Move vec.h to math/
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_single / nb_kernel_ElecRFCut_VdwNone_GeomP1P1_avx_256_single.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS avx_256_single kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "nrnb.h"
48
49 #include "gromacs/simd/math_x86_avx_256_single.h"
50 #include "kernelutil_x86_avx_256_single.h"
51
52 /*
53  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_avx_256_single
54  * Electrostatics interaction: ReactionField
55  * VdW interaction:            None
56  * Geometry:                   Particle-Particle
57  * Calculate force/pot:        PotentialAndForce
58  */
59 void
60 nb_kernel_ElecRFCut_VdwNone_GeomP1P1_VF_avx_256_single
61                     (t_nblist                    * gmx_restrict       nlist,
62                      rvec                        * gmx_restrict          xx,
63                      rvec                        * gmx_restrict          ff,
64                      t_forcerec                  * gmx_restrict          fr,
65                      t_mdatoms                   * gmx_restrict     mdatoms,
66                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
67                      t_nrnb                      * gmx_restrict        nrnb)
68 {
69     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
70      * just 0 for non-waters.
71      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
72      * jnr indices corresponding to data put in the four positions in the SIMD register.
73      */
74     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
75     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76     int              jnrA,jnrB,jnrC,jnrD;
77     int              jnrE,jnrF,jnrG,jnrH;
78     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
79     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
80     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
81     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
82     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
83     real             rcutoff_scalar;
84     real             *shiftvec,*fshift,*x,*f;
85     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
86     real             scratch[4*DIM];
87     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
88     real *           vdwioffsetptr0;
89     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
90     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
91     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
92     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
93     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     __m256           dummy_mask,cutoff_mask;
96     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
97     __m256           one     = _mm256_set1_ps(1.0);
98     __m256           two     = _mm256_set1_ps(2.0);
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = _mm256_set1_ps(fr->epsfac);
111     charge           = mdatoms->chargeA;
112     krf              = _mm256_set1_ps(fr->ic->k_rf);
113     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
114     crf              = _mm256_set1_ps(fr->ic->c_rf);
115
116     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
117     rcutoff_scalar   = fr->rcoulomb;
118     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
119     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
120
121     /* Avoid stupid compiler warnings */
122     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
123     j_coord_offsetA = 0;
124     j_coord_offsetB = 0;
125     j_coord_offsetC = 0;
126     j_coord_offsetD = 0;
127     j_coord_offsetE = 0;
128     j_coord_offsetF = 0;
129     j_coord_offsetG = 0;
130     j_coord_offsetH = 0;
131
132     outeriter        = 0;
133     inneriter        = 0;
134
135     for(iidx=0;iidx<4*DIM;iidx++)
136     {
137         scratch[iidx] = 0.0;
138     }
139
140     /* Start outer loop over neighborlists */
141     for(iidx=0; iidx<nri; iidx++)
142     {
143         /* Load shift vector for this list */
144         i_shift_offset   = DIM*shiftidx[iidx];
145
146         /* Load limits for loop over neighbors */
147         j_index_start    = jindex[iidx];
148         j_index_end      = jindex[iidx+1];
149
150         /* Get outer coordinate index */
151         inr              = iinr[iidx];
152         i_coord_offset   = DIM*inr;
153
154         /* Load i particle coords and add shift vector */
155         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
156
157         fix0             = _mm256_setzero_ps();
158         fiy0             = _mm256_setzero_ps();
159         fiz0             = _mm256_setzero_ps();
160
161         /* Load parameters for i particles */
162         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
163
164         /* Reset potential sums */
165         velecsum         = _mm256_setzero_ps();
166
167         /* Start inner kernel loop */
168         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
169         {
170
171             /* Get j neighbor index, and coordinate index */
172             jnrA             = jjnr[jidx];
173             jnrB             = jjnr[jidx+1];
174             jnrC             = jjnr[jidx+2];
175             jnrD             = jjnr[jidx+3];
176             jnrE             = jjnr[jidx+4];
177             jnrF             = jjnr[jidx+5];
178             jnrG             = jjnr[jidx+6];
179             jnrH             = jjnr[jidx+7];
180             j_coord_offsetA  = DIM*jnrA;
181             j_coord_offsetB  = DIM*jnrB;
182             j_coord_offsetC  = DIM*jnrC;
183             j_coord_offsetD  = DIM*jnrD;
184             j_coord_offsetE  = DIM*jnrE;
185             j_coord_offsetF  = DIM*jnrF;
186             j_coord_offsetG  = DIM*jnrG;
187             j_coord_offsetH  = DIM*jnrH;
188
189             /* load j atom coordinates */
190             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
191                                                  x+j_coord_offsetC,x+j_coord_offsetD,
192                                                  x+j_coord_offsetE,x+j_coord_offsetF,
193                                                  x+j_coord_offsetG,x+j_coord_offsetH,
194                                                  &jx0,&jy0,&jz0);
195
196             /* Calculate displacement vector */
197             dx00             = _mm256_sub_ps(ix0,jx0);
198             dy00             = _mm256_sub_ps(iy0,jy0);
199             dz00             = _mm256_sub_ps(iz0,jz0);
200
201             /* Calculate squared distance and things based on it */
202             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
203
204             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
205
206             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
207
208             /* Load parameters for j particles */
209             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
210                                                                  charge+jnrC+0,charge+jnrD+0,
211                                                                  charge+jnrE+0,charge+jnrF+0,
212                                                                  charge+jnrG+0,charge+jnrH+0);
213
214             /**************************
215              * CALCULATE INTERACTIONS *
216              **************************/
217
218             if (gmx_mm256_any_lt(rsq00,rcutoff2))
219             {
220
221             /* Compute parameters for interactions between i and j atoms */
222             qq00             = _mm256_mul_ps(iq0,jq0);
223
224             /* REACTION-FIELD ELECTROSTATICS */
225             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
226             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
227
228             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
229
230             /* Update potential sum for this i atom from the interaction with this j atom. */
231             velec            = _mm256_and_ps(velec,cutoff_mask);
232             velecsum         = _mm256_add_ps(velecsum,velec);
233
234             fscal            = felec;
235
236             fscal            = _mm256_and_ps(fscal,cutoff_mask);
237
238             /* Calculate temporary vectorial force */
239             tx               = _mm256_mul_ps(fscal,dx00);
240             ty               = _mm256_mul_ps(fscal,dy00);
241             tz               = _mm256_mul_ps(fscal,dz00);
242
243             /* Update vectorial force */
244             fix0             = _mm256_add_ps(fix0,tx);
245             fiy0             = _mm256_add_ps(fiy0,ty);
246             fiz0             = _mm256_add_ps(fiz0,tz);
247
248             fjptrA             = f+j_coord_offsetA;
249             fjptrB             = f+j_coord_offsetB;
250             fjptrC             = f+j_coord_offsetC;
251             fjptrD             = f+j_coord_offsetD;
252             fjptrE             = f+j_coord_offsetE;
253             fjptrF             = f+j_coord_offsetF;
254             fjptrG             = f+j_coord_offsetG;
255             fjptrH             = f+j_coord_offsetH;
256             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
257
258             }
259
260             /* Inner loop uses 36 flops */
261         }
262
263         if(jidx<j_index_end)
264         {
265
266             /* Get j neighbor index, and coordinate index */
267             jnrlistA         = jjnr[jidx];
268             jnrlistB         = jjnr[jidx+1];
269             jnrlistC         = jjnr[jidx+2];
270             jnrlistD         = jjnr[jidx+3];
271             jnrlistE         = jjnr[jidx+4];
272             jnrlistF         = jjnr[jidx+5];
273             jnrlistG         = jjnr[jidx+6];
274             jnrlistH         = jjnr[jidx+7];
275             /* Sign of each element will be negative for non-real atoms.
276              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
277              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
278              */
279             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
280                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
281                                             
282             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
283             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
284             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
285             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
286             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
287             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
288             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
289             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
290             j_coord_offsetA  = DIM*jnrA;
291             j_coord_offsetB  = DIM*jnrB;
292             j_coord_offsetC  = DIM*jnrC;
293             j_coord_offsetD  = DIM*jnrD;
294             j_coord_offsetE  = DIM*jnrE;
295             j_coord_offsetF  = DIM*jnrF;
296             j_coord_offsetG  = DIM*jnrG;
297             j_coord_offsetH  = DIM*jnrH;
298
299             /* load j atom coordinates */
300             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
301                                                  x+j_coord_offsetC,x+j_coord_offsetD,
302                                                  x+j_coord_offsetE,x+j_coord_offsetF,
303                                                  x+j_coord_offsetG,x+j_coord_offsetH,
304                                                  &jx0,&jy0,&jz0);
305
306             /* Calculate displacement vector */
307             dx00             = _mm256_sub_ps(ix0,jx0);
308             dy00             = _mm256_sub_ps(iy0,jy0);
309             dz00             = _mm256_sub_ps(iz0,jz0);
310
311             /* Calculate squared distance and things based on it */
312             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
313
314             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
315
316             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
317
318             /* Load parameters for j particles */
319             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
320                                                                  charge+jnrC+0,charge+jnrD+0,
321                                                                  charge+jnrE+0,charge+jnrF+0,
322                                                                  charge+jnrG+0,charge+jnrH+0);
323
324             /**************************
325              * CALCULATE INTERACTIONS *
326              **************************/
327
328             if (gmx_mm256_any_lt(rsq00,rcutoff2))
329             {
330
331             /* Compute parameters for interactions between i and j atoms */
332             qq00             = _mm256_mul_ps(iq0,jq0);
333
334             /* REACTION-FIELD ELECTROSTATICS */
335             velec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_add_ps(rinv00,_mm256_mul_ps(krf,rsq00)),crf));
336             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
337
338             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
339
340             /* Update potential sum for this i atom from the interaction with this j atom. */
341             velec            = _mm256_and_ps(velec,cutoff_mask);
342             velec            = _mm256_andnot_ps(dummy_mask,velec);
343             velecsum         = _mm256_add_ps(velecsum,velec);
344
345             fscal            = felec;
346
347             fscal            = _mm256_and_ps(fscal,cutoff_mask);
348
349             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
350
351             /* Calculate temporary vectorial force */
352             tx               = _mm256_mul_ps(fscal,dx00);
353             ty               = _mm256_mul_ps(fscal,dy00);
354             tz               = _mm256_mul_ps(fscal,dz00);
355
356             /* Update vectorial force */
357             fix0             = _mm256_add_ps(fix0,tx);
358             fiy0             = _mm256_add_ps(fiy0,ty);
359             fiz0             = _mm256_add_ps(fiz0,tz);
360
361             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
362             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
363             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
364             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
365             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
366             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
367             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
368             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
369             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
370
371             }
372
373             /* Inner loop uses 36 flops */
374         }
375
376         /* End of innermost loop */
377
378         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
379                                                  f+i_coord_offset,fshift+i_shift_offset);
380
381         ggid                        = gid[iidx];
382         /* Update potential energies */
383         gmx_mm256_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
384
385         /* Increment number of inner iterations */
386         inneriter                  += j_index_end - j_index_start;
387
388         /* Outer loop uses 8 flops */
389     }
390
391     /* Increment number of outer iterations */
392     outeriter        += nri;
393
394     /* Update outer/inner flops */
395
396     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*36);
397 }
398 /*
399  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_avx_256_single
400  * Electrostatics interaction: ReactionField
401  * VdW interaction:            None
402  * Geometry:                   Particle-Particle
403  * Calculate force/pot:        Force
404  */
405 void
406 nb_kernel_ElecRFCut_VdwNone_GeomP1P1_F_avx_256_single
407                     (t_nblist                    * gmx_restrict       nlist,
408                      rvec                        * gmx_restrict          xx,
409                      rvec                        * gmx_restrict          ff,
410                      t_forcerec                  * gmx_restrict          fr,
411                      t_mdatoms                   * gmx_restrict     mdatoms,
412                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
413                      t_nrnb                      * gmx_restrict        nrnb)
414 {
415     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
416      * just 0 for non-waters.
417      * Suffixes A,B,C,D,E,F,G,H refer to j loop unrolling done with AVX, e.g. for the eight different
418      * jnr indices corresponding to data put in the four positions in the SIMD register.
419      */
420     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
421     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
422     int              jnrA,jnrB,jnrC,jnrD;
423     int              jnrE,jnrF,jnrG,jnrH;
424     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
425     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
426     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
427     int              j_coord_offsetE,j_coord_offsetF,j_coord_offsetG,j_coord_offsetH;
428     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
429     real             rcutoff_scalar;
430     real             *shiftvec,*fshift,*x,*f;
431     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD,*fjptrE,*fjptrF,*fjptrG,*fjptrH;
432     real             scratch[4*DIM];
433     __m256           tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
434     real *           vdwioffsetptr0;
435     __m256           ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
436     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D,vdwjidx0E,vdwjidx0F,vdwjidx0G,vdwjidx0H;
437     __m256           jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
438     __m256           dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
439     __m256           velec,felec,velecsum,facel,crf,krf,krf2;
440     real             *charge;
441     __m256           dummy_mask,cutoff_mask;
442     __m256           signbit = _mm256_castsi256_ps( _mm256_set1_epi32(0x80000000) );
443     __m256           one     = _mm256_set1_ps(1.0);
444     __m256           two     = _mm256_set1_ps(2.0);
445     x                = xx[0];
446     f                = ff[0];
447
448     nri              = nlist->nri;
449     iinr             = nlist->iinr;
450     jindex           = nlist->jindex;
451     jjnr             = nlist->jjnr;
452     shiftidx         = nlist->shift;
453     gid              = nlist->gid;
454     shiftvec         = fr->shift_vec[0];
455     fshift           = fr->fshift[0];
456     facel            = _mm256_set1_ps(fr->epsfac);
457     charge           = mdatoms->chargeA;
458     krf              = _mm256_set1_ps(fr->ic->k_rf);
459     krf2             = _mm256_set1_ps(fr->ic->k_rf*2.0);
460     crf              = _mm256_set1_ps(fr->ic->c_rf);
461
462     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
463     rcutoff_scalar   = fr->rcoulomb;
464     rcutoff          = _mm256_set1_ps(rcutoff_scalar);
465     rcutoff2         = _mm256_mul_ps(rcutoff,rcutoff);
466
467     /* Avoid stupid compiler warnings */
468     jnrA = jnrB = jnrC = jnrD = jnrE = jnrF = jnrG = jnrH = 0;
469     j_coord_offsetA = 0;
470     j_coord_offsetB = 0;
471     j_coord_offsetC = 0;
472     j_coord_offsetD = 0;
473     j_coord_offsetE = 0;
474     j_coord_offsetF = 0;
475     j_coord_offsetG = 0;
476     j_coord_offsetH = 0;
477
478     outeriter        = 0;
479     inneriter        = 0;
480
481     for(iidx=0;iidx<4*DIM;iidx++)
482     {
483         scratch[iidx] = 0.0;
484     }
485
486     /* Start outer loop over neighborlists */
487     for(iidx=0; iidx<nri; iidx++)
488     {
489         /* Load shift vector for this list */
490         i_shift_offset   = DIM*shiftidx[iidx];
491
492         /* Load limits for loop over neighbors */
493         j_index_start    = jindex[iidx];
494         j_index_end      = jindex[iidx+1];
495
496         /* Get outer coordinate index */
497         inr              = iinr[iidx];
498         i_coord_offset   = DIM*inr;
499
500         /* Load i particle coords and add shift vector */
501         gmx_mm256_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
502
503         fix0             = _mm256_setzero_ps();
504         fiy0             = _mm256_setzero_ps();
505         fiz0             = _mm256_setzero_ps();
506
507         /* Load parameters for i particles */
508         iq0              = _mm256_mul_ps(facel,_mm256_set1_ps(charge[inr+0]));
509
510         /* Start inner kernel loop */
511         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+7]>=0; jidx+=8)
512         {
513
514             /* Get j neighbor index, and coordinate index */
515             jnrA             = jjnr[jidx];
516             jnrB             = jjnr[jidx+1];
517             jnrC             = jjnr[jidx+2];
518             jnrD             = jjnr[jidx+3];
519             jnrE             = jjnr[jidx+4];
520             jnrF             = jjnr[jidx+5];
521             jnrG             = jjnr[jidx+6];
522             jnrH             = jjnr[jidx+7];
523             j_coord_offsetA  = DIM*jnrA;
524             j_coord_offsetB  = DIM*jnrB;
525             j_coord_offsetC  = DIM*jnrC;
526             j_coord_offsetD  = DIM*jnrD;
527             j_coord_offsetE  = DIM*jnrE;
528             j_coord_offsetF  = DIM*jnrF;
529             j_coord_offsetG  = DIM*jnrG;
530             j_coord_offsetH  = DIM*jnrH;
531
532             /* load j atom coordinates */
533             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
534                                                  x+j_coord_offsetC,x+j_coord_offsetD,
535                                                  x+j_coord_offsetE,x+j_coord_offsetF,
536                                                  x+j_coord_offsetG,x+j_coord_offsetH,
537                                                  &jx0,&jy0,&jz0);
538
539             /* Calculate displacement vector */
540             dx00             = _mm256_sub_ps(ix0,jx0);
541             dy00             = _mm256_sub_ps(iy0,jy0);
542             dz00             = _mm256_sub_ps(iz0,jz0);
543
544             /* Calculate squared distance and things based on it */
545             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
546
547             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
548
549             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
550
551             /* Load parameters for j particles */
552             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
553                                                                  charge+jnrC+0,charge+jnrD+0,
554                                                                  charge+jnrE+0,charge+jnrF+0,
555                                                                  charge+jnrG+0,charge+jnrH+0);
556
557             /**************************
558              * CALCULATE INTERACTIONS *
559              **************************/
560
561             if (gmx_mm256_any_lt(rsq00,rcutoff2))
562             {
563
564             /* Compute parameters for interactions between i and j atoms */
565             qq00             = _mm256_mul_ps(iq0,jq0);
566
567             /* REACTION-FIELD ELECTROSTATICS */
568             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
569
570             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
571
572             fscal            = felec;
573
574             fscal            = _mm256_and_ps(fscal,cutoff_mask);
575
576             /* Calculate temporary vectorial force */
577             tx               = _mm256_mul_ps(fscal,dx00);
578             ty               = _mm256_mul_ps(fscal,dy00);
579             tz               = _mm256_mul_ps(fscal,dz00);
580
581             /* Update vectorial force */
582             fix0             = _mm256_add_ps(fix0,tx);
583             fiy0             = _mm256_add_ps(fiy0,ty);
584             fiz0             = _mm256_add_ps(fiz0,tz);
585
586             fjptrA             = f+j_coord_offsetA;
587             fjptrB             = f+j_coord_offsetB;
588             fjptrC             = f+j_coord_offsetC;
589             fjptrD             = f+j_coord_offsetD;
590             fjptrE             = f+j_coord_offsetE;
591             fjptrF             = f+j_coord_offsetF;
592             fjptrG             = f+j_coord_offsetG;
593             fjptrH             = f+j_coord_offsetH;
594             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
595
596             }
597
598             /* Inner loop uses 30 flops */
599         }
600
601         if(jidx<j_index_end)
602         {
603
604             /* Get j neighbor index, and coordinate index */
605             jnrlistA         = jjnr[jidx];
606             jnrlistB         = jjnr[jidx+1];
607             jnrlistC         = jjnr[jidx+2];
608             jnrlistD         = jjnr[jidx+3];
609             jnrlistE         = jjnr[jidx+4];
610             jnrlistF         = jjnr[jidx+5];
611             jnrlistG         = jjnr[jidx+6];
612             jnrlistH         = jjnr[jidx+7];
613             /* Sign of each element will be negative for non-real atoms.
614              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
615              * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
616              */
617             dummy_mask = gmx_mm256_set_m128(gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx+4)),_mm_setzero_si128())),
618                                             gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128())));
619                                             
620             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
621             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
622             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
623             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
624             jnrE       = (jnrlistE>=0) ? jnrlistE : 0;
625             jnrF       = (jnrlistF>=0) ? jnrlistF : 0;
626             jnrG       = (jnrlistG>=0) ? jnrlistG : 0;
627             jnrH       = (jnrlistH>=0) ? jnrlistH : 0;
628             j_coord_offsetA  = DIM*jnrA;
629             j_coord_offsetB  = DIM*jnrB;
630             j_coord_offsetC  = DIM*jnrC;
631             j_coord_offsetD  = DIM*jnrD;
632             j_coord_offsetE  = DIM*jnrE;
633             j_coord_offsetF  = DIM*jnrF;
634             j_coord_offsetG  = DIM*jnrG;
635             j_coord_offsetH  = DIM*jnrH;
636
637             /* load j atom coordinates */
638             gmx_mm256_load_1rvec_8ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
639                                                  x+j_coord_offsetC,x+j_coord_offsetD,
640                                                  x+j_coord_offsetE,x+j_coord_offsetF,
641                                                  x+j_coord_offsetG,x+j_coord_offsetH,
642                                                  &jx0,&jy0,&jz0);
643
644             /* Calculate displacement vector */
645             dx00             = _mm256_sub_ps(ix0,jx0);
646             dy00             = _mm256_sub_ps(iy0,jy0);
647             dz00             = _mm256_sub_ps(iz0,jz0);
648
649             /* Calculate squared distance and things based on it */
650             rsq00            = gmx_mm256_calc_rsq_ps(dx00,dy00,dz00);
651
652             rinv00           = gmx_mm256_invsqrt_ps(rsq00);
653
654             rinvsq00         = _mm256_mul_ps(rinv00,rinv00);
655
656             /* Load parameters for j particles */
657             jq0              = gmx_mm256_load_8real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
658                                                                  charge+jnrC+0,charge+jnrD+0,
659                                                                  charge+jnrE+0,charge+jnrF+0,
660                                                                  charge+jnrG+0,charge+jnrH+0);
661
662             /**************************
663              * CALCULATE INTERACTIONS *
664              **************************/
665
666             if (gmx_mm256_any_lt(rsq00,rcutoff2))
667             {
668
669             /* Compute parameters for interactions between i and j atoms */
670             qq00             = _mm256_mul_ps(iq0,jq0);
671
672             /* REACTION-FIELD ELECTROSTATICS */
673             felec            = _mm256_mul_ps(qq00,_mm256_sub_ps(_mm256_mul_ps(rinv00,rinvsq00),krf2));
674
675             cutoff_mask      = _mm256_cmp_ps(rsq00,rcutoff2,_CMP_LT_OQ);
676
677             fscal            = felec;
678
679             fscal            = _mm256_and_ps(fscal,cutoff_mask);
680
681             fscal            = _mm256_andnot_ps(dummy_mask,fscal);
682
683             /* Calculate temporary vectorial force */
684             tx               = _mm256_mul_ps(fscal,dx00);
685             ty               = _mm256_mul_ps(fscal,dy00);
686             tz               = _mm256_mul_ps(fscal,dz00);
687
688             /* Update vectorial force */
689             fix0             = _mm256_add_ps(fix0,tx);
690             fiy0             = _mm256_add_ps(fiy0,ty);
691             fiz0             = _mm256_add_ps(fiz0,tz);
692
693             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
694             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
695             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
696             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
697             fjptrE             = (jnrlistE>=0) ? f+j_coord_offsetE : scratch;
698             fjptrF             = (jnrlistF>=0) ? f+j_coord_offsetF : scratch;
699             fjptrG             = (jnrlistG>=0) ? f+j_coord_offsetG : scratch;
700             fjptrH             = (jnrlistH>=0) ? f+j_coord_offsetH : scratch;
701             gmx_mm256_decrement_1rvec_8ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjptrE,fjptrF,fjptrG,fjptrH,tx,ty,tz);
702
703             }
704
705             /* Inner loop uses 30 flops */
706         }
707
708         /* End of innermost loop */
709
710         gmx_mm256_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
711                                                  f+i_coord_offset,fshift+i_shift_offset);
712
713         /* Increment number of inner iterations */
714         inneriter                  += j_index_end - j_index_start;
715
716         /* Outer loop uses 7 flops */
717     }
718
719     /* Increment number of outer iterations */
720     outeriter        += nri;
721
722     /* Update outer/inner flops */
723
724     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*30);
725 }