Merge branch release-5-1 into release-2016
[alexxy/gromacs.git] / src / gromacs / mdlib / nbnxn_cuda / nbnxn_cuda_kernel.cuh
index 97d9338029df28164a22c44e3b028afa4bf37b65..4d9455cc66e4b56f4a51c5888423af07e97a9a68 100644 (file)
  *  NOTE: No include fence as it is meant to be included multiple times.
  *
  *  \author Szilárd Páll <pall.szilard@gmail.com>
+ *  \author Berk Hess <hess@kth.se>
  *  \ingroup module_mdlib
  */
-#include "config.h"
 
+#include "gromacs/gpu_utils/cuda_arch_utils.cuh"
 #include "gromacs/math/utilities.h"
 #include "gromacs/pbcutil/ishift.h"
 /* Note that floating-point constants in CUDA code should be suffixed
  * code that is in double precision.
  */
 
-#if __CUDA_ARCH__ >= 300
-/* Note: convenience macros, need to be undef-ed at the end of the file. */
-#define REDUCE_SHUFFLE
-/* On Kepler pre-loading i-atom types to shmem gives a few %,
-   but on Fermi it does not */
-#define IATYPE_SHMEM
-#ifdef HAVE_CUDA_TEXOBJ_SUPPORT
-#define USE_TEXOBJ
-#endif
+#if GMX_PTX_ARCH < 300
+#error "nbnxn_cuda_kernel.cuh included with GMX_PTX_ARCH < 300"
 #endif
 
 #if defined EL_EWALD_ANA || defined EL_EWALD_TAB
 #define LJ_EWALD
 #endif
 
+#if defined LJ_COMB_GEOM || defined LJ_COMB_LB
+#define LJ_COMB
+#endif
 
 /*
    Kernel launch parameters:
     - #blocks   = #pair lists, blockId = pair list Id
-    - #threads  = NTHREAD_Z * CL_SIZE^2
+    - #threads  = NTHREAD_Z * c_clSize^2
     - shmem     = see nbnxn_cuda.cu:calc_shmem_required()
 
     Each thread calculates an i force-component taking one pair of i-j atoms.
  */
 
-/* NTHREAD_Z controls the number of j-clusters processed concurrently on NTHREAD_Z
+/**@{*/
+/*! \brief Compute capability dependent definition of kernel launch configuration parameters.
+ *
+ * NTHREAD_Z controls the number of j-clusters processed concurrently on NTHREAD_Z
  * warp-pairs per block.
  *
  * - On CC 2.0-3.5, 5.0, and 5.2, NTHREAD_Z == 1, translating to 64 th/block with 16
  * shuffle-based reduction, hence CC >= 3.0.
  */
 
-/* Kernel launch bounds as function of NTHREAD_Z.
+/* Kernel launch bounds for different compute capabilities. The value of NTHREAD_Z
+ * determines the number of threads per block and it is chosen such that
+ * 16 blocks/multiprocessor can be kept in flight.
  * - CC 3.0/3.5/5.x, >=6.1: NTHREAD_Z=1, (64, 16) bounds
  * - CC 3.7, 6.0:           NTHREAD_Z=2, (128, 16) bounds
  *
  * Note: convenience macros, need to be undef-ed at the end of the file.
  */
-#if __CUDA_ARCH__ == 370 || __CUDA_ARCH__ == 600
-#define NTHREAD_Z           (2)
-#define MIN_BLOCKS_PER_MP   (16)
+#if GMX_PTX_ARCH == 370 || GMX_PTX_ARCH == 600
+    #define NTHREAD_Z           (2)
+    #define MIN_BLOCKS_PER_MP   (16)
 #else
-#define NTHREAD_Z           (1)
-#define MIN_BLOCKS_PER_MP   (16)
-#endif
-#define THREADS_PER_BLOCK   (CL_SIZE*CL_SIZE*NTHREAD_Z)
+    #define NTHREAD_Z           (1)
+    #define MIN_BLOCKS_PER_MP   (16)
+#endif /* GMX_PTX_ARCH == 370 || GMX_PTX_ARCH == 600 */
+#define THREADS_PER_BLOCK   (c_clSize*c_clSize*NTHREAD_Z)
 
-#if __CUDA_ARCH__ >= 350
+#if GMX_PTX_ARCH >= 350
+#if (GMX_PTX_ARCH <= 210) && (NTHREAD_Z > 1)
+    #error NTHREAD_Z > 1 will give incorrect results on CC 2.x
+#endif
+/**@}*/
 __launch_bounds__(THREADS_PER_BLOCK, MIN_BLOCKS_PER_MP)
 #else
 __launch_bounds__(THREADS_PER_BLOCK)
-#endif
+#endif /* GMX_PTX_ARCH >= 350 */
 #ifdef PRUNE_NBL
 #ifdef CALC_ENERGIES
 __global__ void NB_KERNEL_FUNC_NAME(nbnxn_kernel, _VF_prune_cuda)
 #else
 __global__ void NB_KERNEL_FUNC_NAME(nbnxn_kernel, _F_prune_cuda)
-#endif
+#endif /* CALC_ENERGIES */
 #else
 #ifdef CALC_ENERGIES
 __global__ void NB_KERNEL_FUNC_NAME(nbnxn_kernel, _VF_cuda)
 #else
 __global__ void NB_KERNEL_FUNC_NAME(nbnxn_kernel, _F_cuda)
-#endif
-#endif
+#endif /* CALC_ENERGIES */
+#endif /* PRUNE_NBL */
 (const cu_atomdata_t atdat,
  const cu_nbparam_t nbparam,
  const cu_plist_t plist,
  bool bCalcFshift)
+#ifdef FUNCTION_DECLARATION_ONLY
+;     /* Only do function declaration, omit the function body. */
+#else
 {
     /* convenience variables */
     const nbnxn_sci_t *pl_sci       = plist.sci;
@@ -154,8 +163,13 @@ __global__ void NB_KERNEL_FUNC_NAME(nbnxn_kernel, _F_cuda)
 #endif
     nbnxn_cj4_t        *pl_cj4      = plist.cj4;
     const nbnxn_excl_t *excl        = plist.excl;
+#ifndef LJ_COMB
     const int          *atom_types  = atdat.atom_types;
     int                 ntypes      = atdat.ntypes;
+#else
+    const float2       *lj_comb     = atdat.lj_comb;
+    float2              ljcp_i, ljcp_j;
+#endif
     const float4       *xq          = atdat.xq;
     float3             *f           = atdat.f;
     const float3       *shift_vec   = atdat.shift_vec;
@@ -202,17 +216,24 @@ __global__ void NB_KERNEL_FUNC_NAME(nbnxn_kernel, _F_cuda)
     unsigned int tidxz  = threadIdx.z;
 #endif
     unsigned int bidx   = blockIdx.x;
-    unsigned int widx   = tidx / WARP_SIZE; /* warp index */
+    unsigned int widx   = tidx / warp_size; /* warp index */
 
-    int          sci, ci, cj, ci_offset,
+    int          sci, ci, cj,
                  ai, aj,
-                 cij4_start, cij4_end,
-                 typei, typej,
-                 i, jm, j4, wexcl_idx;
+                 cij4_start, cij4_end;
+#ifndef LJ_COMB
+    int          typei, typej;
+#endif
+    int          i, jm, j4, wexcl_idx;
     float        qi, qj_f,
-                 r2, inv_r, inv_r2, inv_r6,
-                 c6, c12,
-                 int_bit,
+                 r2, inv_r, inv_r2;
+#if !defined LJ_COMB_LB || defined CALC_ENERGIES
+    float        inv_r6, c6, c12;
+#endif
+#ifdef LJ_COMB_LB
+    float        sigma, epsilon;
+#endif
+    float        int_bit,
                  F_invr;
 #ifdef CALC_ENERGIES
     float        E_lj, E_el;
@@ -223,25 +244,24 @@ __global__ void NB_KERNEL_FUNC_NAME(nbnxn_kernel, _F_cuda)
     unsigned int wexcl, imask, mask_ji;
     float4       xqbuf;
     float3       xi, xj, rv, f_ij, fcj_buf;
-    float3       fci_buf[NCL_PER_SUPERCL]; /* i force buffer */
+    float3       fci_buf[c_numClPerSupercl]; /* i force buffer */
     nbnxn_sci_t  nb_sci;
 
+    /*! i-cluster interaction mask for a super-cluster with all c_numClPerSupercl=8 bits set */
+    const unsigned superClInteractionMask = ((1U << c_numClPerSupercl) - 1U);
+
     /* shmem buffer for i x+q pre-loading */
     extern __shared__  float4 xqib[];
+
     /* shmem buffer for cj, for each warp separately */
-    int *cjs     = ((int *)(xqib + NCL_PER_SUPERCL * CL_SIZE)) + tidxz * 2 * NBNXN_GPU_JGROUP_SIZE;
-#ifdef IATYPE_SHMEM
+    int *cjs       = ((int *)(xqib + c_numClPerSupercl * c_clSize)) + tidxz * c_nbnxnGpuClusterpairSplit * c_nbnxnGpuJgroupSize;
+    int *cjs_end   = ((int *)(xqib + c_numClPerSupercl * c_clSize)) + NTHREAD_Z * c_nbnxnGpuClusterpairSplit * c_nbnxnGpuJgroupSize;
+#ifndef LJ_COMB
     /* shmem buffer for i atom-type pre-loading */
-    int *atib    = ((int *)(xqib + NCL_PER_SUPERCL * CL_SIZE)) + NTHREAD_Z * 2 * NBNXN_GPU_JGROUP_SIZE;
-#endif
-
-#ifndef REDUCE_SHUFFLE
-    /* shmem j force buffer */
-#ifdef IATYPE_SHMEM
-    float *f_buf = (float *)(atib + NCL_PER_SUPERCL * CL_SIZE);
+    int *atib      = cjs_end;
 #else
-    float *f_buf = (float *)(cjs + NTHREAD_Z * 2 * NBNXN_GPU_JGROUP_SIZE);
-#endif
+    /* shmem buffer for i-atom LJ combination rule parameters */
+    float2 *ljcpib = (float2 *)cjs_end;
 #endif
 
     nb_sci      = pl_sci[bidx];         /* my i super-cluster's index = current bidx */
@@ -252,138 +272,128 @@ __global__ void NB_KERNEL_FUNC_NAME(nbnxn_kernel, _F_cuda)
     if (tidxz == 0)
     {
         /* Pre-load i-atom x and q into shared memory */
-        ci = sci * NCL_PER_SUPERCL + tidxj;
-        ai = ci * CL_SIZE + tidxi;
-        xqib[tidxj * CL_SIZE + tidxi] = xq[ai] + shift_vec[nb_sci.shift];
-#ifdef IATYPE_SHMEM
+        ci = sci * c_numClPerSupercl + tidxj;
+        ai = ci * c_clSize + tidxi;
+
+        xqbuf    = xq[ai] + shift_vec[nb_sci.shift];
+        xqbuf.w *= nbparam.epsfac;
+        xqib[tidxj * c_clSize + tidxi] = xqbuf;
+
+#ifndef LJ_COMB
         /* Pre-load the i-atom types into shared memory */
-        atib[tidxj * CL_SIZE + tidxi] = atom_types[ai];
+        atib[tidxj * c_clSize + tidxi] = atom_types[ai];
+#else
+        /* Pre-load the LJ combination parameters into shared memory */
+        ljcpib[tidxj * c_clSize + tidxi] = lj_comb[ai];
 #endif
     }
     __syncthreads();
 
-    for (ci_offset = 0; ci_offset < NCL_PER_SUPERCL; ci_offset++)
+    for (i = 0; i < c_numClPerSupercl; i++)
     {
-        fci_buf[ci_offset] = make_float3(0.0f);
+        fci_buf[i] = make_float3(0.0f);
     }
 
 #ifdef LJ_EWALD
     /* TODO: we are trading registers with flops by keeping lje_coeff-s, try re-calculating it later */
     lje_coeff2   = nbparam.ewaldcoeff_lj*nbparam.ewaldcoeff_lj;
-    lje_coeff6_6 = lje_coeff2*lje_coeff2*lje_coeff2*ONE_SIXTH_F;
-#endif /* LJ_EWALD */
+    lje_coeff6_6 = lje_coeff2*lje_coeff2*lje_coeff2*c_oneSixth;
+#endif
 
 
 #ifdef CALC_ENERGIES
     E_lj = 0.0f;
     E_el = 0.0f;
 
-#if defined EXCLUSION_FORCES /* Ewald or RF */
-    if (nb_sci.shift == CENTRAL && pl_cj4[cij4_start].cj[0] == sci*NCL_PER_SUPERCL)
+#ifdef EXCLUSION_FORCES /* Ewald or RF */
+    if (nb_sci.shift == CENTRAL && pl_cj4[cij4_start].cj[0] == sci*c_numClPerSupercl)
     {
         /* we have the diagonal: add the charge and LJ self interaction energy term */
-        for (i = 0; i < NCL_PER_SUPERCL; i++)
+        for (i = 0; i < c_numClPerSupercl; i++)
         {
 #if defined EL_EWALD_ANY || defined EL_RF || defined EL_CUTOFF
-            qi    = xqib[i * CL_SIZE + tidxi].w;
+            qi    = xqib[i * c_clSize + tidxi].w;
             E_el += qi*qi;
 #endif
 
-#if defined LJ_EWALD
-#ifdef USE_TEXOBJ
-            E_lj += tex1Dfetch<float>(nbparam.nbfp_texobj, atom_types[(sci*NCL_PER_SUPERCL + i)*CL_SIZE + tidxi]*(ntypes + 1)*2);
-#else
-            E_lj += tex1Dfetch(nbfp_texref, atom_types[(sci*NCL_PER_SUPERCL + i)*CL_SIZE + tidxi]*(ntypes + 1)*2);
-#endif /* USE_TEXOBJ */
-#endif /* LJ_EWALD */
-
+#ifdef LJ_EWALD
+            E_lj += tex1Dfetch<float>(nbparam.nbfp_texobj, atom_types[(sci*c_numClPerSupercl + i)*c_clSize + tidxi]*(ntypes + 1)*2);
+#endif
         }
 
         /* divide the self term(s) equally over the j-threads, then multiply with the coefficients. */
 #ifdef LJ_EWALD
-        E_lj /= CL_SIZE*NTHREAD_Z;
-        E_lj *= 0.5f*ONE_SIXTH_F*lje_coeff6_6;
-#endif  /* LJ_EWALD */
+        E_lj /= c_clSize*NTHREAD_Z;
+        E_lj *= 0.5f*c_oneSixth*lje_coeff6_6;
+#endif
 
 #if defined EL_EWALD_ANY || defined EL_RF || defined EL_CUTOFF
-        E_el /= CL_SIZE*NTHREAD_Z;
+        /* Correct for epsfac^2 due to adding qi^2 */
+        E_el /= nbparam.epsfac*c_clSize*NTHREAD_Z;
 #if defined EL_RF || defined EL_CUTOFF
-        E_el *= -nbparam.epsfac*0.5f*c_rf;
+        E_el *= -0.5f*c_rf;
 #else
-        E_el *= -nbparam.epsfac*beta*M_FLOAT_1_SQRTPI; /* last factor 1/sqrt(pi) */
+        E_el *= -beta*M_FLOAT_1_SQRTPI; /* last factor 1/sqrt(pi) */
 #endif
-#endif                                                 /* EL_EWALD_ANY || defined EL_RF || defined EL_CUTOFF */
+#endif                                  /* EL_EWALD_ANY || defined EL_RF || defined EL_CUTOFF */
     }
-#endif                                                 /* EXCLUSION_FORCES */
-
-#endif                                                 /* CALC_ENERGIES */
+#endif                                  /* EXCLUSION_FORCES */
 
-    /* skip central shifts when summing shift forces */
-    if (nb_sci.shift == CENTRAL)
-    {
-        bCalcFshift = false;
-    }
+#endif                                  /* CALC_ENERGIES */
 
     /* loop over the j clusters = seen by any of the atoms in the current super-cluster */
     for (j4 = cij4_start + tidxz; j4 < cij4_end; j4 += NTHREAD_Z)
     {
         wexcl_idx   = pl_cj4[j4].imei[widx].excl_ind;
         imask       = pl_cj4[j4].imei[widx].imask;
-        wexcl       = excl[wexcl_idx].pair[(tidx) & (WARP_SIZE - 1)];
+        wexcl       = excl[wexcl_idx].pair[(tidx) & (warp_size - 1)];
 
 #ifndef PRUNE_NBL
         if (imask)
 #endif
         {
             /* Pre-load cj into shared memory on both warps separately */
-            if ((tidxj == 0 || tidxj == 4) && tidxi < NBNXN_GPU_JGROUP_SIZE)
+            if ((tidxj == 0 || tidxj == 4) && tidxi < c_nbnxnGpuJgroupSize)
             {
-                cjs[tidxi + tidxj * NBNXN_GPU_JGROUP_SIZE / 4] = pl_cj4[j4].cj[tidxi];
+                cjs[tidxi + tidxj * c_nbnxnGpuJgroupSize/c_splitClSize] = pl_cj4[j4].cj[tidxi];
             }
 
             /* Unrolling this loop
                - with pruning leads to register spilling;
-               - on Kepler is much slower;
-               - doesn't work on CUDA <v4.1
-               Tested with nvcc 3.2 - 5.0.7 */
-#if !defined PRUNE_NBL && __CUDA_ARCH__ < 300 && GMX_CUDA_VERSION >= 4010
-#pragma unroll 4
-#endif
-            for (jm = 0; jm < NBNXN_GPU_JGROUP_SIZE; jm++)
+               - on Kepler and later it is much slower;
+               Tested with up to nvcc 7.5 */
+            for (jm = 0; jm < c_nbnxnGpuJgroupSize; jm++)
             {
-                /* ((1U << NCL_PER_SUPERCL) - 1U) is the i-cluster interaction
-                 * mask for a super-cluster with all NCL_PER_SUPERCL bits set.
-                 */
-                if (imask & (((1U << NCL_PER_SUPERCL) - 1U) << (jm * NCL_PER_SUPERCL)))
+                if (imask & (superClInteractionMask << (jm * c_numClPerSupercl)))
                 {
-                    mask_ji = (1U << (jm * NCL_PER_SUPERCL));
+                    mask_ji = (1U << (jm * c_numClPerSupercl));
 
-                    cj      = cjs[jm + (tidxj & 4) * NBNXN_GPU_JGROUP_SIZE / 4];
-                    aj      = cj * CL_SIZE + tidxj;
+                    cj      = cjs[jm + (tidxj & 4) * c_nbnxnGpuJgroupSize/c_splitClSize];
+                    aj      = cj * c_clSize + tidxj;
 
                     /* load j atom data */
                     xqbuf   = xq[aj];
                     xj      = make_float3(xqbuf.x, xqbuf.y, xqbuf.z);
-                    qj_f    = nbparam.epsfac * xqbuf.w;
+                    qj_f    = xqbuf.w;
+#ifndef LJ_COMB
                     typej   = atom_types[aj];
+#else
+                    ljcp_j  = lj_comb[aj];
+#endif
 
                     fcj_buf = make_float3(0.0f);
 
-                    /* The PME and RF kernels don't unroll with CUDA <v4.1. */
-#if !defined PRUNE_NBL && !(GMX_CUDA_VERSION < 4010 && defined EXCLUSION_FORCES)
+#if !defined PRUNE_NBL
 #pragma unroll 8
 #endif
-                    for (i = 0; i < NCL_PER_SUPERCL; i++)
+                    for (i = 0; i < c_numClPerSupercl; i++)
                     {
                         if (imask & mask_ji)
                         {
-                            ci_offset   = i;                     /* i force buffer offset */
-
-                            ci      = sci * NCL_PER_SUPERCL + i; /* i cluster index */
-                            ai      = ci * CL_SIZE + tidxi;      /* i atom index */
+                            ci      = sci * c_numClPerSupercl + i; /* i cluster index */
 
                             /* all threads load an atom from i cluster ci into shmem! */
-                            xqbuf   = xqib[i * CL_SIZE + tidxi];
+                            xqbuf   = xqib[i * c_clSize + tidxi];
                             xi      = make_float3(xqbuf.x, xqbuf.y, xqbuf.z);
 
                             /* distance between i and j atoms */
@@ -412,29 +422,35 @@ __global__ void NB_KERNEL_FUNC_NAME(nbnxn_kernel, _F_cuda)
                             {
                                 /* load the rest of the i-atom parameters */
                                 qi      = xqbuf.w;
-#ifdef IATYPE_SHMEM
-                                typei   = atib[i * CL_SIZE + tidxi];
-#else
-                                typei   = atom_types[ai];
-#endif
 
+#ifndef LJ_COMB
                                 /* LJ 6*C6 and 12*C12 */
-#ifdef USE_TEXOBJ
+                                typei   = atib[i * c_clSize + tidxi];
                                 c6      = tex1Dfetch<float>(nbparam.nbfp_texobj, 2 * (ntypes * typei + typej));
                                 c12     = tex1Dfetch<float>(nbparam.nbfp_texobj, 2 * (ntypes * typei + typej) + 1);
 #else
-                                c6      = tex1Dfetch(nbfp_texref, 2 * (ntypes * typei + typej));
-                                c12     = tex1Dfetch(nbfp_texref, 2 * (ntypes * typei + typej) + 1);
-#endif                          /* USE_TEXOBJ */
-
+                                ljcp_i  = ljcpib[i * c_clSize + tidxi];
+#ifdef LJ_COMB_GEOM
+                                c6      = ljcp_i.x * ljcp_j.x;
+                                c12     = ljcp_i.y * ljcp_j.y;
+#else
+                                /* LJ 2^(1/6)*sigma and 12*epsilon */
+                                sigma   = ljcp_i.x + ljcp_j.x;
+                                epsilon = ljcp_i.y * ljcp_j.y;
+#if defined CALC_ENERGIES || defined LJ_FORCE_SWITCH || defined LJ_POT_SWITCH
+                                convert_sigma_epsilon_to_c6_c12(sigma, epsilon, &c6, &c12);
+#endif
+#endif                          /* LJ_COMB_GEOM */
+#endif                          /* LJ_COMB */
 
-                                /* avoid NaN for excluded pairs at r=0 */
-                                r2      += (1.0f - int_bit) * NBNXN_AVOID_SING_R2_INC;
+                                // Ensure distance do not become so small that r^-12 overflows
+                                r2      = max(r2, NBNXN_MIN_RSQ);
 
                                 inv_r   = rsqrt(r2);
                                 inv_r2  = inv_r * inv_r;
+#if !defined LJ_COMB_LB || defined CALC_ENERGIES
                                 inv_r6  = inv_r2 * inv_r2 * inv_r2;
-#if defined EXCLUSION_FORCES
+#ifdef EXCLUSION_FORCES
                                 /* We could mask inv_r2, but with Ewald
                                  * masking both inv_r6 and F_invr is faster */
                                 inv_r6  *= int_bit;
@@ -442,9 +458,19 @@ __global__ void NB_KERNEL_FUNC_NAME(nbnxn_kernel, _F_cuda)
 
                                 F_invr  = inv_r6 * (c12 * inv_r6 - c6) * inv_r2;
 #if defined CALC_ENERGIES || defined LJ_POT_SWITCH
-                                E_lj_p  = int_bit * (c12 * (inv_r6 * inv_r6 + nbparam.repulsion_shift.cpot)*ONE_TWELVETH_F -
-                                                     c6 * (inv_r6 + nbparam.dispersion_shift.cpot)*ONE_SIXTH_F);
+                                E_lj_p  = int_bit * (c12 * (inv_r6 * inv_r6 + nbparam.repulsion_shift.cpot)*c_oneTwelveth -
+                                                     c6 * (inv_r6 + nbparam.dispersion_shift.cpot)*c_oneSixth);
 #endif
+#else                           /* !LJ_COMB_LB || CALC_ENERGIES */
+                                float sig_r  = sigma*inv_r;
+                                float sig_r2 = sig_r*sig_r;
+                                float sig_r6 = sig_r2*sig_r2*sig_r2;
+#ifdef EXCLUSION_FORCES
+                                sig_r6 *= int_bit;
+#endif                          /* EXCLUSION_FORCES */
+
+                                F_invr  = epsilon * sig_r6 * (sig_r6 - 1.0f) * inv_r2;
+#endif                          /* !LJ_COMB_LB || CALC_ENERGIES */
 
 #ifdef LJ_FORCE_SWITCH
 #ifdef CALC_ENERGIES
@@ -511,13 +537,8 @@ __global__ void NB_KERNEL_FUNC_NAME(nbnxn_kernel, _F_cuda)
                                 F_invr  += qi * qj_f * (int_bit*inv_r2*inv_r + pmecorrF(beta2*r2)*beta3);
 #elif defined EL_EWALD_TAB
                                 F_invr  += qi * qj_f * (int_bit*inv_r2 -
-#ifdef USE_TEXOBJ
-                                                        interpolate_coulomb_force_r(nbparam.coulomb_tab_texobj, r2 * inv_r, coulomb_tab_scale)
-#else
-                                                        interpolate_coulomb_force_r(r2 * inv_r, coulomb_tab_scale)
-#endif /* USE_TEXOBJ */
-                                                        ) * inv_r;
-#endif /* EL_EWALD_ANA/TAB */
+                                                        interpolate_coulomb_force_r(nbparam.coulomb_tab_texobj, r2 * inv_r, coulomb_tab_scale)) * inv_r;
+#endif                          /* EL_EWALD_ANA/TAB */
 
 #ifdef CALC_ENERGIES
 #ifdef EL_CUTOFF
@@ -537,7 +558,7 @@ __global__ void NB_KERNEL_FUNC_NAME(nbnxn_kernel, _F_cuda)
                                 fcj_buf -= f_ij;
 
                                 /* accumulate i forces in registers */
-                                fci_buf[ci_offset] += f_ij;
+                                fci_buf[i] += f_ij;
                             }
                         }
 
@@ -546,16 +567,7 @@ __global__ void NB_KERNEL_FUNC_NAME(nbnxn_kernel, _F_cuda)
                     }
 
                     /* reduce j forces */
-#ifdef REDUCE_SHUFFLE
                     reduce_force_j_warp_shfl(fcj_buf, f, tidxi, aj);
-#else
-                    /* store j forces in shmem */
-                    f_buf[                  tidx] = fcj_buf.x;
-                    f_buf[    FBUF_STRIDE + tidx] = fcj_buf.y;
-                    f_buf[2 * FBUF_STRIDE + tidx] = fcj_buf.z;
-
-                    reduce_force_j_generic(f_buf, f, tidxi, tidxj, aj);
-#endif
                 }
             }
 #ifdef PRUNE_NBL
@@ -566,57 +578,35 @@ __global__ void NB_KERNEL_FUNC_NAME(nbnxn_kernel, _F_cuda)
         }
     }
 
+    /* skip central shifts when summing shift forces */
+    if (nb_sci.shift == CENTRAL)
+    {
+        bCalcFshift = false;
+    }
+
     float fshift_buf = 0.0f;
 
     /* reduce i forces */
-    for (ci_offset = 0; ci_offset < NCL_PER_SUPERCL; ci_offset++)
+    for (i = 0; i < c_numClPerSupercl; i++)
     {
-        ai  = (sci * NCL_PER_SUPERCL + ci_offset) * CL_SIZE + tidxi;
-#ifdef REDUCE_SHUFFLE
-        reduce_force_i_warp_shfl(fci_buf[ci_offset], f,
+        ai  = (sci * c_numClPerSupercl + i) * c_clSize + tidxi;
+        reduce_force_i_warp_shfl(fci_buf[i], f,
                                  &fshift_buf, bCalcFshift,
                                  tidxj, ai);
-#else
-        f_buf[                  tidx] = fci_buf[ci_offset].x;
-        f_buf[    FBUF_STRIDE + tidx] = fci_buf[ci_offset].y;
-        f_buf[2 * FBUF_STRIDE + tidx] = fci_buf[ci_offset].z;
-        __syncthreads();
-        reduce_force_i(f_buf, f,
-                       &fshift_buf, bCalcFshift,
-                       tidxi, tidxj, ai);
-        __syncthreads();
-#endif
     }
 
     /* add up local shift forces into global mem, tidxj indexes x,y,z */
-#ifdef REDUCE_SHUFFLE
     if (bCalcFshift && (tidxj & 3) < 3)
     {
-        atomicAdd(&(atdat.fshift[nb_sci.shift].x) + (tidxj & ~4), fshift_buf);
+        atomicAdd(&(atdat.fshift[nb_sci.shift].x) + (tidxj & 3), fshift_buf);
     }
-#else
-    if (bCalcFshift && tidxj < 3)
-    {
-        atomicAdd(&(atdat.fshift[nb_sci.shift].x) + tidxj, fshift_buf);
-    }
-#endif
 
 #ifdef CALC_ENERGIES
-#ifdef REDUCE_SHUFFLE
     /* reduce the energies over warps and store into global memory */
     reduce_energy_warp_shfl(E_lj, E_el, e_lj, e_el, tidx);
-#else
-    /* flush the energies to shmem and reduce them */
-    f_buf[              tidx] = E_lj;
-    f_buf[FBUF_STRIDE + tidx] = E_el;
-    reduce_energy_pow2(f_buf + (tidx & WARP_SIZE), e_lj, e_el, tidx & ~WARP_SIZE);
-#endif
 #endif
 }
-
-#undef REDUCE_SHUFFLE
-#undef IATYPE_SHMEM
-#undef USE_TEXOBJ
+#endif /* FUNCTION_DECLARATION_ONLY */
 
 #undef NTHREAD_Z
 #undef MIN_BLOCKS_PER_MP
@@ -625,3 +615,5 @@ __global__ void NB_KERNEL_FUNC_NAME(nbnxn_kernel, _F_cuda)
 #undef EL_EWALD_ANY
 #undef EXCLUSION_FORCES
 #undef LJ_EWALD
+
+#undef LJ_COMB