Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecEw_VdwLJ_GeomW4P1_sse4_1_single.c
Location:line 807, column 5
Description:Value stored to 'ewtabhalfspace' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_sse4_1_single
54 * Electrostatics interaction: Ewald
55 * VdW interaction: LennardJones
56 * Geometry: Water4-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwioffset1;
88 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89 int vdwioffset2;
90 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91 int vdwioffset3;
92 __m128 ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
94 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98 __m128 dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
100 real *charge;
101 int nvdwtype;
102 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103 int *vdwtype;
104 real *vdwparam;
105 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
106 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
107 __m128i ewitab;
108 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
109 real *ewtab;
110 __m128 dummy_mask,cutoff_mask;
111 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
112 __m128 one = _mm_set1_ps(1.0);
113 __m128 two = _mm_set1_ps(2.0);
114 x = xx[0];
115 f = ff[0];
116
117 nri = nlist->nri;
118 iinr = nlist->iinr;
119 jindex = nlist->jindex;
120 jjnr = nlist->jjnr;
121 shiftidx = nlist->shift;
122 gid = nlist->gid;
123 shiftvec = fr->shift_vec[0];
124 fshift = fr->fshift[0];
125 facel = _mm_set1_ps(fr->epsfac);
126 charge = mdatoms->chargeA;
127 nvdwtype = fr->ntype;
128 vdwparam = fr->nbfp;
129 vdwtype = mdatoms->typeA;
130
131 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
132 ewtab = fr->ic->tabq_coul_FDV0;
133 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
134 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
135
136 /* Setup water-specific parameters */
137 inr = nlist->iinr[0];
138 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
139 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
140 iq3 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
141 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
142
143 /* Avoid stupid compiler warnings */
144 jnrA = jnrB = jnrC = jnrD = 0;
145 j_coord_offsetA = 0;
146 j_coord_offsetB = 0;
147 j_coord_offsetC = 0;
148 j_coord_offsetD = 0;
149
150 outeriter = 0;
151 inneriter = 0;
152
153 for(iidx=0;iidx<4*DIM3;iidx++)
154 {
155 scratch[iidx] = 0.0;
156 }
157
158 /* Start outer loop over neighborlists */
159 for(iidx=0; iidx<nri; iidx++)
160 {
161 /* Load shift vector for this list */
162 i_shift_offset = DIM3*shiftidx[iidx];
163
164 /* Load limits for loop over neighbors */
165 j_index_start = jindex[iidx];
166 j_index_end = jindex[iidx+1];
167
168 /* Get outer coordinate index */
169 inr = iinr[iidx];
170 i_coord_offset = DIM3*inr;
171
172 /* Load i particle coords and add shift vector */
173 gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
174 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
175
176 fix0 = _mm_setzero_ps();
177 fiy0 = _mm_setzero_ps();
178 fiz0 = _mm_setzero_ps();
179 fix1 = _mm_setzero_ps();
180 fiy1 = _mm_setzero_ps();
181 fiz1 = _mm_setzero_ps();
182 fix2 = _mm_setzero_ps();
183 fiy2 = _mm_setzero_ps();
184 fiz2 = _mm_setzero_ps();
185 fix3 = _mm_setzero_ps();
186 fiy3 = _mm_setzero_ps();
187 fiz3 = _mm_setzero_ps();
188
189 /* Reset potential sums */
190 velecsum = _mm_setzero_ps();
191 vvdwsum = _mm_setzero_ps();
192
193 /* Start inner kernel loop */
194 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
195 {
196
197 /* Get j neighbor index, and coordinate index */
198 jnrA = jjnr[jidx];
199 jnrB = jjnr[jidx+1];
200 jnrC = jjnr[jidx+2];
201 jnrD = jjnr[jidx+3];
202 j_coord_offsetA = DIM3*jnrA;
203 j_coord_offsetB = DIM3*jnrB;
204 j_coord_offsetC = DIM3*jnrC;
205 j_coord_offsetD = DIM3*jnrD;
206
207 /* load j atom coordinates */
208 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
209 x+j_coord_offsetC,x+j_coord_offsetD,
210 &jx0,&jy0,&jz0);
211
212 /* Calculate displacement vector */
213 dx00 = _mm_sub_ps(ix0,jx0);
214 dy00 = _mm_sub_ps(iy0,jy0);
215 dz00 = _mm_sub_ps(iz0,jz0);
216 dx10 = _mm_sub_ps(ix1,jx0);
217 dy10 = _mm_sub_ps(iy1,jy0);
218 dz10 = _mm_sub_ps(iz1,jz0);
219 dx20 = _mm_sub_ps(ix2,jx0);
220 dy20 = _mm_sub_ps(iy2,jy0);
221 dz20 = _mm_sub_ps(iz2,jz0);
222 dx30 = _mm_sub_ps(ix3,jx0);
223 dy30 = _mm_sub_ps(iy3,jy0);
224 dz30 = _mm_sub_ps(iz3,jz0);
225
226 /* Calculate squared distance and things based on it */
227 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
228 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
229 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
230 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
231
232 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
233 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
234 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
235
236 rinvsq00 = gmx_mm_inv_psgmx_simd_inv_f(rsq00);
237 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
238 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
239 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
240
241 /* Load parameters for j particles */
242 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
243 charge+jnrC+0,charge+jnrD+0);
244 vdwjidx0A = 2*vdwtype[jnrA+0];
245 vdwjidx0B = 2*vdwtype[jnrB+0];
246 vdwjidx0C = 2*vdwtype[jnrC+0];
247 vdwjidx0D = 2*vdwtype[jnrD+0];
248
249 fjx0 = _mm_setzero_ps();
250 fjy0 = _mm_setzero_ps();
251 fjz0 = _mm_setzero_ps();
252
253 /**************************
254 * CALCULATE INTERACTIONS *
255 **************************/
256
257 /* Compute parameters for interactions between i and j atoms */
258 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
259 vdwparam+vdwioffset0+vdwjidx0B,
260 vdwparam+vdwioffset0+vdwjidx0C,
261 vdwparam+vdwioffset0+vdwjidx0D,
262 &c6_00,&c12_00);
263
264 /* LENNARD-JONES DISPERSION/REPULSION */
265
266 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
267 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
268 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
269 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
270 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
271
272 /* Update potential sum for this i atom from the interaction with this j atom. */
273 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
274
275 fscal = fvdw;
276
277 /* Calculate temporary vectorial force */
278 tx = _mm_mul_ps(fscal,dx00);
279 ty = _mm_mul_ps(fscal,dy00);
280 tz = _mm_mul_ps(fscal,dz00);
281
282 /* Update vectorial force */
283 fix0 = _mm_add_ps(fix0,tx);
284 fiy0 = _mm_add_ps(fiy0,ty);
285 fiz0 = _mm_add_ps(fiz0,tz);
286
287 fjx0 = _mm_add_ps(fjx0,tx);
288 fjy0 = _mm_add_ps(fjy0,ty);
289 fjz0 = _mm_add_ps(fjz0,tz);
290
291 /**************************
292 * CALCULATE INTERACTIONS *
293 **************************/
294
295 r10 = _mm_mul_ps(rsq10,rinv10);
296
297 /* Compute parameters for interactions between i and j atoms */
298 qq10 = _mm_mul_ps(iq1,jq0);
299
300 /* EWALD ELECTROSTATICS */
301
302 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
303 ewrt = _mm_mul_ps(r10,ewtabscale);
304 ewitab = _mm_cvttps_epi32(ewrt);
305 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
306 ewitab = _mm_slli_epi32(ewitab,2);
307 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
308 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
309 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
310 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
311 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
312 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
313 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
314 velec = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
315 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
316
317 /* Update potential sum for this i atom from the interaction with this j atom. */
318 velecsum = _mm_add_ps(velecsum,velec);
319
320 fscal = felec;
321
322 /* Calculate temporary vectorial force */
323 tx = _mm_mul_ps(fscal,dx10);
324 ty = _mm_mul_ps(fscal,dy10);
325 tz = _mm_mul_ps(fscal,dz10);
326
327 /* Update vectorial force */
328 fix1 = _mm_add_ps(fix1,tx);
329 fiy1 = _mm_add_ps(fiy1,ty);
330 fiz1 = _mm_add_ps(fiz1,tz);
331
332 fjx0 = _mm_add_ps(fjx0,tx);
333 fjy0 = _mm_add_ps(fjy0,ty);
334 fjz0 = _mm_add_ps(fjz0,tz);
335
336 /**************************
337 * CALCULATE INTERACTIONS *
338 **************************/
339
340 r20 = _mm_mul_ps(rsq20,rinv20);
341
342 /* Compute parameters for interactions between i and j atoms */
343 qq20 = _mm_mul_ps(iq2,jq0);
344
345 /* EWALD ELECTROSTATICS */
346
347 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
348 ewrt = _mm_mul_ps(r20,ewtabscale);
349 ewitab = _mm_cvttps_epi32(ewrt);
350 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
351 ewitab = _mm_slli_epi32(ewitab,2);
352 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
353 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
354 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
355 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
356 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
357 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
358 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
359 velec = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
360 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
361
362 /* Update potential sum for this i atom from the interaction with this j atom. */
363 velecsum = _mm_add_ps(velecsum,velec);
364
365 fscal = felec;
366
367 /* Calculate temporary vectorial force */
368 tx = _mm_mul_ps(fscal,dx20);
369 ty = _mm_mul_ps(fscal,dy20);
370 tz = _mm_mul_ps(fscal,dz20);
371
372 /* Update vectorial force */
373 fix2 = _mm_add_ps(fix2,tx);
374 fiy2 = _mm_add_ps(fiy2,ty);
375 fiz2 = _mm_add_ps(fiz2,tz);
376
377 fjx0 = _mm_add_ps(fjx0,tx);
378 fjy0 = _mm_add_ps(fjy0,ty);
379 fjz0 = _mm_add_ps(fjz0,tz);
380
381 /**************************
382 * CALCULATE INTERACTIONS *
383 **************************/
384
385 r30 = _mm_mul_ps(rsq30,rinv30);
386
387 /* Compute parameters for interactions between i and j atoms */
388 qq30 = _mm_mul_ps(iq3,jq0);
389
390 /* EWALD ELECTROSTATICS */
391
392 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
393 ewrt = _mm_mul_ps(r30,ewtabscale);
394 ewitab = _mm_cvttps_epi32(ewrt);
395 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
396 ewitab = _mm_slli_epi32(ewitab,2);
397 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
398 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
399 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
400 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
401 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
402 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
403 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
404 velec = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
405 felec = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
406
407 /* Update potential sum for this i atom from the interaction with this j atom. */
408 velecsum = _mm_add_ps(velecsum,velec);
409
410 fscal = felec;
411
412 /* Calculate temporary vectorial force */
413 tx = _mm_mul_ps(fscal,dx30);
414 ty = _mm_mul_ps(fscal,dy30);
415 tz = _mm_mul_ps(fscal,dz30);
416
417 /* Update vectorial force */
418 fix3 = _mm_add_ps(fix3,tx);
419 fiy3 = _mm_add_ps(fiy3,ty);
420 fiz3 = _mm_add_ps(fiz3,tz);
421
422 fjx0 = _mm_add_ps(fjx0,tx);
423 fjy0 = _mm_add_ps(fjy0,ty);
424 fjz0 = _mm_add_ps(fjz0,tz);
425
426 fjptrA = f+j_coord_offsetA;
427 fjptrB = f+j_coord_offsetB;
428 fjptrC = f+j_coord_offsetC;
429 fjptrD = f+j_coord_offsetD;
430
431 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
432
433 /* Inner loop uses 155 flops */
434 }
435
436 if(jidx<j_index_end)
437 {
438
439 /* Get j neighbor index, and coordinate index */
440 jnrlistA = jjnr[jidx];
441 jnrlistB = jjnr[jidx+1];
442 jnrlistC = jjnr[jidx+2];
443 jnrlistD = jjnr[jidx+3];
444 /* Sign of each element will be negative for non-real atoms.
445 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
446 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
447 */
448 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
449 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
450 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
451 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
452 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
453 j_coord_offsetA = DIM3*jnrA;
454 j_coord_offsetB = DIM3*jnrB;
455 j_coord_offsetC = DIM3*jnrC;
456 j_coord_offsetD = DIM3*jnrD;
457
458 /* load j atom coordinates */
459 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
460 x+j_coord_offsetC,x+j_coord_offsetD,
461 &jx0,&jy0,&jz0);
462
463 /* Calculate displacement vector */
464 dx00 = _mm_sub_ps(ix0,jx0);
465 dy00 = _mm_sub_ps(iy0,jy0);
466 dz00 = _mm_sub_ps(iz0,jz0);
467 dx10 = _mm_sub_ps(ix1,jx0);
468 dy10 = _mm_sub_ps(iy1,jy0);
469 dz10 = _mm_sub_ps(iz1,jz0);
470 dx20 = _mm_sub_ps(ix2,jx0);
471 dy20 = _mm_sub_ps(iy2,jy0);
472 dz20 = _mm_sub_ps(iz2,jz0);
473 dx30 = _mm_sub_ps(ix3,jx0);
474 dy30 = _mm_sub_ps(iy3,jy0);
475 dz30 = _mm_sub_ps(iz3,jz0);
476
477 /* Calculate squared distance and things based on it */
478 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
479 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
480 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
481 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
482
483 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
484 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
485 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
486
487 rinvsq00 = gmx_mm_inv_psgmx_simd_inv_f(rsq00);
488 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
489 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
490 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
491
492 /* Load parameters for j particles */
493 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
494 charge+jnrC+0,charge+jnrD+0);
495 vdwjidx0A = 2*vdwtype[jnrA+0];
496 vdwjidx0B = 2*vdwtype[jnrB+0];
497 vdwjidx0C = 2*vdwtype[jnrC+0];
498 vdwjidx0D = 2*vdwtype[jnrD+0];
499
500 fjx0 = _mm_setzero_ps();
501 fjy0 = _mm_setzero_ps();
502 fjz0 = _mm_setzero_ps();
503
504 /**************************
505 * CALCULATE INTERACTIONS *
506 **************************/
507
508 /* Compute parameters for interactions between i and j atoms */
509 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
510 vdwparam+vdwioffset0+vdwjidx0B,
511 vdwparam+vdwioffset0+vdwjidx0C,
512 vdwparam+vdwioffset0+vdwjidx0D,
513 &c6_00,&c12_00);
514
515 /* LENNARD-JONES DISPERSION/REPULSION */
516
517 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
518 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
519 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
520 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
521 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
522
523 /* Update potential sum for this i atom from the interaction with this j atom. */
524 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
525 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
526
527 fscal = fvdw;
528
529 fscal = _mm_andnot_ps(dummy_mask,fscal);
530
531 /* Calculate temporary vectorial force */
532 tx = _mm_mul_ps(fscal,dx00);
533 ty = _mm_mul_ps(fscal,dy00);
534 tz = _mm_mul_ps(fscal,dz00);
535
536 /* Update vectorial force */
537 fix0 = _mm_add_ps(fix0,tx);
538 fiy0 = _mm_add_ps(fiy0,ty);
539 fiz0 = _mm_add_ps(fiz0,tz);
540
541 fjx0 = _mm_add_ps(fjx0,tx);
542 fjy0 = _mm_add_ps(fjy0,ty);
543 fjz0 = _mm_add_ps(fjz0,tz);
544
545 /**************************
546 * CALCULATE INTERACTIONS *
547 **************************/
548
549 r10 = _mm_mul_ps(rsq10,rinv10);
550 r10 = _mm_andnot_ps(dummy_mask,r10);
551
552 /* Compute parameters for interactions between i and j atoms */
553 qq10 = _mm_mul_ps(iq1,jq0);
554
555 /* EWALD ELECTROSTATICS */
556
557 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
558 ewrt = _mm_mul_ps(r10,ewtabscale);
559 ewitab = _mm_cvttps_epi32(ewrt);
560 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
561 ewitab = _mm_slli_epi32(ewitab,2);
562 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
563 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
564 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
565 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
566 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
567 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
568 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
569 velec = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
570 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
571
572 /* Update potential sum for this i atom from the interaction with this j atom. */
573 velec = _mm_andnot_ps(dummy_mask,velec);
574 velecsum = _mm_add_ps(velecsum,velec);
575
576 fscal = felec;
577
578 fscal = _mm_andnot_ps(dummy_mask,fscal);
579
580 /* Calculate temporary vectorial force */
581 tx = _mm_mul_ps(fscal,dx10);
582 ty = _mm_mul_ps(fscal,dy10);
583 tz = _mm_mul_ps(fscal,dz10);
584
585 /* Update vectorial force */
586 fix1 = _mm_add_ps(fix1,tx);
587 fiy1 = _mm_add_ps(fiy1,ty);
588 fiz1 = _mm_add_ps(fiz1,tz);
589
590 fjx0 = _mm_add_ps(fjx0,tx);
591 fjy0 = _mm_add_ps(fjy0,ty);
592 fjz0 = _mm_add_ps(fjz0,tz);
593
594 /**************************
595 * CALCULATE INTERACTIONS *
596 **************************/
597
598 r20 = _mm_mul_ps(rsq20,rinv20);
599 r20 = _mm_andnot_ps(dummy_mask,r20);
600
601 /* Compute parameters for interactions between i and j atoms */
602 qq20 = _mm_mul_ps(iq2,jq0);
603
604 /* EWALD ELECTROSTATICS */
605
606 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
607 ewrt = _mm_mul_ps(r20,ewtabscale);
608 ewitab = _mm_cvttps_epi32(ewrt);
609 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
610 ewitab = _mm_slli_epi32(ewitab,2);
611 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
612 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
613 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
614 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
615 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
616 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
617 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
618 velec = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
619 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
620
621 /* Update potential sum for this i atom from the interaction with this j atom. */
622 velec = _mm_andnot_ps(dummy_mask,velec);
623 velecsum = _mm_add_ps(velecsum,velec);
624
625 fscal = felec;
626
627 fscal = _mm_andnot_ps(dummy_mask,fscal);
628
629 /* Calculate temporary vectorial force */
630 tx = _mm_mul_ps(fscal,dx20);
631 ty = _mm_mul_ps(fscal,dy20);
632 tz = _mm_mul_ps(fscal,dz20);
633
634 /* Update vectorial force */
635 fix2 = _mm_add_ps(fix2,tx);
636 fiy2 = _mm_add_ps(fiy2,ty);
637 fiz2 = _mm_add_ps(fiz2,tz);
638
639 fjx0 = _mm_add_ps(fjx0,tx);
640 fjy0 = _mm_add_ps(fjy0,ty);
641 fjz0 = _mm_add_ps(fjz0,tz);
642
643 /**************************
644 * CALCULATE INTERACTIONS *
645 **************************/
646
647 r30 = _mm_mul_ps(rsq30,rinv30);
648 r30 = _mm_andnot_ps(dummy_mask,r30);
649
650 /* Compute parameters for interactions between i and j atoms */
651 qq30 = _mm_mul_ps(iq3,jq0);
652
653 /* EWALD ELECTROSTATICS */
654
655 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
656 ewrt = _mm_mul_ps(r30,ewtabscale);
657 ewitab = _mm_cvttps_epi32(ewrt);
658 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
659 ewitab = _mm_slli_epi32(ewitab,2);
660 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
661 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
662 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
663 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
664 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
665 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
666 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
667 velec = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
668 felec = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
669
670 /* Update potential sum for this i atom from the interaction with this j atom. */
671 velec = _mm_andnot_ps(dummy_mask,velec);
672 velecsum = _mm_add_ps(velecsum,velec);
673
674 fscal = felec;
675
676 fscal = _mm_andnot_ps(dummy_mask,fscal);
677
678 /* Calculate temporary vectorial force */
679 tx = _mm_mul_ps(fscal,dx30);
680 ty = _mm_mul_ps(fscal,dy30);
681 tz = _mm_mul_ps(fscal,dz30);
682
683 /* Update vectorial force */
684 fix3 = _mm_add_ps(fix3,tx);
685 fiy3 = _mm_add_ps(fiy3,ty);
686 fiz3 = _mm_add_ps(fiz3,tz);
687
688 fjx0 = _mm_add_ps(fjx0,tx);
689 fjy0 = _mm_add_ps(fjy0,ty);
690 fjz0 = _mm_add_ps(fjz0,tz);
691
692 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
693 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
694 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
695 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
696
697 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
698
699 /* Inner loop uses 158 flops */
700 }
701
702 /* End of innermost loop */
703
704 gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
705 f+i_coord_offset,fshift+i_shift_offset);
706
707 ggid = gid[iidx];
708 /* Update potential energies */
709 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
710 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
711
712 /* Increment number of inner iterations */
713 inneriter += j_index_end - j_index_start;
714
715 /* Outer loop uses 26 flops */
716 }
717
718 /* Increment number of outer iterations */
719 outeriter += nri;
720
721 /* Update outer/inner flops */
722
723 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*158)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_VF] += outeriter*26 + inneriter
*158
;
724}
725/*
726 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_sse4_1_single
727 * Electrostatics interaction: Ewald
728 * VdW interaction: LennardJones
729 * Geometry: Water4-Particle
730 * Calculate force/pot: Force
731 */
732void
733nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_sse4_1_single
734 (t_nblist * gmx_restrict nlist,
735 rvec * gmx_restrict xx,
736 rvec * gmx_restrict ff,
737 t_forcerec * gmx_restrict fr,
738 t_mdatoms * gmx_restrict mdatoms,
739 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
740 t_nrnb * gmx_restrict nrnb)
741{
742 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
743 * just 0 for non-waters.
744 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
745 * jnr indices corresponding to data put in the four positions in the SIMD register.
746 */
747 int i_shift_offset,i_coord_offset,outeriter,inneriter;
748 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
749 int jnrA,jnrB,jnrC,jnrD;
750 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
751 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
752 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
753 real rcutoff_scalar;
754 real *shiftvec,*fshift,*x,*f;
755 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
756 real scratch[4*DIM3];
757 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
758 int vdwioffset0;
759 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
760 int vdwioffset1;
761 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
762 int vdwioffset2;
763 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
764 int vdwioffset3;
765 __m128 ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
766 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
767 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
768 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
769 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
770 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
771 __m128 dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
772 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
773 real *charge;
774 int nvdwtype;
775 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
776 int *vdwtype;
777 real *vdwparam;
778 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
779 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
780 __m128i ewitab;
781 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
782 real *ewtab;
783 __m128 dummy_mask,cutoff_mask;
784 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
785 __m128 one = _mm_set1_ps(1.0);
786 __m128 two = _mm_set1_ps(2.0);
787 x = xx[0];
788 f = ff[0];
789
790 nri = nlist->nri;
791 iinr = nlist->iinr;
792 jindex = nlist->jindex;
793 jjnr = nlist->jjnr;
794 shiftidx = nlist->shift;
795 gid = nlist->gid;
796 shiftvec = fr->shift_vec[0];
797 fshift = fr->fshift[0];
798 facel = _mm_set1_ps(fr->epsfac);
799 charge = mdatoms->chargeA;
800 nvdwtype = fr->ntype;
801 vdwparam = fr->nbfp;
802 vdwtype = mdatoms->typeA;
803
804 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
805 ewtab = fr->ic->tabq_coul_F;
806 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
807 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
Value stored to 'ewtabhalfspace' is never read
808
809 /* Setup water-specific parameters */
810 inr = nlist->iinr[0];
811 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
812 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
813 iq3 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
814 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
815
816 /* Avoid stupid compiler warnings */
817 jnrA = jnrB = jnrC = jnrD = 0;
818 j_coord_offsetA = 0;
819 j_coord_offsetB = 0;
820 j_coord_offsetC = 0;
821 j_coord_offsetD = 0;
822
823 outeriter = 0;
824 inneriter = 0;
825
826 for(iidx=0;iidx<4*DIM3;iidx++)
827 {
828 scratch[iidx] = 0.0;
829 }
830
831 /* Start outer loop over neighborlists */
832 for(iidx=0; iidx<nri; iidx++)
833 {
834 /* Load shift vector for this list */
835 i_shift_offset = DIM3*shiftidx[iidx];
836
837 /* Load limits for loop over neighbors */
838 j_index_start = jindex[iidx];
839 j_index_end = jindex[iidx+1];
840
841 /* Get outer coordinate index */
842 inr = iinr[iidx];
843 i_coord_offset = DIM3*inr;
844
845 /* Load i particle coords and add shift vector */
846 gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
847 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
848
849 fix0 = _mm_setzero_ps();
850 fiy0 = _mm_setzero_ps();
851 fiz0 = _mm_setzero_ps();
852 fix1 = _mm_setzero_ps();
853 fiy1 = _mm_setzero_ps();
854 fiz1 = _mm_setzero_ps();
855 fix2 = _mm_setzero_ps();
856 fiy2 = _mm_setzero_ps();
857 fiz2 = _mm_setzero_ps();
858 fix3 = _mm_setzero_ps();
859 fiy3 = _mm_setzero_ps();
860 fiz3 = _mm_setzero_ps();
861
862 /* Start inner kernel loop */
863 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
864 {
865
866 /* Get j neighbor index, and coordinate index */
867 jnrA = jjnr[jidx];
868 jnrB = jjnr[jidx+1];
869 jnrC = jjnr[jidx+2];
870 jnrD = jjnr[jidx+3];
871 j_coord_offsetA = DIM3*jnrA;
872 j_coord_offsetB = DIM3*jnrB;
873 j_coord_offsetC = DIM3*jnrC;
874 j_coord_offsetD = DIM3*jnrD;
875
876 /* load j atom coordinates */
877 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
878 x+j_coord_offsetC,x+j_coord_offsetD,
879 &jx0,&jy0,&jz0);
880
881 /* Calculate displacement vector */
882 dx00 = _mm_sub_ps(ix0,jx0);
883 dy00 = _mm_sub_ps(iy0,jy0);
884 dz00 = _mm_sub_ps(iz0,jz0);
885 dx10 = _mm_sub_ps(ix1,jx0);
886 dy10 = _mm_sub_ps(iy1,jy0);
887 dz10 = _mm_sub_ps(iz1,jz0);
888 dx20 = _mm_sub_ps(ix2,jx0);
889 dy20 = _mm_sub_ps(iy2,jy0);
890 dz20 = _mm_sub_ps(iz2,jz0);
891 dx30 = _mm_sub_ps(ix3,jx0);
892 dy30 = _mm_sub_ps(iy3,jy0);
893 dz30 = _mm_sub_ps(iz3,jz0);
894
895 /* Calculate squared distance and things based on it */
896 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
897 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
898 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
899 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
900
901 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
902 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
903 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
904
905 rinvsq00 = gmx_mm_inv_psgmx_simd_inv_f(rsq00);
906 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
907 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
908 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
909
910 /* Load parameters for j particles */
911 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
912 charge+jnrC+0,charge+jnrD+0);
913 vdwjidx0A = 2*vdwtype[jnrA+0];
914 vdwjidx0B = 2*vdwtype[jnrB+0];
915 vdwjidx0C = 2*vdwtype[jnrC+0];
916 vdwjidx0D = 2*vdwtype[jnrD+0];
917
918 fjx0 = _mm_setzero_ps();
919 fjy0 = _mm_setzero_ps();
920 fjz0 = _mm_setzero_ps();
921
922 /**************************
923 * CALCULATE INTERACTIONS *
924 **************************/
925
926 /* Compute parameters for interactions between i and j atoms */
927 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
928 vdwparam+vdwioffset0+vdwjidx0B,
929 vdwparam+vdwioffset0+vdwjidx0C,
930 vdwparam+vdwioffset0+vdwjidx0D,
931 &c6_00,&c12_00);
932
933 /* LENNARD-JONES DISPERSION/REPULSION */
934
935 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
936 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
937
938 fscal = fvdw;
939
940 /* Calculate temporary vectorial force */
941 tx = _mm_mul_ps(fscal,dx00);
942 ty = _mm_mul_ps(fscal,dy00);
943 tz = _mm_mul_ps(fscal,dz00);
944
945 /* Update vectorial force */
946 fix0 = _mm_add_ps(fix0,tx);
947 fiy0 = _mm_add_ps(fiy0,ty);
948 fiz0 = _mm_add_ps(fiz0,tz);
949
950 fjx0 = _mm_add_ps(fjx0,tx);
951 fjy0 = _mm_add_ps(fjy0,ty);
952 fjz0 = _mm_add_ps(fjz0,tz);
953
954 /**************************
955 * CALCULATE INTERACTIONS *
956 **************************/
957
958 r10 = _mm_mul_ps(rsq10,rinv10);
959
960 /* Compute parameters for interactions between i and j atoms */
961 qq10 = _mm_mul_ps(iq1,jq0);
962
963 /* EWALD ELECTROSTATICS */
964
965 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
966 ewrt = _mm_mul_ps(r10,ewtabscale);
967 ewitab = _mm_cvttps_epi32(ewrt);
968 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
969 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
970 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
971 &ewtabF,&ewtabFn);
972 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
973 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
974
975 fscal = felec;
976
977 /* Calculate temporary vectorial force */
978 tx = _mm_mul_ps(fscal,dx10);
979 ty = _mm_mul_ps(fscal,dy10);
980 tz = _mm_mul_ps(fscal,dz10);
981
982 /* Update vectorial force */
983 fix1 = _mm_add_ps(fix1,tx);
984 fiy1 = _mm_add_ps(fiy1,ty);
985 fiz1 = _mm_add_ps(fiz1,tz);
986
987 fjx0 = _mm_add_ps(fjx0,tx);
988 fjy0 = _mm_add_ps(fjy0,ty);
989 fjz0 = _mm_add_ps(fjz0,tz);
990
991 /**************************
992 * CALCULATE INTERACTIONS *
993 **************************/
994
995 r20 = _mm_mul_ps(rsq20,rinv20);
996
997 /* Compute parameters for interactions between i and j atoms */
998 qq20 = _mm_mul_ps(iq2,jq0);
999
1000 /* EWALD ELECTROSTATICS */
1001
1002 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1003 ewrt = _mm_mul_ps(r20,ewtabscale);
1004 ewitab = _mm_cvttps_epi32(ewrt);
1005 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1006 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1007 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1008 &ewtabF,&ewtabFn);
1009 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1010 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1011
1012 fscal = felec;
1013
1014 /* Calculate temporary vectorial force */
1015 tx = _mm_mul_ps(fscal,dx20);
1016 ty = _mm_mul_ps(fscal,dy20);
1017 tz = _mm_mul_ps(fscal,dz20);
1018
1019 /* Update vectorial force */
1020 fix2 = _mm_add_ps(fix2,tx);
1021 fiy2 = _mm_add_ps(fiy2,ty);
1022 fiz2 = _mm_add_ps(fiz2,tz);
1023
1024 fjx0 = _mm_add_ps(fjx0,tx);
1025 fjy0 = _mm_add_ps(fjy0,ty);
1026 fjz0 = _mm_add_ps(fjz0,tz);
1027
1028 /**************************
1029 * CALCULATE INTERACTIONS *
1030 **************************/
1031
1032 r30 = _mm_mul_ps(rsq30,rinv30);
1033
1034 /* Compute parameters for interactions between i and j atoms */
1035 qq30 = _mm_mul_ps(iq3,jq0);
1036
1037 /* EWALD ELECTROSTATICS */
1038
1039 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1040 ewrt = _mm_mul_ps(r30,ewtabscale);
1041 ewitab = _mm_cvttps_epi32(ewrt);
1042 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1043 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1044 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1045 &ewtabF,&ewtabFn);
1046 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1047 felec = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1048
1049 fscal = felec;
1050
1051 /* Calculate temporary vectorial force */
1052 tx = _mm_mul_ps(fscal,dx30);
1053 ty = _mm_mul_ps(fscal,dy30);
1054 tz = _mm_mul_ps(fscal,dz30);
1055
1056 /* Update vectorial force */
1057 fix3 = _mm_add_ps(fix3,tx);
1058 fiy3 = _mm_add_ps(fiy3,ty);
1059 fiz3 = _mm_add_ps(fiz3,tz);
1060
1061 fjx0 = _mm_add_ps(fjx0,tx);
1062 fjy0 = _mm_add_ps(fjy0,ty);
1063 fjz0 = _mm_add_ps(fjz0,tz);
1064
1065 fjptrA = f+j_coord_offsetA;
1066 fjptrB = f+j_coord_offsetB;
1067 fjptrC = f+j_coord_offsetC;
1068 fjptrD = f+j_coord_offsetD;
1069
1070 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1071
1072 /* Inner loop uses 135 flops */
1073 }
1074
1075 if(jidx<j_index_end)
1076 {
1077
1078 /* Get j neighbor index, and coordinate index */
1079 jnrlistA = jjnr[jidx];
1080 jnrlistB = jjnr[jidx+1];
1081 jnrlistC = jjnr[jidx+2];
1082 jnrlistD = jjnr[jidx+3];
1083 /* Sign of each element will be negative for non-real atoms.
1084 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1085 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1086 */
1087 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1088 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
1089 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
1090 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
1091 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
1092 j_coord_offsetA = DIM3*jnrA;
1093 j_coord_offsetB = DIM3*jnrB;
1094 j_coord_offsetC = DIM3*jnrC;
1095 j_coord_offsetD = DIM3*jnrD;
1096
1097 /* load j atom coordinates */
1098 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1099 x+j_coord_offsetC,x+j_coord_offsetD,
1100 &jx0,&jy0,&jz0);
1101
1102 /* Calculate displacement vector */
1103 dx00 = _mm_sub_ps(ix0,jx0);
1104 dy00 = _mm_sub_ps(iy0,jy0);
1105 dz00 = _mm_sub_ps(iz0,jz0);
1106 dx10 = _mm_sub_ps(ix1,jx0);
1107 dy10 = _mm_sub_ps(iy1,jy0);
1108 dz10 = _mm_sub_ps(iz1,jz0);
1109 dx20 = _mm_sub_ps(ix2,jx0);
1110 dy20 = _mm_sub_ps(iy2,jy0);
1111 dz20 = _mm_sub_ps(iz2,jz0);
1112 dx30 = _mm_sub_ps(ix3,jx0);
1113 dy30 = _mm_sub_ps(iy3,jy0);
1114 dz30 = _mm_sub_ps(iz3,jz0);
1115
1116 /* Calculate squared distance and things based on it */
1117 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1118 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1119 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1120 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1121
1122 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
1123 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
1124 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
1125
1126 rinvsq00 = gmx_mm_inv_psgmx_simd_inv_f(rsq00);
1127 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
1128 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
1129 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
1130
1131 /* Load parameters for j particles */
1132 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1133 charge+jnrC+0,charge+jnrD+0);
1134 vdwjidx0A = 2*vdwtype[jnrA+0];
1135 vdwjidx0B = 2*vdwtype[jnrB+0];
1136 vdwjidx0C = 2*vdwtype[jnrC+0];
1137 vdwjidx0D = 2*vdwtype[jnrD+0];
1138
1139 fjx0 = _mm_setzero_ps();
1140 fjy0 = _mm_setzero_ps();
1141 fjz0 = _mm_setzero_ps();
1142
1143 /**************************
1144 * CALCULATE INTERACTIONS *
1145 **************************/
1146
1147 /* Compute parameters for interactions between i and j atoms */
1148 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1149 vdwparam+vdwioffset0+vdwjidx0B,
1150 vdwparam+vdwioffset0+vdwjidx0C,
1151 vdwparam+vdwioffset0+vdwjidx0D,
1152 &c6_00,&c12_00);
1153
1154 /* LENNARD-JONES DISPERSION/REPULSION */
1155
1156 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1157 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1158
1159 fscal = fvdw;
1160
1161 fscal = _mm_andnot_ps(dummy_mask,fscal);
1162
1163 /* Calculate temporary vectorial force */
1164 tx = _mm_mul_ps(fscal,dx00);
1165 ty = _mm_mul_ps(fscal,dy00);
1166 tz = _mm_mul_ps(fscal,dz00);
1167
1168 /* Update vectorial force */
1169 fix0 = _mm_add_ps(fix0,tx);
1170 fiy0 = _mm_add_ps(fiy0,ty);
1171 fiz0 = _mm_add_ps(fiz0,tz);
1172
1173 fjx0 = _mm_add_ps(fjx0,tx);
1174 fjy0 = _mm_add_ps(fjy0,ty);
1175 fjz0 = _mm_add_ps(fjz0,tz);
1176
1177 /**************************
1178 * CALCULATE INTERACTIONS *
1179 **************************/
1180
1181 r10 = _mm_mul_ps(rsq10,rinv10);
1182 r10 = _mm_andnot_ps(dummy_mask,r10);
1183
1184 /* Compute parameters for interactions between i and j atoms */
1185 qq10 = _mm_mul_ps(iq1,jq0);
1186
1187 /* EWALD ELECTROSTATICS */
1188
1189 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1190 ewrt = _mm_mul_ps(r10,ewtabscale);
1191 ewitab = _mm_cvttps_epi32(ewrt);
1192 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1193 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1194 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1195 &ewtabF,&ewtabFn);
1196 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1197 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1198
1199 fscal = felec;
1200
1201 fscal = _mm_andnot_ps(dummy_mask,fscal);
1202
1203 /* Calculate temporary vectorial force */
1204 tx = _mm_mul_ps(fscal,dx10);
1205 ty = _mm_mul_ps(fscal,dy10);
1206 tz = _mm_mul_ps(fscal,dz10);
1207
1208 /* Update vectorial force */
1209 fix1 = _mm_add_ps(fix1,tx);
1210 fiy1 = _mm_add_ps(fiy1,ty);
1211 fiz1 = _mm_add_ps(fiz1,tz);
1212
1213 fjx0 = _mm_add_ps(fjx0,tx);
1214 fjy0 = _mm_add_ps(fjy0,ty);
1215 fjz0 = _mm_add_ps(fjz0,tz);
1216
1217 /**************************
1218 * CALCULATE INTERACTIONS *
1219 **************************/
1220
1221 r20 = _mm_mul_ps(rsq20,rinv20);
1222 r20 = _mm_andnot_ps(dummy_mask,r20);
1223
1224 /* Compute parameters for interactions between i and j atoms */
1225 qq20 = _mm_mul_ps(iq2,jq0);
1226
1227 /* EWALD ELECTROSTATICS */
1228
1229 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1230 ewrt = _mm_mul_ps(r20,ewtabscale);
1231 ewitab = _mm_cvttps_epi32(ewrt);
1232 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1233 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1234 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1235 &ewtabF,&ewtabFn);
1236 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1237 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1238
1239 fscal = felec;
1240
1241 fscal = _mm_andnot_ps(dummy_mask,fscal);
1242
1243 /* Calculate temporary vectorial force */
1244 tx = _mm_mul_ps(fscal,dx20);
1245 ty = _mm_mul_ps(fscal,dy20);
1246 tz = _mm_mul_ps(fscal,dz20);
1247
1248 /* Update vectorial force */
1249 fix2 = _mm_add_ps(fix2,tx);
1250 fiy2 = _mm_add_ps(fiy2,ty);
1251 fiz2 = _mm_add_ps(fiz2,tz);
1252
1253 fjx0 = _mm_add_ps(fjx0,tx);
1254 fjy0 = _mm_add_ps(fjy0,ty);
1255 fjz0 = _mm_add_ps(fjz0,tz);
1256
1257 /**************************
1258 * CALCULATE INTERACTIONS *
1259 **************************/
1260
1261 r30 = _mm_mul_ps(rsq30,rinv30);
1262 r30 = _mm_andnot_ps(dummy_mask,r30);
1263
1264 /* Compute parameters for interactions between i and j atoms */
1265 qq30 = _mm_mul_ps(iq3,jq0);
1266
1267 /* EWALD ELECTROSTATICS */
1268
1269 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1270 ewrt = _mm_mul_ps(r30,ewtabscale);
1271 ewitab = _mm_cvttps_epi32(ewrt);
1272 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1273 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1274 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1275 &ewtabF,&ewtabFn);
1276 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1277 felec = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1278
1279 fscal = felec;
1280
1281 fscal = _mm_andnot_ps(dummy_mask,fscal);
1282
1283 /* Calculate temporary vectorial force */
1284 tx = _mm_mul_ps(fscal,dx30);
1285 ty = _mm_mul_ps(fscal,dy30);
1286 tz = _mm_mul_ps(fscal,dz30);
1287
1288 /* Update vectorial force */
1289 fix3 = _mm_add_ps(fix3,tx);
1290 fiy3 = _mm_add_ps(fiy3,ty);
1291 fiz3 = _mm_add_ps(fiz3,tz);
1292
1293 fjx0 = _mm_add_ps(fjx0,tx);
1294 fjy0 = _mm_add_ps(fjy0,ty);
1295 fjz0 = _mm_add_ps(fjz0,tz);
1296
1297 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1298 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1299 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1300 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1301
1302 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1303
1304 /* Inner loop uses 138 flops */
1305 }
1306
1307 /* End of innermost loop */
1308
1309 gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1310 f+i_coord_offset,fshift+i_shift_offset);
1311
1312 /* Increment number of inner iterations */
1313 inneriter += j_index_end - j_index_start;
1314
1315 /* Outer loop uses 24 flops */
1316 }
1317
1318 /* Increment number of outer iterations */
1319 outeriter += nri;
1320
1321 /* Update outer/inner flops */
1322
1323 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*138)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_F] += outeriter*24 + inneriter
*138
;
1324}