Merge release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_avx_256_double / nb_kernel_ElecGB_VdwCSTab_GeomP1P1_avx_256_double.c
1 /*
2  * Note: this file was generated by the Gromacs avx_256_double kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 #include "gmx_math_x86_avx_256_double.h"
34 #include "kernelutil_x86_avx_256_double.h"
35
36 /*
37  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_256_double
38  * Electrostatics interaction: GeneralizedBorn
39  * VdW interaction:            CubicSplineTable
40  * Geometry:                   Particle-Particle
41  * Calculate force/pot:        PotentialAndForce
42  */
43 void
44 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_VF_avx_256_double
45                     (t_nblist * gmx_restrict                nlist,
46                      rvec * gmx_restrict                    xx,
47                      rvec * gmx_restrict                    ff,
48                      t_forcerec * gmx_restrict              fr,
49                      t_mdatoms * gmx_restrict               mdatoms,
50                      nb_kernel_data_t * gmx_restrict        kernel_data,
51                      t_nrnb * gmx_restrict                  nrnb)
52 {
53     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
54      * just 0 for non-waters.
55      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
56      * jnr indices corresponding to data put in the four positions in the SIMD register.
57      */
58     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
59     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
60     int              jnrA,jnrB,jnrC,jnrD;
61     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
62     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
63     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
64     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
65     real             rcutoff_scalar;
66     real             *shiftvec,*fshift,*x,*f;
67     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
68     real             scratch[4*DIM];
69     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
70     real *           vdwioffsetptr0;
71     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
73     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
75     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     __m128i          gbitab;
78     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
79     __m256d          minushalf = _mm256_set1_pd(-0.5);
80     real             *invsqrta,*dvda,*gbtab;
81     int              nvdwtype;
82     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
83     int              *vdwtype;
84     real             *vdwparam;
85     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
86     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
87     __m128i          vfitab;
88     __m128i          ifour       = _mm_set1_epi32(4);
89     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
90     real             *vftab;
91     __m256d          dummy_mask,cutoff_mask;
92     __m128           tmpmask0,tmpmask1;
93     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
94     __m256d          one     = _mm256_set1_pd(1.0);
95     __m256d          two     = _mm256_set1_pd(2.0);
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = _mm256_set1_pd(fr->epsfac);
108     charge           = mdatoms->chargeA;
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     vftab            = kernel_data->table_vdw->data;
114     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
115
116     invsqrta         = fr->invsqrta;
117     dvda             = fr->dvda;
118     gbtabscale       = _mm256_set1_pd(fr->gbtab.scale);
119     gbtab            = fr->gbtab.data;
120     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
121
122     /* Avoid stupid compiler warnings */
123     jnrA = jnrB = jnrC = jnrD = 0;
124     j_coord_offsetA = 0;
125     j_coord_offsetB = 0;
126     j_coord_offsetC = 0;
127     j_coord_offsetD = 0;
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     for(iidx=0;iidx<4*DIM;iidx++)
133     {
134         scratch[iidx] = 0.0;
135     }
136
137     /* Start outer loop over neighborlists */
138     for(iidx=0; iidx<nri; iidx++)
139     {
140         /* Load shift vector for this list */
141         i_shift_offset   = DIM*shiftidx[iidx];
142
143         /* Load limits for loop over neighbors */
144         j_index_start    = jindex[iidx];
145         j_index_end      = jindex[iidx+1];
146
147         /* Get outer coordinate index */
148         inr              = iinr[iidx];
149         i_coord_offset   = DIM*inr;
150
151         /* Load i particle coords and add shift vector */
152         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
153
154         fix0             = _mm256_setzero_pd();
155         fiy0             = _mm256_setzero_pd();
156         fiz0             = _mm256_setzero_pd();
157
158         /* Load parameters for i particles */
159         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
160         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
161         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
162
163         /* Reset potential sums */
164         velecsum         = _mm256_setzero_pd();
165         vgbsum           = _mm256_setzero_pd();
166         vvdwsum          = _mm256_setzero_pd();
167         dvdasum          = _mm256_setzero_pd();
168
169         /* Start inner kernel loop */
170         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
171         {
172
173             /* Get j neighbor index, and coordinate index */
174             jnrA             = jjnr[jidx];
175             jnrB             = jjnr[jidx+1];
176             jnrC             = jjnr[jidx+2];
177             jnrD             = jjnr[jidx+3];
178             j_coord_offsetA  = DIM*jnrA;
179             j_coord_offsetB  = DIM*jnrB;
180             j_coord_offsetC  = DIM*jnrC;
181             j_coord_offsetD  = DIM*jnrD;
182
183             /* load j atom coordinates */
184             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
185                                                  x+j_coord_offsetC,x+j_coord_offsetD,
186                                                  &jx0,&jy0,&jz0);
187
188             /* Calculate displacement vector */
189             dx00             = _mm256_sub_pd(ix0,jx0);
190             dy00             = _mm256_sub_pd(iy0,jy0);
191             dz00             = _mm256_sub_pd(iz0,jz0);
192
193             /* Calculate squared distance and things based on it */
194             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
195
196             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
197
198             /* Load parameters for j particles */
199             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
200                                                                  charge+jnrC+0,charge+jnrD+0);
201             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
202                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
203             vdwjidx0A        = 2*vdwtype[jnrA+0];
204             vdwjidx0B        = 2*vdwtype[jnrB+0];
205             vdwjidx0C        = 2*vdwtype[jnrC+0];
206             vdwjidx0D        = 2*vdwtype[jnrD+0];
207
208             /**************************
209              * CALCULATE INTERACTIONS *
210              **************************/
211
212             r00              = _mm256_mul_pd(rsq00,rinv00);
213
214             /* Compute parameters for interactions between i and j atoms */
215             qq00             = _mm256_mul_pd(iq0,jq0);
216             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
217                                             vdwioffsetptr0+vdwjidx0B,
218                                             vdwioffsetptr0+vdwjidx0C,
219                                             vdwioffsetptr0+vdwjidx0D,
220                                             &c6_00,&c12_00);
221
222             /* Calculate table index by multiplying r with table scale and truncate to integer */
223             rt               = _mm256_mul_pd(r00,vftabscale);
224             vfitab           = _mm256_cvttpd_epi32(rt);
225             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
226             vfitab           = _mm_slli_epi32(vfitab,3);
227
228             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
229             isaprod          = _mm256_mul_pd(isai0,isaj0);
230             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
231             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
232
233             /* Calculate generalized born table index - this is a separate table from the normal one,
234              * but we use the same procedure by multiplying r with scale and truncating to integer.
235              */
236             rt               = _mm256_mul_pd(r00,gbscale);
237             gbitab           = _mm256_cvttpd_epi32(rt);
238             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
239             gbitab           = _mm_slli_epi32(gbitab,2);
240             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
241             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
242             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
243             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
244             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
245             Heps             = _mm256_mul_pd(gbeps,H);
246             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
247             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
248             vgb              = _mm256_mul_pd(gbqqfactor,VV);
249
250             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
251             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
252             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
253             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
254             fjptrA           = dvda+jnrA;
255             fjptrB           = dvda+jnrB;
256             fjptrC           = dvda+jnrC;
257             fjptrD           = dvda+jnrD;
258             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
259                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
260             velec            = _mm256_mul_pd(qq00,rinv00);
261             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
262
263             /* CUBIC SPLINE TABLE DISPERSION */
264             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
265             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
266             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
267             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
268             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
269             Heps             = _mm256_mul_pd(vfeps,H);
270             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
271             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
272             vvdw6            = _mm256_mul_pd(c6_00,VV);
273             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
274             fvdw6            = _mm256_mul_pd(c6_00,FF);
275
276             /* CUBIC SPLINE TABLE REPULSION */
277             vfitab           = _mm_add_epi32(vfitab,ifour);
278             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
279             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
280             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
281             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
282             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
283             Heps             = _mm256_mul_pd(vfeps,H);
284             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
285             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
286             vvdw12           = _mm256_mul_pd(c12_00,VV);
287             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
288             fvdw12           = _mm256_mul_pd(c12_00,FF);
289             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
290             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
291
292             /* Update potential sum for this i atom from the interaction with this j atom. */
293             velecsum         = _mm256_add_pd(velecsum,velec);
294             vgbsum           = _mm256_add_pd(vgbsum,vgb);
295             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
296
297             fscal            = _mm256_add_pd(felec,fvdw);
298
299             /* Calculate temporary vectorial force */
300             tx               = _mm256_mul_pd(fscal,dx00);
301             ty               = _mm256_mul_pd(fscal,dy00);
302             tz               = _mm256_mul_pd(fscal,dz00);
303
304             /* Update vectorial force */
305             fix0             = _mm256_add_pd(fix0,tx);
306             fiy0             = _mm256_add_pd(fiy0,ty);
307             fiz0             = _mm256_add_pd(fiz0,tz);
308
309             fjptrA             = f+j_coord_offsetA;
310             fjptrB             = f+j_coord_offsetB;
311             fjptrC             = f+j_coord_offsetC;
312             fjptrD             = f+j_coord_offsetD;
313             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
314
315             /* Inner loop uses 91 flops */
316         }
317
318         if(jidx<j_index_end)
319         {
320
321             /* Get j neighbor index, and coordinate index */
322             jnrlistA         = jjnr[jidx];
323             jnrlistB         = jjnr[jidx+1];
324             jnrlistC         = jjnr[jidx+2];
325             jnrlistD         = jjnr[jidx+3];
326             /* Sign of each element will be negative for non-real atoms.
327              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
328              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
329              */
330             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
331
332             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
333             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
334             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
335
336             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
337             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
338             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
339             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
340             j_coord_offsetA  = DIM*jnrA;
341             j_coord_offsetB  = DIM*jnrB;
342             j_coord_offsetC  = DIM*jnrC;
343             j_coord_offsetD  = DIM*jnrD;
344
345             /* load j atom coordinates */
346             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
347                                                  x+j_coord_offsetC,x+j_coord_offsetD,
348                                                  &jx0,&jy0,&jz0);
349
350             /* Calculate displacement vector */
351             dx00             = _mm256_sub_pd(ix0,jx0);
352             dy00             = _mm256_sub_pd(iy0,jy0);
353             dz00             = _mm256_sub_pd(iz0,jz0);
354
355             /* Calculate squared distance and things based on it */
356             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
357
358             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
359
360             /* Load parameters for j particles */
361             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
362                                                                  charge+jnrC+0,charge+jnrD+0);
363             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
364                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
365             vdwjidx0A        = 2*vdwtype[jnrA+0];
366             vdwjidx0B        = 2*vdwtype[jnrB+0];
367             vdwjidx0C        = 2*vdwtype[jnrC+0];
368             vdwjidx0D        = 2*vdwtype[jnrD+0];
369
370             /**************************
371              * CALCULATE INTERACTIONS *
372              **************************/
373
374             r00              = _mm256_mul_pd(rsq00,rinv00);
375             r00              = _mm256_andnot_pd(dummy_mask,r00);
376
377             /* Compute parameters for interactions between i and j atoms */
378             qq00             = _mm256_mul_pd(iq0,jq0);
379             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
380                                             vdwioffsetptr0+vdwjidx0B,
381                                             vdwioffsetptr0+vdwjidx0C,
382                                             vdwioffsetptr0+vdwjidx0D,
383                                             &c6_00,&c12_00);
384
385             /* Calculate table index by multiplying r with table scale and truncate to integer */
386             rt               = _mm256_mul_pd(r00,vftabscale);
387             vfitab           = _mm256_cvttpd_epi32(rt);
388             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
389             vfitab           = _mm_slli_epi32(vfitab,3);
390
391             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
392             isaprod          = _mm256_mul_pd(isai0,isaj0);
393             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
394             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
395
396             /* Calculate generalized born table index - this is a separate table from the normal one,
397              * but we use the same procedure by multiplying r with scale and truncating to integer.
398              */
399             rt               = _mm256_mul_pd(r00,gbscale);
400             gbitab           = _mm256_cvttpd_epi32(rt);
401             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
402             gbitab           = _mm_slli_epi32(gbitab,2);
403             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
404             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
405             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
406             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
407             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
408             Heps             = _mm256_mul_pd(gbeps,H);
409             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
410             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
411             vgb              = _mm256_mul_pd(gbqqfactor,VV);
412
413             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
414             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
415             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
416             dvdatmp          = _mm256_andnot_pd(dummy_mask,dvdatmp);
417             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
418             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
419             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
420             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
421             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
422             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
423             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
424                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
425             velec            = _mm256_mul_pd(qq00,rinv00);
426             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
427
428             /* CUBIC SPLINE TABLE DISPERSION */
429             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
430             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
431             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
432             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
433             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
434             Heps             = _mm256_mul_pd(vfeps,H);
435             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
436             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
437             vvdw6            = _mm256_mul_pd(c6_00,VV);
438             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
439             fvdw6            = _mm256_mul_pd(c6_00,FF);
440
441             /* CUBIC SPLINE TABLE REPULSION */
442             vfitab           = _mm_add_epi32(vfitab,ifour);
443             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
444             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
445             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
446             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
447             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
448             Heps             = _mm256_mul_pd(vfeps,H);
449             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
450             VV               = _mm256_add_pd(Y,_mm256_mul_pd(vfeps,Fp));
451             vvdw12           = _mm256_mul_pd(c12_00,VV);
452             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
453             fvdw12           = _mm256_mul_pd(c12_00,FF);
454             vvdw             = _mm256_add_pd(vvdw12,vvdw6);
455             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
456
457             /* Update potential sum for this i atom from the interaction with this j atom. */
458             velec            = _mm256_andnot_pd(dummy_mask,velec);
459             velecsum         = _mm256_add_pd(velecsum,velec);
460             vgb              = _mm256_andnot_pd(dummy_mask,vgb);
461             vgbsum           = _mm256_add_pd(vgbsum,vgb);
462             vvdw             = _mm256_andnot_pd(dummy_mask,vvdw);
463             vvdwsum          = _mm256_add_pd(vvdwsum,vvdw);
464
465             fscal            = _mm256_add_pd(felec,fvdw);
466
467             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
468
469             /* Calculate temporary vectorial force */
470             tx               = _mm256_mul_pd(fscal,dx00);
471             ty               = _mm256_mul_pd(fscal,dy00);
472             tz               = _mm256_mul_pd(fscal,dz00);
473
474             /* Update vectorial force */
475             fix0             = _mm256_add_pd(fix0,tx);
476             fiy0             = _mm256_add_pd(fiy0,ty);
477             fiz0             = _mm256_add_pd(fiz0,tz);
478
479             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
480             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
481             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
482             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
483             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
484
485             /* Inner loop uses 92 flops */
486         }
487
488         /* End of innermost loop */
489
490         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
491                                                  f+i_coord_offset,fshift+i_shift_offset);
492
493         ggid                        = gid[iidx];
494         /* Update potential energies */
495         gmx_mm256_update_1pot_pd(velecsum,kernel_data->energygrp_elec+ggid);
496         gmx_mm256_update_1pot_pd(vgbsum,kernel_data->energygrp_polarization+ggid);
497         gmx_mm256_update_1pot_pd(vvdwsum,kernel_data->energygrp_vdw+ggid);
498         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
499         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
500
501         /* Increment number of inner iterations */
502         inneriter                  += j_index_end - j_index_start;
503
504         /* Outer loop uses 10 flops */
505     }
506
507     /* Increment number of outer iterations */
508     outeriter        += nri;
509
510     /* Update outer/inner flops */
511
512     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*10 + inneriter*92);
513 }
514 /*
515  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_256_double
516  * Electrostatics interaction: GeneralizedBorn
517  * VdW interaction:            CubicSplineTable
518  * Geometry:                   Particle-Particle
519  * Calculate force/pot:        Force
520  */
521 void
522 nb_kernel_ElecGB_VdwCSTab_GeomP1P1_F_avx_256_double
523                     (t_nblist * gmx_restrict                nlist,
524                      rvec * gmx_restrict                    xx,
525                      rvec * gmx_restrict                    ff,
526                      t_forcerec * gmx_restrict              fr,
527                      t_mdatoms * gmx_restrict               mdatoms,
528                      nb_kernel_data_t * gmx_restrict        kernel_data,
529                      t_nrnb * gmx_restrict                  nrnb)
530 {
531     /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or 
532      * just 0 for non-waters.
533      * Suffixes A,B,C,D refer to j loop unrolling done with AVX, e.g. for the four different
534      * jnr indices corresponding to data put in the four positions in the SIMD register.
535      */
536     int              i_shift_offset,i_coord_offset,outeriter,inneriter;
537     int              j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
538     int              jnrA,jnrB,jnrC,jnrD;
539     int              jnrlistA,jnrlistB,jnrlistC,jnrlistD;
540     int              jnrlistE,jnrlistF,jnrlistG,jnrlistH;
541     int              j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
542     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
543     real             rcutoff_scalar;
544     real             *shiftvec,*fshift,*x,*f;
545     real             *fjptrA,*fjptrB,*fjptrC,*fjptrD;
546     real             scratch[4*DIM];
547     __m256d          tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
548     real *           vdwioffsetptr0;
549     __m256d          ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
550     int              vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
551     __m256d          jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
552     __m256d          dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
553     __m256d          velec,felec,velecsum,facel,crf,krf,krf2;
554     real             *charge;
555     __m128i          gbitab;
556     __m256d          vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,gbeps,dvdatmp;
557     __m256d          minushalf = _mm256_set1_pd(-0.5);
558     real             *invsqrta,*dvda,*gbtab;
559     int              nvdwtype;
560     __m256d          rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
561     int              *vdwtype;
562     real             *vdwparam;
563     __m256d          one_sixth   = _mm256_set1_pd(1.0/6.0);
564     __m256d          one_twelfth = _mm256_set1_pd(1.0/12.0);
565     __m128i          vfitab;
566     __m128i          ifour       = _mm_set1_epi32(4);
567     __m256d          rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
568     real             *vftab;
569     __m256d          dummy_mask,cutoff_mask;
570     __m128           tmpmask0,tmpmask1;
571     __m256d          signbit = _mm256_castsi256_pd( _mm256_set1_epi32(0x80000000) );
572     __m256d          one     = _mm256_set1_pd(1.0);
573     __m256d          two     = _mm256_set1_pd(2.0);
574     x                = xx[0];
575     f                = ff[0];
576
577     nri              = nlist->nri;
578     iinr             = nlist->iinr;
579     jindex           = nlist->jindex;
580     jjnr             = nlist->jjnr;
581     shiftidx         = nlist->shift;
582     gid              = nlist->gid;
583     shiftvec         = fr->shift_vec[0];
584     fshift           = fr->fshift[0];
585     facel            = _mm256_set1_pd(fr->epsfac);
586     charge           = mdatoms->chargeA;
587     nvdwtype         = fr->ntype;
588     vdwparam         = fr->nbfp;
589     vdwtype          = mdatoms->typeA;
590
591     vftab            = kernel_data->table_vdw->data;
592     vftabscale       = _mm256_set1_pd(kernel_data->table_vdw->scale);
593
594     invsqrta         = fr->invsqrta;
595     dvda             = fr->dvda;
596     gbtabscale       = _mm256_set1_pd(fr->gbtab.scale);
597     gbtab            = fr->gbtab.data;
598     gbinvepsdiff     = _mm256_set1_pd((1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent));
599
600     /* Avoid stupid compiler warnings */
601     jnrA = jnrB = jnrC = jnrD = 0;
602     j_coord_offsetA = 0;
603     j_coord_offsetB = 0;
604     j_coord_offsetC = 0;
605     j_coord_offsetD = 0;
606
607     outeriter        = 0;
608     inneriter        = 0;
609
610     for(iidx=0;iidx<4*DIM;iidx++)
611     {
612         scratch[iidx] = 0.0;
613     }
614
615     /* Start outer loop over neighborlists */
616     for(iidx=0; iidx<nri; iidx++)
617     {
618         /* Load shift vector for this list */
619         i_shift_offset   = DIM*shiftidx[iidx];
620
621         /* Load limits for loop over neighbors */
622         j_index_start    = jindex[iidx];
623         j_index_end      = jindex[iidx+1];
624
625         /* Get outer coordinate index */
626         inr              = iinr[iidx];
627         i_coord_offset   = DIM*inr;
628
629         /* Load i particle coords and add shift vector */
630         gmx_mm256_load_shift_and_1rvec_broadcast_pd(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
631
632         fix0             = _mm256_setzero_pd();
633         fiy0             = _mm256_setzero_pd();
634         fiz0             = _mm256_setzero_pd();
635
636         /* Load parameters for i particles */
637         iq0              = _mm256_mul_pd(facel,_mm256_set1_pd(charge[inr+0]));
638         isai0            = _mm256_set1_pd(invsqrta[inr+0]);
639         vdwioffsetptr0   = vdwparam+2*nvdwtype*vdwtype[inr+0];
640
641         dvdasum          = _mm256_setzero_pd();
642
643         /* Start inner kernel loop */
644         for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
645         {
646
647             /* Get j neighbor index, and coordinate index */
648             jnrA             = jjnr[jidx];
649             jnrB             = jjnr[jidx+1];
650             jnrC             = jjnr[jidx+2];
651             jnrD             = jjnr[jidx+3];
652             j_coord_offsetA  = DIM*jnrA;
653             j_coord_offsetB  = DIM*jnrB;
654             j_coord_offsetC  = DIM*jnrC;
655             j_coord_offsetD  = DIM*jnrD;
656
657             /* load j atom coordinates */
658             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
659                                                  x+j_coord_offsetC,x+j_coord_offsetD,
660                                                  &jx0,&jy0,&jz0);
661
662             /* Calculate displacement vector */
663             dx00             = _mm256_sub_pd(ix0,jx0);
664             dy00             = _mm256_sub_pd(iy0,jy0);
665             dz00             = _mm256_sub_pd(iz0,jz0);
666
667             /* Calculate squared distance and things based on it */
668             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
669
670             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
671
672             /* Load parameters for j particles */
673             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
674                                                                  charge+jnrC+0,charge+jnrD+0);
675             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
676                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
677             vdwjidx0A        = 2*vdwtype[jnrA+0];
678             vdwjidx0B        = 2*vdwtype[jnrB+0];
679             vdwjidx0C        = 2*vdwtype[jnrC+0];
680             vdwjidx0D        = 2*vdwtype[jnrD+0];
681
682             /**************************
683              * CALCULATE INTERACTIONS *
684              **************************/
685
686             r00              = _mm256_mul_pd(rsq00,rinv00);
687
688             /* Compute parameters for interactions between i and j atoms */
689             qq00             = _mm256_mul_pd(iq0,jq0);
690             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
691                                             vdwioffsetptr0+vdwjidx0B,
692                                             vdwioffsetptr0+vdwjidx0C,
693                                             vdwioffsetptr0+vdwjidx0D,
694                                             &c6_00,&c12_00);
695
696             /* Calculate table index by multiplying r with table scale and truncate to integer */
697             rt               = _mm256_mul_pd(r00,vftabscale);
698             vfitab           = _mm256_cvttpd_epi32(rt);
699             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
700             vfitab           = _mm_slli_epi32(vfitab,3);
701
702             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
703             isaprod          = _mm256_mul_pd(isai0,isaj0);
704             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
705             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
706
707             /* Calculate generalized born table index - this is a separate table from the normal one,
708              * but we use the same procedure by multiplying r with scale and truncating to integer.
709              */
710             rt               = _mm256_mul_pd(r00,gbscale);
711             gbitab           = _mm256_cvttpd_epi32(rt);
712             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
713             gbitab           = _mm_slli_epi32(gbitab,2);
714             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
715             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
716             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
717             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
718             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
719             Heps             = _mm256_mul_pd(gbeps,H);
720             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
721             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
722             vgb              = _mm256_mul_pd(gbqqfactor,VV);
723
724             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
725             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
726             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
727             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
728             fjptrA           = dvda+jnrA;
729             fjptrB           = dvda+jnrB;
730             fjptrC           = dvda+jnrC;
731             fjptrD           = dvda+jnrD;
732             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
733                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
734             velec            = _mm256_mul_pd(qq00,rinv00);
735             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
736
737             /* CUBIC SPLINE TABLE DISPERSION */
738             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
739             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
740             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
741             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
742             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
743             Heps             = _mm256_mul_pd(vfeps,H);
744             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
745             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
746             fvdw6            = _mm256_mul_pd(c6_00,FF);
747
748             /* CUBIC SPLINE TABLE REPULSION */
749             vfitab           = _mm_add_epi32(vfitab,ifour);
750             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
751             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
752             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
753             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
754             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
755             Heps             = _mm256_mul_pd(vfeps,H);
756             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
757             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
758             fvdw12           = _mm256_mul_pd(c12_00,FF);
759             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
760
761             fscal            = _mm256_add_pd(felec,fvdw);
762
763             /* Calculate temporary vectorial force */
764             tx               = _mm256_mul_pd(fscal,dx00);
765             ty               = _mm256_mul_pd(fscal,dy00);
766             tz               = _mm256_mul_pd(fscal,dz00);
767
768             /* Update vectorial force */
769             fix0             = _mm256_add_pd(fix0,tx);
770             fiy0             = _mm256_add_pd(fiy0,ty);
771             fiz0             = _mm256_add_pd(fiz0,tz);
772
773             fjptrA             = f+j_coord_offsetA;
774             fjptrB             = f+j_coord_offsetB;
775             fjptrC             = f+j_coord_offsetC;
776             fjptrD             = f+j_coord_offsetD;
777             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
778
779             /* Inner loop uses 81 flops */
780         }
781
782         if(jidx<j_index_end)
783         {
784
785             /* Get j neighbor index, and coordinate index */
786             jnrlistA         = jjnr[jidx];
787             jnrlistB         = jjnr[jidx+1];
788             jnrlistC         = jjnr[jidx+2];
789             jnrlistD         = jjnr[jidx+3];
790             /* Sign of each element will be negative for non-real atoms.
791              * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
792              * so use it as val = _mm_andnot_pd(mask,val) to clear dummy entries.
793              */
794             tmpmask0 = gmx_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
795
796             tmpmask1 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(3,3,2,2));
797             tmpmask0 = _mm_permute_ps(tmpmask0,_GMX_MM_PERMUTE(1,1,0,0));
798             dummy_mask = _mm256_castps_pd(gmx_mm256_set_m128(tmpmask1,tmpmask0));
799
800             jnrA       = (jnrlistA>=0) ? jnrlistA : 0;
801             jnrB       = (jnrlistB>=0) ? jnrlistB : 0;
802             jnrC       = (jnrlistC>=0) ? jnrlistC : 0;
803             jnrD       = (jnrlistD>=0) ? jnrlistD : 0;
804             j_coord_offsetA  = DIM*jnrA;
805             j_coord_offsetB  = DIM*jnrB;
806             j_coord_offsetC  = DIM*jnrC;
807             j_coord_offsetD  = DIM*jnrD;
808
809             /* load j atom coordinates */
810             gmx_mm256_load_1rvec_4ptr_swizzle_pd(x+j_coord_offsetA,x+j_coord_offsetB,
811                                                  x+j_coord_offsetC,x+j_coord_offsetD,
812                                                  &jx0,&jy0,&jz0);
813
814             /* Calculate displacement vector */
815             dx00             = _mm256_sub_pd(ix0,jx0);
816             dy00             = _mm256_sub_pd(iy0,jy0);
817             dz00             = _mm256_sub_pd(iz0,jz0);
818
819             /* Calculate squared distance and things based on it */
820             rsq00            = gmx_mm256_calc_rsq_pd(dx00,dy00,dz00);
821
822             rinv00           = gmx_mm256_invsqrt_pd(rsq00);
823
824             /* Load parameters for j particles */
825             jq0              = gmx_mm256_load_4real_swizzle_pd(charge+jnrA+0,charge+jnrB+0,
826                                                                  charge+jnrC+0,charge+jnrD+0);
827             isaj0            = gmx_mm256_load_4real_swizzle_pd(invsqrta+jnrA+0,invsqrta+jnrB+0,
828                                                                  invsqrta+jnrC+0,invsqrta+jnrD+0);
829             vdwjidx0A        = 2*vdwtype[jnrA+0];
830             vdwjidx0B        = 2*vdwtype[jnrB+0];
831             vdwjidx0C        = 2*vdwtype[jnrC+0];
832             vdwjidx0D        = 2*vdwtype[jnrD+0];
833
834             /**************************
835              * CALCULATE INTERACTIONS *
836              **************************/
837
838             r00              = _mm256_mul_pd(rsq00,rinv00);
839             r00              = _mm256_andnot_pd(dummy_mask,r00);
840
841             /* Compute parameters for interactions between i and j atoms */
842             qq00             = _mm256_mul_pd(iq0,jq0);
843             gmx_mm256_load_4pair_swizzle_pd(vdwioffsetptr0+vdwjidx0A,
844                                             vdwioffsetptr0+vdwjidx0B,
845                                             vdwioffsetptr0+vdwjidx0C,
846                                             vdwioffsetptr0+vdwjidx0D,
847                                             &c6_00,&c12_00);
848
849             /* Calculate table index by multiplying r with table scale and truncate to integer */
850             rt               = _mm256_mul_pd(r00,vftabscale);
851             vfitab           = _mm256_cvttpd_epi32(rt);
852             vfeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
853             vfitab           = _mm_slli_epi32(vfitab,3);
854
855             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
856             isaprod          = _mm256_mul_pd(isai0,isaj0);
857             gbqqfactor       = _mm256_xor_pd(signbit,_mm256_mul_pd(qq00,_mm256_mul_pd(isaprod,gbinvepsdiff)));
858             gbscale          = _mm256_mul_pd(isaprod,gbtabscale);
859
860             /* Calculate generalized born table index - this is a separate table from the normal one,
861              * but we use the same procedure by multiplying r with scale and truncating to integer.
862              */
863             rt               = _mm256_mul_pd(r00,gbscale);
864             gbitab           = _mm256_cvttpd_epi32(rt);
865             gbeps            = _mm256_sub_pd(rt,_mm256_round_pd(rt, _MM_FROUND_FLOOR));
866             gbitab           = _mm_slli_epi32(gbitab,2);
867             Y                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,0) );
868             F                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,1) );
869             G                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,2) );
870             H                = _mm256_load_pd( gbtab + _mm_extract_epi32(gbitab,3) );
871             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
872             Heps             = _mm256_mul_pd(gbeps,H);
873             Fp               = _mm256_add_pd(F,_mm256_mul_pd(gbeps,_mm256_add_pd(G,Heps)));
874             VV               = _mm256_add_pd(Y,_mm256_mul_pd(gbeps,Fp));
875             vgb              = _mm256_mul_pd(gbqqfactor,VV);
876
877             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(gbeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
878             fgb              = _mm256_mul_pd(gbqqfactor,_mm256_mul_pd(FF,gbscale));
879             dvdatmp          = _mm256_mul_pd(minushalf,_mm256_add_pd(vgb,_mm256_mul_pd(fgb,r00)));
880             dvdatmp          = _mm256_andnot_pd(dummy_mask,dvdatmp);
881             dvdasum          = _mm256_add_pd(dvdasum,dvdatmp);
882             /* The pointers to scratch make sure that this code with compilers that take gmx_restrict seriously (e.g. icc 13) really can't screw things up. */
883             fjptrA             = (jnrlistA>=0) ? dvda+jnrA : scratch;
884             fjptrB             = (jnrlistB>=0) ? dvda+jnrB : scratch;
885             fjptrC             = (jnrlistC>=0) ? dvda+jnrC : scratch;
886             fjptrD             = (jnrlistD>=0) ? dvda+jnrD : scratch;
887             gmx_mm256_increment_4real_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,
888                                                  _mm256_mul_pd(dvdatmp,_mm256_mul_pd(isaj0,isaj0)));
889             velec            = _mm256_mul_pd(qq00,rinv00);
890             felec            = _mm256_mul_pd(_mm256_sub_pd(_mm256_mul_pd(velec,rinv00),fgb),rinv00);
891
892             /* CUBIC SPLINE TABLE DISPERSION */
893             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
894             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
895             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
896             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
897             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
898             Heps             = _mm256_mul_pd(vfeps,H);
899             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
900             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
901             fvdw6            = _mm256_mul_pd(c6_00,FF);
902
903             /* CUBIC SPLINE TABLE REPULSION */
904             vfitab           = _mm_add_epi32(vfitab,ifour);
905             Y                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,0) );
906             F                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,1) );
907             G                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,2) );
908             H                = _mm256_load_pd( vftab + _mm_extract_epi32(vfitab,3) );
909             GMX_MM256_FULLTRANSPOSE4_PD(Y,F,G,H);
910             Heps             = _mm256_mul_pd(vfeps,H);
911             Fp               = _mm256_add_pd(F,_mm256_mul_pd(vfeps,_mm256_add_pd(G,Heps)));
912             FF               = _mm256_add_pd(Fp,_mm256_mul_pd(vfeps,_mm256_add_pd(G,_mm256_add_pd(Heps,Heps))));
913             fvdw12           = _mm256_mul_pd(c12_00,FF);
914             fvdw             = _mm256_xor_pd(signbit,_mm256_mul_pd(_mm256_add_pd(fvdw6,fvdw12),_mm256_mul_pd(vftabscale,rinv00)));
915
916             fscal            = _mm256_add_pd(felec,fvdw);
917
918             fscal            = _mm256_andnot_pd(dummy_mask,fscal);
919
920             /* Calculate temporary vectorial force */
921             tx               = _mm256_mul_pd(fscal,dx00);
922             ty               = _mm256_mul_pd(fscal,dy00);
923             tz               = _mm256_mul_pd(fscal,dz00);
924
925             /* Update vectorial force */
926             fix0             = _mm256_add_pd(fix0,tx);
927             fiy0             = _mm256_add_pd(fiy0,ty);
928             fiz0             = _mm256_add_pd(fiz0,tz);
929
930             fjptrA             = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
931             fjptrB             = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
932             fjptrC             = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
933             fjptrD             = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
934             gmx_mm256_decrement_1rvec_4ptr_swizzle_pd(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
935
936             /* Inner loop uses 82 flops */
937         }
938
939         /* End of innermost loop */
940
941         gmx_mm256_update_iforce_1atom_swizzle_pd(fix0,fiy0,fiz0,
942                                                  f+i_coord_offset,fshift+i_shift_offset);
943
944         dvdasum = _mm256_mul_pd(dvdasum, _mm256_mul_pd(isai0,isai0));
945         gmx_mm256_update_1pot_pd(dvdasum,dvda+inr);
946
947         /* Increment number of inner iterations */
948         inneriter                  += j_index_end - j_index_start;
949
950         /* Outer loop uses 7 flops */
951     }
952
953     /* Increment number of outer iterations */
954     outeriter        += nri;
955
956     /* Update outer/inner flops */
957
958     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*82);
959 }