Code beautification with uncrustify
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecGB_VdwNone_GeomP1P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_256_double
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            None
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     __m128i          gbitab;
78     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
79     __m256d          minushalf = _mm256_set1_pd(-0.5);
80     real             *invsqrta,*dvda,*gbtab;
81     __m128i          vfitab;
82     __m128i          ifour       = _mm_set1_epi32(4);
83     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
84     real             *vftab;
85     __m256d          dummy_mask,cutoff_mask;
86     __m128           tmpmask0,tmpmask1;
87     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
88     __m256d          one     = _mm256_set1_pd(1.0);
89     __m256d          two     = _mm256_set1_pd(2.0);
90     x                = xx[0];
91     f                = ff[0];
92
93     nri              = nlist->nri;
94     iinr             = nlist->iinr;
95     jindex           = nlist->jindex;
96     jjnr             = nlist->jjnr;
97     shiftidx         = nlist->shift;
98     gid              = nlist->gid;
99     shiftvec         = fr->shift_vec[0];
100     fshift           = fr->fshift[0];
101     facel            = _mm256_set1_pd(fr->epsfac);
102     charge           = mdatoms->chargeA;
103
104     invsqrta         = fr->invsqrta;
105     dvda             = fr->dvda;
106     gbtabscale       = _mm256_set1_pd(fr->gbtab.scale);
107     gbtab            = fr->gbtab.data;
108     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
109
110     /* Avoid stupid compiler warnings */
111     jnrA = jnrB = jnrC = jnrD = 0;
112     j_coord_offsetA = 0;
113     j_coord_offsetB = 0;
114     j_coord_offsetC = 0;
115     j_coord_offsetD = 0;
116
117     outeriter        = 0;
118     inneriter        = 0;
119
120     for(iidx=0;iidx<4*DIM;iidx++)
121     {
122         scratch[iidx] = 0.0;
123     }
124
125     /* Start outer loop over neighborlists */
126     for(iidx=0; iidx<nri; iidx++)
127     {
128         /* Load shift vector for this list */
129         i_shift_offset   = DIM*shiftidx[iidx];
130
131         /* Load limits for loop over neighbors */
132         j_index_start    = jindex[iidx];
133         j_index_end      = jindex[iidx+1];
134
135         /* Get outer coordinate index */
136         inr              = iinr[iidx];
137         i_coord_offset   = DIM*inr;
138
139         /* Load i particle coords and add shift vector */
140         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
141
142         fix0             = _mm256_setzero_pd();
143         fiy0             = _mm256_setzero_pd();
144         fiz0             = _mm256_setzero_pd();
145
146         /* Load parameters for i particles */
147         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
148         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
149
150         /* Reset potential sums */
151         velecsum         = _mm256_setzero_pd();
152         vgbsum           = _mm256_setzero_pd();
153         dvdasum          = _mm256_setzero_pd();
154
155         /* Start inner kernel loop */
156         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
157         {
158
159             /* Get j neighbor index, and coordinate index */
160             jnrA             = jjnr[jidx];
161             jnrB             = jjnr[jidx+1];
162             jnrC             = jjnr[jidx+2];
163             jnrD             = jjnr[jidx+3];
164             j_coord_offsetA  = DIM*jnrA;
165             j_coord_offsetB  = DIM*jnrB;
166             j_coord_offsetC  = DIM*jnrC;
167             j_coord_offsetD  = DIM*jnrD;
168
169             /* load j atom coordinates */
170             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
171                                                  x+j_coord_offsetC,x+j_coord_offsetD,
172                                                  &jx0,&jy0,&jz0);
173
174             /* Calculate displacement vector */
175             dx00             = _mm256_sub_pd(ix0,jx0);
176             dy00             = _mm256_sub_pd(iy0,jy0);
177             dz00             = _mm256_sub_pd(iz0,jz0);
178
179             /* Calculate squared distance and things based on it */
180             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
181
182             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
183
184             /* Load parameters for j particles */
185             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
186                                                                  charge+jnrC+0,charge+jnrD+0);
187             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
188                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
189
190             /**************************
191              * CALCULATE INTERACTIONS *
192              **************************/
193
194             r00              = _mm256_mul_pd(rsq00,rinv00);
195
196             /* Compute parameters for interactions between i and j atoms */
197             qq00             = _mm256_mul_pd(iq0,jq0);
198
199             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
200             isaprod          = _mm256_mul_pd(isai0,isaj0);
201             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
202             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
203
204             /* Calculate generalized born table index - this is a separate table from the normal one,
205              * but we use the same procedure by multiplying r with scale and truncating to integer.
206              */
207             rt               = _mm256_mul_pd(r00,gbscale);
208             gbitab           = _mm256_cvttpd_epi32(rt);
209             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
210             gbitab           = _mm_slli_epi32(gbitab,2);
211             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
212             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
213             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
214             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
215             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
216             Heps             = _mm256_mul_pd(gbeps,H);
217             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
218             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
219             vgb              = _mm256_mul_pd(gbqqfactor,VV);
220
221             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
222             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
223             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
224             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
225             fjptrA           = dvda+jnrA;
226             fjptrB           = dvda+jnrB;
227             fjptrC           = dvda+jnrC;
228             fjptrD           = dvda+jnrD;
229             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
230                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
231             velec            = _mm256_mul_pd(qq00,rinv00);
232             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
233
234             /* Update potential sum for this i atom from the interaction with this j atom. */
235             velecsum         = _mm256_add_pd(velecsum,velec);
236             vgbsum           = _mm256_add_pd(vgbsum,vgb);
237
238             fscal            = felec;
239
240             /* Calculate temporary vectorial force */
241             tx               = _mm256_mul_pd(fscal,dx00);
242             ty               = _mm256_mul_pd(fscal,dy00);
243             tz               = _mm256_mul_pd(fscal,dz00);
244
245             /* Update vectorial force */
246             fix0             = _mm256_add_pd(fix0,tx);
247             fiy0             = _mm256_add_pd(fiy0,ty);
248             fiz0             = _mm256_add_pd(fiz0,tz);
249
250             fjptrA             = f+j_coord_offsetA;
251             fjptrB             = f+j_coord_offsetB;
252             fjptrC             = f+j_coord_offsetC;
253             fjptrD             = f+j_coord_offsetD;
254             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
255
256             /* Inner loop uses 57 flops */
257         }
258
259         if(jidx<j_index_end)
260         {
261
262             /* Get j neighbor index, and coordinate index */
263             jnrlistA         = jjnr[jidx];
264             jnrlistB         = jjnr[jidx+1];
265             jnrlistC         = jjnr[jidx+2];
266             jnrlistD         = jjnr[jidx+3];
267             /* Sign of each element will be negative for non-real atoms.
268              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
269              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
270              */
271             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
272
273             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
274             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
275             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
276
277             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
278             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
279             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
280             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
281             j_coord_offsetA  = DIM*jnrA;
282             j_coord_offsetB  = DIM*jnrB;
283             j_coord_offsetC  = DIM*jnrC;
284             j_coord_offsetD  = DIM*jnrD;
285
286             /* load j atom coordinates */
287             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
288                                                  x+j_coord_offsetC,x+j_coord_offsetD,
289                                                  &jx0,&jy0,&jz0);
290
291             /* Calculate displacement vector */
292             dx00             = _mm256_sub_pd(ix0,jx0);
293             dy00             = _mm256_sub_pd(iy0,jy0);
294             dz00             = _mm256_sub_pd(iz0,jz0);
295
296             /* Calculate squared distance and things based on it */
297             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
298
299             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
300
301             /* Load parameters for j particles */
302             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
303                                                                  charge+jnrC+0,charge+jnrD+0);
304             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
305                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
306
307             /**************************
308              * CALCULATE INTERACTIONS *
309              **************************/
310
311             r00              = _mm256_mul_pd(rsq00,rinv00);
312             r00              = _mm256_andnot_pd(dummy_mask,r00);
313
314             /* Compute parameters for interactions between i and j atoms */
315             qq00             = _mm256_mul_pd(iq0,jq0);
316
317             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
318             isaprod          = _mm256_mul_pd(isai0,isaj0);
319             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
320             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
321
322             /* Calculate generalized born table index - this is a separate table from the normal one,
323              * but we use the same procedure by multiplying r with scale and truncating to integer.
324              */
325             rt               = _mm256_mul_pd(r00,gbscale);
326             gbitab           = _mm256_cvttpd_epi32(rt);
327             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
328             gbitab           = _mm_slli_epi32(gbitab,2);
329             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
330             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
331             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
332             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
333             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
334             Heps             = _mm256_mul_pd(gbeps,H);
335             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
336             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
337             vgb              = _mm256_mul_pd(gbqqfactor,VV);
338
339             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
340             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
341             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
342             dvdatmp          = _mm256_andnot_ps(dummy_mask,dvdatmp);
343             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
344             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
345             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
346             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
347             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
348             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
349             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
350                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
351             velec            = _mm256_mul_pd(qq00,rinv00);
352             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
353
354             /* Update potential sum for this i atom from the interaction with this j atom. */
355             velec            = _mm256_andnot_pd(dummy_mask,velec);
356             velecsum         = _mm256_add_pd(velecsum,velec);
357             vgb              = _mm256_andnot_pd(dummy_mask,vgb);
358             vgbsum           = _mm256_add_pd(vgbsum,vgb);
359
360             fscal            = felec;
361
362             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
363
364             /* Calculate temporary vectorial force */
365             tx               = _mm256_mul_pd(fscal,dx00);
366             ty               = _mm256_mul_pd(fscal,dy00);
367             tz               = _mm256_mul_pd(fscal,dz00);
368
369             /* Update vectorial force */
370             fix0             = _mm256_add_pd(fix0,tx);
371             fiy0             = _mm256_add_pd(fiy0,ty);
372             fiz0             = _mm256_add_pd(fiz0,tz);
373
374             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
375             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
376             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
377             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
378             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
379
380             /* Inner loop uses 58 flops */
381         }
382
383         /* End of innermost loop */
384
385         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
386                                                  f+i_coord_offset,fshift+i_shift_offset);
387
388         ggid                        = gid[iidx];
389         /* Update potential energies */
390         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
391         gmx_mm256_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
392         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
393         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
394
395         /* Increment number of inner iterations */
396         inneriter                  += j_index_end - j_index_start;
397
398         /* Outer loop uses 9 flops */
399     }
400
401     /* Increment number of outer iterations */
402     outeriter        += nri;
403
404     /* Update outer/inner flops */
405
406     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*9 + inneriter*58);
407 }
408 /*
409  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_256_double
410  * Electrostatics interaction: GeneralizedBorn
411  * VdW interaction:            None
412  * Geometry:                   Particle-Particle
413  * Calculate force/pot:        Force
414  */
415 void
416 nb_kernel_ElecGB_VdwNone_GeomP1P1_F_avx_256_double
417                     (t_nblist * gmx_restrict                nlist,
418                      rvec * gmx_restrict                    xx,
419                      rvec * gmx_restrict                    ff,
420                      t_forcerec * gmx_restrict              fr,
421                      t_mdatoms * gmx_restrict               mdatoms,
422                      nb_kernel_data_t * gmx_restrict        kernel_data,
423                      t_nrnb * gmx_restrict                  nrnb)
424 {
425     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
426      * just 0 for non-waters.
427      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
428      * jnr indices corresponding to data put in the four positions in the SIMD register.
429      */
430     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
431     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
432     int              jnrA,jnrB,jnrC,jnrD;
433     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
434     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
435     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
436     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
437     real             rcutoff_scalar;
438     real             *shiftvec,*fshift,*x,*f;
439     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
440     real             scratch[4*DIM];
441     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
442     real *           vdwioffsetptr0;
443     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
444     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
445     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
446     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
447     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
448     real             *charge;
449     __m128i          gbitab;
450     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
451     __m256d          minushalf = _mm256_set1_pd(-0.5);
452     real             *invsqrta,*dvda,*gbtab;
453     __m128i          vfitab;
454     __m128i          ifour       = _mm_set1_epi32(4);
455     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
456     real             *vftab;
457     __m256d          dummy_mask,cutoff_mask;
458     __m128           tmpmask0,tmpmask1;
459     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
460     __m256d          one     = _mm256_set1_pd(1.0);
461     __m256d          two     = _mm256_set1_pd(2.0);
462     x                = xx[0];
463     f                = ff[0];
464
465     nri              = nlist->nri;
466     iinr             = nlist->iinr;
467     jindex           = nlist->jindex;
468     jjnr             = nlist->jjnr;
469     shiftidx         = nlist->shift;
470     gid              = nlist->gid;
471     shiftvec         = fr->shift_vec[0];
472     fshift           = fr->fshift[0];
473     facel            = _mm256_set1_pd(fr->epsfac);
474     charge           = mdatoms->chargeA;
475
476     invsqrta         = fr->invsqrta;
477     dvda             = fr->dvda;
478     gbtabscale       = _mm256_set1_pd(fr->gbtab.scale);
479     gbtab            = fr->gbtab.data;
480     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
481
482     /* Avoid stupid compiler warnings */
483     jnrA = jnrB = jnrC = jnrD = 0;
484     j_coord_offsetA = 0;
485     j_coord_offsetB = 0;
486     j_coord_offsetC = 0;
487     j_coord_offsetD = 0;
488
489     outeriter        = 0;
490     inneriter        = 0;
491
492     for(iidx=0;iidx<4*DIM;iidx++)
493     {
494         scratch[iidx] = 0.0;
495     }
496
497     /* Start outer loop over neighborlists */
498     for(iidx=0; iidx<nri; iidx++)
499     {
500         /* Load shift vector for this list */
501         i_shift_offset   = DIM*shiftidx[iidx];
502
503         /* Load limits for loop over neighbors */
504         j_index_start    = jindex[iidx];
505         j_index_end      = jindex[iidx+1];
506
507         /* Get outer coordinate index */
508         inr              = iinr[iidx];
509         i_coord_offset   = DIM*inr;
510
511         /* Load i particle coords and add shift vector */
512         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
513
514         fix0             = _mm256_setzero_pd();
515         fiy0             = _mm256_setzero_pd();
516         fiz0             = _mm256_setzero_pd();
517
518         /* Load parameters for i particles */
519         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
520         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
521
522         dvdasum          = _mm256_setzero_pd();
523
524         /* Start inner kernel loop */
525         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
526         {
527
528             /* Get j neighbor index, and coordinate index */
529             jnrA             = jjnr[jidx];
530             jnrB             = jjnr[jidx+1];
531             jnrC             = jjnr[jidx+2];
532             jnrD             = jjnr[jidx+3];
533             j_coord_offsetA  = DIM*jnrA;
534             j_coord_offsetB  = DIM*jnrB;
535             j_coord_offsetC  = DIM*jnrC;
536             j_coord_offsetD  = DIM*jnrD;
537
538             /* load j atom coordinates */
539             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
540                                                  x+j_coord_offsetC,x+j_coord_offsetD,
541                                                  &jx0,&jy0,&jz0);
542
543             /* Calculate displacement vector */
544             dx00             = _mm256_sub_pd(ix0,jx0);
545             dy00             = _mm256_sub_pd(iy0,jy0);
546             dz00             = _mm256_sub_pd(iz0,jz0);
547
548             /* Calculate squared distance and things based on it */
549             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
550
551             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
552
553             /* Load parameters for j particles */
554             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
555                                                                  charge+jnrC+0,charge+jnrD+0);
556             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
557                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
558
559             /**************************
560              * CALCULATE INTERACTIONS *
561              **************************/
562
563             r00              = _mm256_mul_pd(rsq00,rinv00);
564
565             /* Compute parameters for interactions between i and j atoms */
566             qq00             = _mm256_mul_pd(iq0,jq0);
567
568             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
569             isaprod          = _mm256_mul_pd(isai0,isaj0);
570             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
571             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
572
573             /* Calculate generalized born table index - this is a separate table from the normal one,
574              * but we use the same procedure by multiplying r with scale and truncating to integer.
575              */
576             rt               = _mm256_mul_pd(r00,gbscale);
577             gbitab           = _mm256_cvttpd_epi32(rt);
578             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
579             gbitab           = _mm_slli_epi32(gbitab,2);
580             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
581             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
582             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
583             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
584             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
585             Heps             = _mm256_mul_pd(gbeps,H);
586             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
587             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
588             vgb              = _mm256_mul_pd(gbqqfactor,VV);
589
590             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
591             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
592             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
593             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
594             fjptrA           = dvda+jnrA;
595             fjptrB           = dvda+jnrB;
596             fjptrC           = dvda+jnrC;
597             fjptrD           = dvda+jnrD;
598             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
599                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
600             velec            = _mm256_mul_pd(qq00,rinv00);
601             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
602
603             fscal            = felec;
604
605             /* Calculate temporary vectorial force */
606             tx               = _mm256_mul_pd(fscal,dx00);
607             ty               = _mm256_mul_pd(fscal,dy00);
608             tz               = _mm256_mul_pd(fscal,dz00);
609
610             /* Update vectorial force */
611             fix0             = _mm256_add_pd(fix0,tx);
612             fiy0             = _mm256_add_pd(fiy0,ty);
613             fiz0             = _mm256_add_pd(fiz0,tz);
614
615             fjptrA             = f+j_coord_offsetA;
616             fjptrB             = f+j_coord_offsetB;
617             fjptrC             = f+j_coord_offsetC;
618             fjptrD             = f+j_coord_offsetD;
619             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
620
621             /* Inner loop uses 55 flops */
622         }
623
624         if(jidx<j_index_end)
625         {
626
627             /* Get j neighbor index, and coordinate index */
628             jnrlistA         = jjnr[jidx];
629             jnrlistB         = jjnr[jidx+1];
630             jnrlistC         = jjnr[jidx+2];
631             jnrlistD         = jjnr[jidx+3];
632             /* Sign of each element will be negative for non-real atoms.
633              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
634              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
635              */
636             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
637
638             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
639             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
640             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
641
642             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
643             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
644             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
645             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
646             j_coord_offsetA  = DIM*jnrA;
647             j_coord_offsetB  = DIM*jnrB;
648             j_coord_offsetC  = DIM*jnrC;
649             j_coord_offsetD  = DIM*jnrD;
650
651             /* load j atom coordinates */
652             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
653                                                  x+j_coord_offsetC,x+j_coord_offsetD,
654                                                  &jx0,&jy0,&jz0);
655
656             /* Calculate displacement vector */
657             dx00             = _mm256_sub_pd(ix0,jx0);
658             dy00             = _mm256_sub_pd(iy0,jy0);
659             dz00             = _mm256_sub_pd(iz0,jz0);
660
661             /* Calculate squared distance and things based on it */
662             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
663
664             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
665
666             /* Load parameters for j particles */
667             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
668                                                                  charge+jnrC+0,charge+jnrD+0);
669             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
670                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
671
672             /**************************
673              * CALCULATE INTERACTIONS *
674              **************************/
675
676             r00              = _mm256_mul_pd(rsq00,rinv00);
677             r00              = _mm256_andnot_pd(dummy_mask,r00);
678
679             /* Compute parameters for interactions between i and j atoms */
680             qq00             = _mm256_mul_pd(iq0,jq0);
681
682             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
683             isaprod          = _mm256_mul_pd(isai0,isaj0);
684             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
685             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
686
687             /* Calculate generalized born table index - this is a separate table from the normal one,
688              * but we use the same procedure by multiplying r with scale and truncating to integer.
689              */
690             rt               = _mm256_mul_pd(r00,gbscale);
691             gbitab           = _mm256_cvttpd_epi32(rt);
692             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
693             gbitab           = _mm_slli_epi32(gbitab,2);
694             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
695             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
696             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
697             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
698             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
699             Heps             = _mm256_mul_pd(gbeps,H);
700             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
701             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
702             vgb              = _mm256_mul_pd(gbqqfactor,VV);
703
704             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
705             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
706             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
707             dvdatmp          = _mm256_andnot_ps(dummy_mask,dvdatmp);
708             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
709             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
710             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
711             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
712             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
713             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
714             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
715                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
716             velec            = _mm256_mul_pd(qq00,rinv00);
717             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
718
719             fscal            = felec;
720
721             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
722
723             /* Calculate temporary vectorial force */
724             tx               = _mm256_mul_pd(fscal,dx00);
725             ty               = _mm256_mul_pd(fscal,dy00);
726             tz               = _mm256_mul_pd(fscal,dz00);
727
728             /* Update vectorial force */
729             fix0             = _mm256_add_pd(fix0,tx);
730             fiy0             = _mm256_add_pd(fiy0,ty);
731             fiz0             = _mm256_add_pd(fiz0,tz);
732
733             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
734             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
735             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
736             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
737             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
738
739             /* Inner loop uses 56 flops */
740         }
741
742         /* End of innermost loop */
743
744         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
745                                                  f+i_coord_offset,fshift+i_shift_offset);
746
747         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
748         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
749
750         /* Increment number of inner iterations */
751         inneriter                  += j_index_end - j_index_start;
752
753         /* Outer loop uses 7 flops */
754     }
755
756     /* Increment number of outer iterations */
757     outeriter        += nri;
758
759     /* Update outer/inner flops */
760
761     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*56);
762 }