX_NONBONDED_DO_FOREIGNLAMBDA);
304                 sum_epot(&(enerd->foreign_grpp), enerd->foreign_term);
305                 enerd->enerpart_lambda[i] += enerd->foreign_term[F_EPOT];
306             }
307         }
308         wallcycle_sub_stop(wcycle, ewcsNONBONDED);
309         where();
310     }
311
312     /* If we are doing GB, calculate bonded forces and apply corrections
313      * to the solvation forces */
314     /* MRS: Eventually, many need to include free energy contribution here! */
315     if (ir->implicit_solvent)
316     {
317         wallcycle_sub_start(wcycle, ewcsBONDED);
318         calc_gb_forces(cr, md, born, top, x, f, fr, idef,
319                        ir->gb_algorithm, ir->sa_algorithm, nrnb, &pbc, graph, enerd);
320         wallcycle_sub_stop(wcycle, ewcsBONDED);
321     }
322
323 #ifdef GMX_MPI
324     if (TAKETIME)
325     {
326         t1          = MPI_Wtime();
327         fr->t_fnbf += t1-t0;
328     }
329 #endif
330
331     if (fepvals->sc_alpha != 0)
332     {
333         enerd->dvdl_nonlin[efptVDW] += dvdl_nb[efptVDW];
334     }
335     else
336     {
337         enerd->dvdl_lin[efptVDW] += dvdl_nb[efptVDW];
338     }
339
340     if (fepvals->sc_alpha != 0)
341
342     /* even though coulomb part is linear, we already added it, beacuse we
343        need to go through the vdw calculation anyway */
344     {
345         enerd->dvdl_nonlin[efptCOUL] += dvdl_nb[efptCOUL];
346     }
347     else
348     {
349         enerd->dvdl_lin[efptCOUL] += dvdl_nb[efptCOUL];
350     }
351
352     if (bSepDVDL)
353     {
354         real V_short_range    = 0;
355         real dvdl_short_range = 0;
356
357         for (i = 0; i < enerd->grpp.nener; i++)
358         {
359             V_short_range +=
360                 (fr->bBHAM ?
361                  enerd->grpp.ener[egBHAMSR][i] :
362                  enerd->grpp.ener[egLJSR][i])
363                 + enerd->grpp.ener[egCOULSR][i] + enerd->grpp.ener[egGB][i];
364         }
365         dvdl_short_range = dvdl_nb[efptVDW] + dvdl_nb[efptCOUL];
366         PRINT_SEPDVDL("VdW and Coulomb SR particle-p.",
367                       V_short_range,
368                       dvdl_short_range);
369     }
370     debug_gmx();
371
372
373     if (debug)
374     {
375         pr_rvecs(debug, 0, "fshift after SR", fr->fshift, SHIFTS);
376     }
377
378     /* Shift the coordinates. Must be done before bonded forces and PPPM,
379      * but is also necessary for SHAKE and update, therefore it can NOT
380      * go when no bonded forces have to be evaluated.
381      */
382
383     /* Here sometimes we would not need to shift with NBFonly,
384      * but we do so anyhow for consistency of the returned coordinates.
385      */
386     if (graph)
387     {
388         shift_self(graph, box, x);
389         if (TRICLINIC(box))
390         {
391             inc_nrnb(nrnb, eNR_SHIFTX, 2*graph->nnodes);
392         }
393         else
394         {
395             inc_nrnb(nrnb, eNR_SHIFTX, graph->nnodes);
396         }
397     }
398     /* Check whether we need to do bondeds or correct for exclusions */
399     if (fr->bMolPBC &&
400         ((flags & GMX_FORCE_BONDED)
401          || EEL_RF(fr->eeltype) || EEL_FULL(fr->eeltype) || EVDW_PME(fr->vdwtype)))
402     {
403         /* Since all atoms are in the rectangular or triclinic unit-cell,
404          * only single box vector shifts (2 in x) are required.
405          */
406         set_pbc_dd(&pbc, fr->ePBC, cr->dd, TRUE, box);
407     }
408     debug_gmx();
409
410     if (flags & GMX_FORCE_BONDED)
411     {
412         wallcycle_sub_start(wcycle, ewcsBONDED);
413         calc_bonds(fplog, cr->ms,
414                    idef, x, hist, f, fr, &pbc, graph, enerd, nrnb, lambda, md, fcd,
415                    DOMAINDECOMP(cr) ? cr->dd->gatindex : NULL, atype, born,
416                    flags,
417                    fr->bSepDVDL && do_per_step(step, ir->nstlog), step);
418
419         /* Check if we have to determine energy differences
420          * at foreign lambda's.
421          */
422         if (fepvals->n_lambda > 0 && (flags & GMX_FORCE_DHDL) &&
423             idef->ilsort != ilsortNO_FE)
424         {
425             if (idef->ilsort != ilsortFE_SORTED)
426             {
427                 gmx_incons("The bonded interactions are not sorted for free energy");
428             }
429             for (i = 0; i < enerd->n_lambda; i++)
430             {
431                 reset_foreign_enerdata(enerd);
432                 for (j = 0; j < efptNR; j++)
433                 {
434                     lam_i[j] = (i == 0 ? lambda[j] : fepvals->all_lambda[j][i-1]);
435                 }
436                 calc_bonds_lambda(fplog, idef, x, fr, &pbc, graph, &(enerd->foreign_grpp), enerd->foreign_term, nrnb, lam_i, md,
437                                   fcd, DOMAINDECOMP(cr) ? cr->dd->gatindex : NULL);
438                 sum_epot(&(enerd->foreign_grpp), enerd->foreign_term);
439                 enerd->enerpart_lambda[i] += enerd->foreign_term[F_EPOT];
440             }
441         }
442         debug_gmx();
443
444         wallcycle_sub_stop(wcycle, ewcsBONDED);
445     }
446
447     where();
448
449     *cycles_pme = 0;
450     if (EEL_FULL(fr->eeltype) || EVDW_PME(fr->vdwtype))
451     {
452         real Vlr             = 0, Vcorr = 0;
453         real dvdl_long_range = 0;
454         int  status          = 0;
455
456         bSB = (ir->nwall == 2);
457         if (bSB)
458         {
459             copy_mat(box, boxs);
460             svmul(ir->wall_ewald_zfac, boxs[ZZ], boxs[ZZ]);
461             box_size[ZZ] *= ir->wall_ewald_zfac;
462         }
463     }
464
465     /* Do long-range electrostatics and/or LJ-PME, including related short-range
466      * corrections.
467      */
468
469     clear_mat(fr->vir_el_recip);
470     clear_mat(fr->vir_lj_recip);
471
472     if (EEL_FULL(fr->eeltype) || EVDW_PME(fr->vdwtype))
473     {
474         real Vlr_q             = 0, Vlr_lj = 0, Vcorr_q = 0, Vcorr_lj = 0;
475         real dvdl_long_range_q = 0, dvdl_long_range_lj = 0;
476         int  status            = 0;
477
478         if (EEL_PME_EWALD(fr->eeltype) || EVDW_PME(fr->vdwtype))
479         {
480             real dvdl_long_range_correction_q   = 0;
481             real dvdl_long_range_correction_lj  = 0;
482             /* With the Verlet scheme exclusion forces are calculated
483              * in the non-bonded kernel.
484              */
485             /* The TPI molecule does not have exclusions with the rest
486              * of the system and no intra-molecular PME grid
487              * contributions will be calculated in
488              * gmx_pme_calc_energy.
489              */
490             if ((ir->cutoff_scheme == ecutsGROUP && fr->n_tpi == 0) ||
491                 ir->ewald_geometry != eewg3D ||
492                 ir->epsilon_surface != 0)
493             {
494                 int nthreads, t;
495
496                 wallcycle_sub_start(wcycle, ewcsEWALD_CORRECTION);
497
498                 if (fr->n_tpi > 0)
499                 {
500                     gmx_fatal(FARGS, "TPI with PME currently only works in a 3D geometry with tin-foil boundary conditions");
501                 }
502
503                 nthreads = gmx_omp_nthreads_get(emntBonded);
504 #pragma omp parallel for num_threads(nthreads) schedule(static)
505                 for (t = 0; t < nthreads; t++)
506                 {
507                     int     s, e, i;
508                     rvec   *fnv;
509                     tensor *vir_q, *vir_lj;
510                     real   *Vcorrt_q, *Vcorrt_lj, *dvdlt_q, *dvdlt_lj;
511                     if (t == 0)
512                     {
513                         fnv       = fr->f_novirsum;
514                         vir_q     = &fr->vir_el_recip;
515                         vir_lj    = &fr->vir_lj_recip;
516                         Vcorrt_q  = &Vcorr_q;
517                         Vcorrt_lj = &Vcorr_lj;
518                         dvdlt_q   = &dvdl_long_range_correction_q;
519                         dvdlt_lj  = &dvdl_long_range_correction_lj;
520                     }
521                     else
522                     {
523                         fnv       = fr->f_t[t].f;
524                         vir_q     = &fr->f_t[t].vir_q;
525                         vir_lj    = &fr->f_t[t].vir_lj;
526                         Vcorrt_q  = &fr->f_t[t].Vcorr_q;
527                         Vcorrt_lj = &fr->f_t[t].Vcorr_lj;
528                         dvdlt_q   = &fr->f_t[t].dvdl[efptCOUL];
529                         dvdlt_lj  = &fr->f_t[t].dvdl[efptVDW];
530                         for (i = 0; i < fr->natoms_force; i++)
531                         {
532                             clear_rvec(fnv[i]);
533                         }
534                         clear_mat(*vir_q);
535                         clear_mat(*vir_lj);
536                     }
537                     *dvdlt_q  = 0;
538                     *dvdlt_lj = 0;
539
540                     ewald_LRcorrection(fr->excl_load[t], fr->excl_load[t+1],
541                                        cr, t, fr,
542                                        md->chargeA,
543                                        md->nChargePerturbed ? md->chargeB : NULL,
544                                        md->sqrt_c6A,
545                                        md->nTypePerturbed ? md->sqrt_c6B : NULL,
546                                        md->sigmaA,
547                                        md->nTypePerturbed ? md->sigmaB : NULL,
548                                        md->sigma3A,
549                                        md->nTypePerturbed ? md->sigma3B : NULL,
550                                        ir->cutoff_scheme != ecutsVERLET,
551                                        excl, x, bSB ? boxs : box, mu_tot,
552                                        ir->ewald_geometry,
553                                        ir->epsilon_surface,
554                                        fnv, *vir_q, *vir_lj,
555                                        Vcorrt_q, Vcorrt_lj,
556                                        lambda[efptCOUL], lambda[efptVDW],
557                                        dvdlt_q, dvdlt_lj);
558                 }
559                 if (nthreads > 1)
560                 {
561                     reduce_thread_forces(fr->natoms_force, fr->f_novirsum,
562                                          fr->vir_el_recip, fr->vir_lj_recip,
563                                          &Vcorr_q, &Vcorr_lj,
564                                          &dvdl_long_range_correction_q,
565                                          &dvdl_long_range_correction_lj,
566                                          nthreads, fr->f_t);
567                 }
568                 wallcycle_sub_stop(wcycle, ewcsEWALD_CORRECTION);
569             }
570
571             if (EEL_PME_EWALD(fr->eeltype) && fr->n_tpi == 0)
572             {
573                 Vcorr_q += ewald_charge_correction(cr, fr, lambda[efptCOUL], box,
574                                                    &dvdl_long_range_correction_q,
575                                                    fr->vir_el_recip);
576             }
577
578             PRINT_SEPDVDL("Ewald excl./charge/dip. corr.", Vcorr_q, dvdl_long_range_correction_q);
579             PRINT_SEPDVDL("Ewald excl. corr. LJ", Vcorr_lj, dvdl_long_range_correction_lj);
580             enerd->dvdl_lin[efptCOUL] += dvdl_long_range_correction_q;
581             enerd->dvdl_lin[efptVDW]  += dvdl_long_range_correction_lj;
582         }
583
584         if ((EEL_PME(fr->eeltype) || EVDW_PME(fr->vdwtype)))
585         {
586             if (cr->duty & DUTY_PME)
587             {
588                 /* Do reciprocal PME for Coulomb and/or LJ. */
589                 assert(fr->n_tpi >= 0);
590                 if (fr->n_tpi == 0 || (flags & GMX_FORCE_STATECHANGED))
591                 {
592                     pme_flags = GMX_PME_SPREAD | GMX_PME_SOLVE;
593                     if (EEL_PME(fr->eeltype))
594                     {
595                         pme_flags     |= GMX_PME_DO_COULOMB;
596                     }
597                     if (EVDW_PME(fr->vdwtype))
598                     {
599                         pme_flags |= GMX_PME_DO_LJ;
600                     }
601                     if (flags & GMX_FORCE_FORCES)
602                     {
603                         pme_flags |= GMX_PME_CALC_F;
604                     }
605                     if (flags & GMX_FORCE_VIRIAL)
606                     {
607                         pme_flags |= GMX_PME_CALC_ENER_VIR;
608                     }
609                     if (fr->n_tpi > 0)
610                     {
611                         /* We don't calculate f, but we do want the potential */
612                         pme_flags |= GMX_PME_CALC_POT;
613                     }
614                     wallcycle_start(wcycle, ewcPMEMESH);
615                     status = gmx_pme_do(fr->pmedata,
616                                         0, md->homenr - fr->n_tpi,
617                                         x, fr->f_novirsum,
618                                         md->chargeA, md->chargeB,
619                                         md->sqrt_c6A, md->sqrt_c6B,
620                                         md->sigmaA, md->sigmaB,
621                                         bSB ? boxs : box, cr,
622                                         DOMAINDECOMP(cr) ? dd_pme_maxshift_x(cr->dd) : 0,
623                                         DOMAINDECOMP(cr) ? dd_pme_maxshift_y(cr->dd) : 0,
624                                         nrnb, wcycle,
625                                         fr->vir_el_recip, fr->ewaldcoeff_q,
626                                         fr->vir_lj_recip, fr->ewaldcoeff_lj,
627                                         &Vlr_q, &Vlr_lj,
628                                         lambda[efptCOUL], lambda[efptVDW],
629                                         &dvdl_long_range_q, &dvdl_long_range_lj, pme_flags);
630                     *cycles_pme = wallcycle_stop(wcycle, ewcPMEMESH);
631                     if (status != 0)
632                     {
633                         gmx_fatal(FARGS, "Error %d in reciprocal PME routine", status);
634                     }
635                     /* We should try to do as little computation after
636                      * this as possible, because parallel PME synchronizes
637                      * the nodes, so we want all load imbalance of the
638                      * rest of the force calculation to be before the PME
639                      * call.  DD load balancing is done on the whole time
640                      * of the force call (without PME).
641                      */
642                 }
643                 if (fr->n_tpi > 0)
644                 {
645                     if (EVDW_PME(ir->vdwtype))
646                     {
647
648                         gmx_fatal(FARGS, "Test particle insertion not implemented with LJ-PME");
649                     }
650                     /* Determine the PME grid energy of the test molecule
651                      * with the PME grid potential of the other charges.
652                      */
653                     gmx_pme_calc_energy(fr->pmedata, fr->n_tpi,
654                                         x + md->homenr - fr->n_tpi,
655                                         md->chargeA + md->homenr - fr->n_tpi,
656                                         &Vlr_q);
657                 }
658                 PRINT_SEPDVDL("PME mesh", Vlr_q + Vlr_lj, dvdl_long_range_q+dvdl_long_range_lj);
659             }
660         }
661
662         if (!EEL_PME(fr->eeltype) && EEL_PME_EWALD(fr->eeltype))
663         {
664             Vlr_q = do_ewald(ir, x, fr->f_novirsum,
665                              md->chargeA, md->chargeB,
666                              box_size, cr, md->homenr,
667                              fr->vir_el_recip, fr->ewaldcoeff_q,
668                              lambda[efptCOUL], &dvdl_long_range_q, fr->ewald_table);
669             PRINT_SEPDVDL("Ewald long-range", Vlr_q, dvdl_long_range_q);
670         }
671
672         /* Note that with separate PME nodes we get the real energies later */
673         enerd->dvdl_lin[efptCOUL] += dvdl_long_range_q;
674         enerd->dvdl_lin[efptVDW]  += dvdl_long_range_lj;
675         enerd->term[F_COUL_RECIP]  = Vlr_q + Vcorr_q;
676         enerd->term[F_LJ_RECIP]    = Vlr_lj + Vcorr_lj;
677         if (debug)
678         {
679             fprintf(debug, "Vlr_q = %g, Vcorr_q = %g, Vlr_corr_q = %g\n",
680                     Vlr_q, Vcorr_q, enerd->term[F_COUL_RECIP]);
681             pr_rvecs(debug, 0, "vir_el_recip after corr", fr->vir_el_recip, DIM);
682             pr_rvecs(debug, 0, "fshift after LR Corrections", fr->fshift, SHIFTS);
683             fprintf(debug, "Vlr_lj: %g, Vcorr_lj = %g, Vlr_corr_lj = %g\n",
684                     Vlr_lj, Vcorr_lj, enerd->term[F_LJ_RECIP]);
685             pr_rvecs(debug, 0, "vir_lj_recip after corr", fr->vir_lj_recip, DIM);
686         }
687     }
688     else
689     {
690         /* Is there a reaction-field exclusion correction needed? */
691         if (EEL_RF(fr->eeltype) && eelRF_NEC != fr->eeltype)
692         {
693             /* With the Verlet scheme, exclusion forces are calculated
694              * in the non-bonded kernel.
695              */
696             if (ir->cutoff_scheme != ecutsVERLET)
697             {
698                 real dvdl_rf_excl      = 0;
699                 enerd->term[F_RF_EXCL] =
700                     RF_excl_correction(fr, graph, md, excl, x, f,
701                                        fr->fshift, &pbc, lambda[efptCOUL], &dvdl_rf_excl);
702
703                 enerd->dvdl_lin[efptCOUL] += dvdl_rf_excl;
704                 PRINT_SEPDVDL("RF exclusion correction",
705                               enerd->term[F_RF_EXCL], dvdl_rf_excl);
706             }
707         }
708     }
709     where();
710     debug_gmx();
711
712     if (debug)
713     {
714         print_nrnb(debug, nrnb);
715     }
716     debug_gmx();
717
718 #ifdef GMX_MPI
719     if (TAKETIME)
720     {
721         t2 = MPI_Wtime();
722         MPI_Barrier(cr->mpi_comm_mygroup);
723         t3          = MPI_Wtime();
724         fr->t_wait += t3-t2;
725         if (fr->timesteps == 11)
726         {
727             fprintf(stderr, "* PP load balancing info: rank %d, step %s, rel wait time=%3.0f%% , load string value: %7.2f\n",
728                     cr->nodeid, gmx_step_str(fr->timesteps, buf),
729                     100*fr->t_wait/(fr->t_wait+fr->t_fnbf),
730                     (fr->t_fnbf+fr->t_wait)/fr->t_fnbf);
731         }
732         fr->timesteps++;
733     }
734 #endif
735
736     if (debug)
737     {
738         pr_rvecs(debug, 0, "fshift after bondeds", fr->fshift, SHIFTS);
739     }
740
741 }
742
743 void init_enerdata(int ngener, int n_lambda, gmx_enerdata_t *enerd)
744 {
745     int i, n2;
746
747     for (i = 0; i < F_NRE; i++)
748     {
749         enerd->term[i]         = 0;
750         enerd->foreign_term[i] = 0;
751     }
752
753
754     for (i = 0; i < efptNR; i++)
755     {
756         enerd->dvdl_lin[i]     = 0;
757         enerd->dvdl_nonlin[i]  = 0;
758     }
759
760     n2 = ngener*ngener;
761     if (debug)
762     {
763         fprintf(debug, "Creating %d sized group matrix for energies\n", n2);
764     }
765     enerd->grpp.nener         = n2;
766     enerd->foreign_grpp.nener = n2;
767     for (i = 0; (i < egNR); i++)
768     {
769         snew(enerd->grpp.ener[i], n2);
770         snew(enerd->foreign_grpp.ener[i], n2);
771     }
772
773     if (n_lambda)
774     {
775         enerd->n_lambda = 1 + n_lambda;
776         snew(enerd->enerpart_lambda, enerd->n_lambda);
777     }
778     else
779     {
780         enerd->n_lambda = 0;
781     }
782 }
783
784 void destroy_enerdata(gmx_enerdata_t *enerd)
785 {
786     int i;
787
788     for (i = 0; (i < egNR); i++)
789     {
790         sfree(enerd->grpp.ener[i]);
791     }
792
793     for (i = 0; (i < egNR); i++)
794     {
795         sfree(enerd->foreign_grpp.ener[i]);
796     }
797
798     if (enerd->n_lambda)
799     {
800         sfree(enerd->enerpart_lambda);
801     }
802 }
803
804 static real sum_v(int n, real v[])
805 {
806     real t;
807     int  i;
808
809     t = 0.0;
810     for (i = 0; (i < n); i++)
811     {
812         t = t + v[i];
813     }
814
815     return t;
816 }
817
818 void sum_epot(gmx_grppairener_t *grpp, real *epot)
819 {
820     int i;
821
822     /* Accumulate energies */
823     epot[F_COUL_SR]  = sum_v(grpp->nener, grpp->ener[egCOULSR]);
824     epot[F_LJ]       = sum_v(grpp->nener, grpp->ener[egLJSR]);
825     epot[F_LJ14]     = sum_v(grpp->nener, grpp->ener[egLJ14]);
826     epot[F_COUL14]   = sum_v(grpp->nener, grpp->ener[egCOUL14]);
827     epot[F_COUL_LR]  = sum_v(grpp->nener, grpp->ener[egCOULLR]);
828     epot[F_LJ_LR]    = sum_v(grpp->nener, grpp->ener[egLJLR]);
829     /* We have already added 1-2,1-3, and 1-4 terms to F_GBPOL */
830     epot[F_GBPOL]   += sum_v(grpp->nener, grpp->ener[egGB]);
831
832 /* lattice part of LR doesnt belong to any group
833  * and has been added earlier
834  */
835     epot[F_BHAM]     = sum_v(grpp->nener, grpp->ener[egBHAMSR]);
836     epot[F_BHAM_LR]  = sum_v(grpp->nener, grpp->ener[egBHAMLR]);
837
838     epot[F_EPOT] = 0;
839     for (i = 0; (i < F_EPOT); i++)
840     {
841         if (i != F_DISRESVIOL && i != F_ORIRESDEV)
842         {
843             epot[F_EPOT] += epot[i];
844         }
845     }
846 }
847
848 void sum_dhdl(gmx_enerdata_t *enerd, real *lambda, t_lambda *fepvals)
849 {
850     int    i, j, index;
851     double dlam;
852
853     enerd->dvdl_lin[efptVDW] += enerd->term[F_DVDL_VDW];  /* include dispersion correction */
854     enerd->term[F_DVDL]       = 0.0;
855     for (i = 0; i < efptNR; i++)
856     {
857         if (fepvals->separate_dvdl[i])
858         {
859             /* could this be done more readably/compactly? */
860             switch (i)
861             {
862                 case (efptMASS):
863                     index = F_DKDL;
864                     break;
865                 case (efptCOUL):
866                     index = F_DVDL_COUL;
867                     break;
868                 case (efptVDW):
869                     index = F_DVDL_VDW;
870                     break;
871                 case (efptBONDED):
872                     index = F_DVDL_BONDED;
873                     break;
874                 case (efptRESTRAINT):
875                     index = F_DVDL_RESTRAINT;
876                     break;
877                 default:
878                     index = F_DVDL;
879                     break;
880             }
881             enerd->term[index] = enerd->dvdl_lin[i] + enerd->dvdl_nonlin[i];
882             if (debug)
883             {
884                 fprintf(debug, "dvdl-%s[%2d]: %f: non-linear %f + linear %f\n",
885                         efpt_names[i], i, enerd->term[index], enerd->dvdl_nonlin[i], enerd->dvdl_lin[i]);
886             }
887         }
888         else
889         {
890             enerd->term[F_DVDL] += enerd->dvdl_lin[i] + enerd->dvdl_nonlin[i];
891             if (debug)
892             {
893                 fprintf(debug, "dvd-%sl[%2d]: %f: non-linear %f + linear %f\n",
894                         efpt_names[0], i, enerd->term[F_DVDL], enerd->dvdl_nonlin[i], enerd->dvdl_lin[i]);
895             }
896         }
897     }
898
899     /* Notes on the foreign lambda free energy difference evaluation:
900      * Adding the potential and ekin terms that depend linearly on lambda
901      * as delta lam * dvdl to the energy differences is exact.
902      * For the constraints this is not exact, but we have no other option
903      * without literally changing the lengths and reevaluating the energies at each step.
904      * (try to remedy this post 4.6 - MRS)
905      * For the non-bonded LR term we assume that the soft-core (if present)
906      * no longer affects the energy beyond the short-range cut-off,
907      * which is a very good approximation (except for exotic settings).
908      * (investigate how to overcome this post 4.6 - MRS)
909      */
910     if (fepvals->separate_dvdl[efptBONDED])
911     {
912         enerd->term[F_DVDL_BONDED] += enerd->term[F_DVDL_CONSTR];
913     }
914     else
915     {
916         enerd->term[F_DVDL] += enerd->term[F_DVDL_CONSTR];
917     }
918     enerd->term[F_DVDL_CONSTR] = 0;
919
920     for (i = 0; i < fepvals->n_lambda; i++)
921     {
922         /* note we are iterating over fepvals here!
923            For the current lam, dlam = 0 automatically,
924            so we don't need to add anything to the
925            enerd->enerpart_lambda[0] */
926
927         /* we don't need to worry about dvdl_lin contributions to dE at
928            current lambda, because the contributions to the current
929            lambda are automatically zeroed */
930
931         for (j = 0; j < efptNR; j++)
932         {
933             /* Note that this loop is over all dhdl components, not just the separated ones */
934             dlam = (fepvals->all_lambda[j][i]-lambda[j]);
935             enerd->enerpart_lambda[i+1] += dlam*enerd->dvdl_lin[j];
936             if (debug)
937             {
938                 fprintf(debug, "enerdiff lam %g: (%15s), non-linear %f linear %f*%f\n",
939                         fepvals->all_lambda[j][i], efpt_names[j],
940                         (enerd->enerpart_lambda[i+1] - enerd->enerpart_lambda[0]),
941                         dlam, enerd->dvdl_lin[j]);
942             }
943         }
944     }
945 }
946
947
948 void reset_foreign_enerdata(gmx_enerdata_t *enerd)
949 {
950     int  i, j;
951
952     /* First reset all foreign energy components.  Foreign energies always called on
953        neighbor search steps */
954     for (i = 0; (i < egNR); i++)
955     {
956         for (j = 0; (j < enerd->grpp.nener); j++)
957         {
958             enerd->foreign_grpp.ener[i][j] = 0.0;
959         }
960     }
961
962     /* potential energy components */
963     for (i = 0; (i <= F_EPOT); i++)
964     {
965         enerd->foreign_term[i] = 0.0;
966     }
967 }
968
969 void reset_enerdata(t_forcerec *fr, gmx_bool bNS,
970                     gmx_enerdata_t *enerd,
971                     gmx_bool bMaster)
972 {
973     gmx_bool bKeepLR;
974     int      i, j;
975
976     /* First reset all energy components, except for the long range terms
977      * on the master at non neighbor search steps, since the long range
978      * terms have already been summed at the last neighbor search step.
979      */
980     bKeepLR = (fr->bTwinRange && !bNS);
981     for (i = 0; (i < egNR); i++)
982     {
983         if (!(bKeepLR && bMaster && (i == egCOULLR || i == egLJLR)))
984         {
985             for (j = 0; (j < enerd->grpp.nener); j++)
986             {
987                 enerd->grpp.ener[i][j] = 0.0;
988             }
989         }
990     }
991     for (i = 0; i < efptNR; i++)
992     {
993         enerd->dvdl_lin[i]    = 0.0;
994         enerd->dvdl_nonlin[i] = 0.0;
995     }
996
997     /* Normal potential energy components */
998     for (i = 0; (i <= F_EPOT); i++)
999     {
1000         enerd->term[i] = 0.0;
1001     }
1002     /* Initialize the dVdlambda term with the long range contribution */
1003     /* Initialize the dvdl term with the long range contribution */
1004     enerd->term[F_DVDL]            = 0.0;
1005     enerd->term[F_DVDL_COUL]       = 0.0;
1006     enerd->term[F_DVDL_VDW]        = 0.0;
1007     enerd->term[F_DVDL_BONDED]     = 0.0;
1008     enerd->term[F_DVDL_RESTRAINT]  = 0.0;
1009     enerd->term[F_DKDL]            = 0.0;
1010     if (enerd->n_lambda > 0)
1011     {
1012         for (i = 0; i < enerd->n_lambda; i++)
1013         {
1014             enerd->enerpart_lambda[i] = 0.0;
1015         }
1016     }
1017     /* reset foreign energy data - separate function since we also call it elsewhere */
1018     reset_foreign_enerdata(enerd);
1019 }