Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecRF_VdwBham_GeomW3W3_c.c
Location:line 616, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwBham_GeomW3W3_VF_c
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: Buckingham
53 * Geometry: Water3-Water3
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecRF_VdwBham_GeomW3W3_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 int vdwjidx1;
81 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
82 int vdwjidx2;
83 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
84 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
85 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
86 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
87 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
88 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
89 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
90 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
91 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
92 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
93 real velec,felec,velecsum,facel,crf,krf,krf2;
94 real *charge;
95 int nvdwtype;
96 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
97 int *vdwtype;
98 real *vdwparam;
99
100 x = xx[0];
101 f = ff[0];
102
103 nri = nlist->nri;
104 iinr = nlist->iinr;
105 jindex = nlist->jindex;
106 jjnr = nlist->jjnr;
107 shiftidx = nlist->shift;
108 gid = nlist->gid;
109 shiftvec = fr->shift_vec[0];
110 fshift = fr->fshift[0];
111 facel = fr->epsfac;
112 charge = mdatoms->chargeA;
113 krf = fr->ic->k_rf;
114 krf2 = krf*2.0;
115 crf = fr->ic->c_rf;
116 nvdwtype = fr->ntype;
117 vdwparam = fr->nbfp;
118 vdwtype = mdatoms->typeA;
119
120 /* Setup water-specific parameters */
121 inr = nlist->iinr[0];
122 iq0 = facel*charge[inr+0];
123 iq1 = facel*charge[inr+1];
124 iq2 = facel*charge[inr+2];
125 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
126
127 jq0 = charge[inr+0];
128 jq1 = charge[inr+1];
129 jq2 = charge[inr+2];
130 vdwjidx0 = 3*vdwtype[inr+0];
131 qq00 = iq0*jq0;
132 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
133 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
134 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
135 qq01 = iq0*jq1;
136 qq02 = iq0*jq2;
137 qq10 = iq1*jq0;
138 qq11 = iq1*jq1;
139 qq12 = iq1*jq2;
140 qq20 = iq2*jq0;
141 qq21 = iq2*jq1;
142 qq22 = iq2*jq2;
143
144 outeriter = 0;
145 inneriter = 0;
146
147 /* Start outer loop over neighborlists */
148 for(iidx=0; iidx<nri; iidx++)
149 {
150 /* Load shift vector for this list */
151 i_shift_offset = DIM3*shiftidx[iidx];
152 shX = shiftvec[i_shift_offset+XX0];
153 shY = shiftvec[i_shift_offset+YY1];
154 shZ = shiftvec[i_shift_offset+ZZ2];
155
156 /* Load limits for loop over neighbors */
157 j_index_start = jindex[iidx];
158 j_index_end = jindex[iidx+1];
159
160 /* Get outer coordinate index */
161 inr = iinr[iidx];
162 i_coord_offset = DIM3*inr;
163
164 /* Load i particle coords and add shift vector */
165 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
166 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
167 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
168 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
169 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
170 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
171 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
172 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
173 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
174
175 fix0 = 0.0;
176 fiy0 = 0.0;
177 fiz0 = 0.0;
178 fix1 = 0.0;
179 fiy1 = 0.0;
180 fiz1 = 0.0;
181 fix2 = 0.0;
182 fiy2 = 0.0;
183 fiz2 = 0.0;
184
185 /* Reset potential sums */
186 velecsum = 0.0;
187 vvdwsum = 0.0;
188
189 /* Start inner kernel loop */
190 for(jidx=j_index_start; jidx<j_index_end; jidx++)
191 {
192 /* Get j neighbor index, and coordinate index */
193 jnr = jjnr[jidx];
194 j_coord_offset = DIM3*jnr;
195
196 /* load j atom coordinates */
197 jx0 = x[j_coord_offset+DIM3*0+XX0];
198 jy0 = x[j_coord_offset+DIM3*0+YY1];
199 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
200 jx1 = x[j_coord_offset+DIM3*1+XX0];
201 jy1 = x[j_coord_offset+DIM3*1+YY1];
202 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
203 jx2 = x[j_coord_offset+DIM3*2+XX0];
204 jy2 = x[j_coord_offset+DIM3*2+YY1];
205 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
206
207 /* Calculate displacement vector */
208 dx00 = ix0 - jx0;
209 dy00 = iy0 - jy0;
210 dz00 = iz0 - jz0;
211 dx01 = ix0 - jx1;
212 dy01 = iy0 - jy1;
213 dz01 = iz0 - jz1;
214 dx02 = ix0 - jx2;
215 dy02 = iy0 - jy2;
216 dz02 = iz0 - jz2;
217 dx10 = ix1 - jx0;
218 dy10 = iy1 - jy0;
219 dz10 = iz1 - jz0;
220 dx11 = ix1 - jx1;
221 dy11 = iy1 - jy1;
222 dz11 = iz1 - jz1;
223 dx12 = ix1 - jx2;
224 dy12 = iy1 - jy2;
225 dz12 = iz1 - jz2;
226 dx20 = ix2 - jx0;
227 dy20 = iy2 - jy0;
228 dz20 = iz2 - jz0;
229 dx21 = ix2 - jx1;
230 dy21 = iy2 - jy1;
231 dz21 = iz2 - jz1;
232 dx22 = ix2 - jx2;
233 dy22 = iy2 - jy2;
234 dz22 = iz2 - jz2;
235
236 /* Calculate squared distance and things based on it */
237 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
238 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
239 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
240 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
241 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
242 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
243 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
244 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
245 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
246
247 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
248 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
249 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
250 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
251 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
252 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
253 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
254 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
255 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
256
257 rinvsq00 = rinv00*rinv00;
258 rinvsq01 = rinv01*rinv01;
259 rinvsq02 = rinv02*rinv02;
260 rinvsq10 = rinv10*rinv10;
261 rinvsq11 = rinv11*rinv11;
262 rinvsq12 = rinv12*rinv12;
263 rinvsq20 = rinv20*rinv20;
264 rinvsq21 = rinv21*rinv21;
265 rinvsq22 = rinv22*rinv22;
266
267 /**************************
268 * CALCULATE INTERACTIONS *
269 **************************/
270
271 r00 = rsq00*rinv00;
272
273 /* REACTION-FIELD ELECTROSTATICS */
274 velec = qq00*(rinv00+krf*rsq00-crf);
275 felec = qq00*(rinv00*rinvsq00-krf2);
276
277 /* BUCKINGHAM DISPERSION/REPULSION */
278 rinvsix = rinvsq00*rinvsq00*rinvsq00;
279 vvdw6 = c6_00*rinvsix;
280 br = cexp2_00*r00;
281 vvdwexp = cexp1_00*exp(-br);
282 vvdw = vvdwexp - vvdw6*(1.0/6.0);
283 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
284
285 /* Update potential sums from outer loop */
286 velecsum += velec;
287 vvdwsum += vvdw;
288
289 fscal = felec+fvdw;
290
291 /* Calculate temporary vectorial force */
292 tx = fscal*dx00;
293 ty = fscal*dy00;
294 tz = fscal*dz00;
295
296 /* Update vectorial force */
297 fix0 += tx;
298 fiy0 += ty;
299 fiz0 += tz;
300 f[j_coord_offset+DIM3*0+XX0] -= tx;
301 f[j_coord_offset+DIM3*0+YY1] -= ty;
302 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
303
304 /**************************
305 * CALCULATE INTERACTIONS *
306 **************************/
307
308 /* REACTION-FIELD ELECTROSTATICS */
309 velec = qq01*(rinv01+krf*rsq01-crf);
310 felec = qq01*(rinv01*rinvsq01-krf2);
311
312 /* Update potential sums from outer loop */
313 velecsum += velec;
314
315 fscal = felec;
316
317 /* Calculate temporary vectorial force */
318 tx = fscal*dx01;
319 ty = fscal*dy01;
320 tz = fscal*dz01;
321
322 /* Update vectorial force */
323 fix0 += tx;
324 fiy0 += ty;
325 fiz0 += tz;
326 f[j_coord_offset+DIM3*1+XX0] -= tx;
327 f[j_coord_offset+DIM3*1+YY1] -= ty;
328 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
329
330 /**************************
331 * CALCULATE INTERACTIONS *
332 **************************/
333
334 /* REACTION-FIELD ELECTROSTATICS */
335 velec = qq02*(rinv02+krf*rsq02-crf);
336 felec = qq02*(rinv02*rinvsq02-krf2);
337
338 /* Update potential sums from outer loop */
339 velecsum += velec;
340
341 fscal = felec;
342
343 /* Calculate temporary vectorial force */
344 tx = fscal*dx02;
345 ty = fscal*dy02;
346 tz = fscal*dz02;
347
348 /* Update vectorial force */
349 fix0 += tx;
350 fiy0 += ty;
351 fiz0 += tz;
352 f[j_coord_offset+DIM3*2+XX0] -= tx;
353 f[j_coord_offset+DIM3*2+YY1] -= ty;
354 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
355
356 /**************************
357 * CALCULATE INTERACTIONS *
358 **************************/
359
360 /* REACTION-FIELD ELECTROSTATICS */
361 velec = qq10*(rinv10+krf*rsq10-crf);
362 felec = qq10*(rinv10*rinvsq10-krf2);
363
364 /* Update potential sums from outer loop */
365 velecsum += velec;
366
367 fscal = felec;
368
369 /* Calculate temporary vectorial force */
370 tx = fscal*dx10;
371 ty = fscal*dy10;
372 tz = fscal*dz10;
373
374 /* Update vectorial force */
375 fix1 += tx;
376 fiy1 += ty;
377 fiz1 += tz;
378 f[j_coord_offset+DIM3*0+XX0] -= tx;
379 f[j_coord_offset+DIM3*0+YY1] -= ty;
380 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
381
382 /**************************
383 * CALCULATE INTERACTIONS *
384 **************************/
385
386 /* REACTION-FIELD ELECTROSTATICS */
387 velec = qq11*(rinv11+krf*rsq11-crf);
388 felec = qq11*(rinv11*rinvsq11-krf2);
389
390 /* Update potential sums from outer loop */
391 velecsum += velec;
392
393 fscal = felec;
394
395 /* Calculate temporary vectorial force */
396 tx = fscal*dx11;
397 ty = fscal*dy11;
398 tz = fscal*dz11;
399
400 /* Update vectorial force */
401 fix1 += tx;
402 fiy1 += ty;
403 fiz1 += tz;
404 f[j_coord_offset+DIM3*1+XX0] -= tx;
405 f[j_coord_offset+DIM3*1+YY1] -= ty;
406 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
407
408 /**************************
409 * CALCULATE INTERACTIONS *
410 **************************/
411
412 /* REACTION-FIELD ELECTROSTATICS */
413 velec = qq12*(rinv12+krf*rsq12-crf);
414 felec = qq12*(rinv12*rinvsq12-krf2);
415
416 /* Update potential sums from outer loop */
417 velecsum += velec;
418
419 fscal = felec;
420
421 /* Calculate temporary vectorial force */
422 tx = fscal*dx12;
423 ty = fscal*dy12;
424 tz = fscal*dz12;
425
426 /* Update vectorial force */
427 fix1 += tx;
428 fiy1 += ty;
429 fiz1 += tz;
430 f[j_coord_offset+DIM3*2+XX0] -= tx;
431 f[j_coord_offset+DIM3*2+YY1] -= ty;
432 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
433
434 /**************************
435 * CALCULATE INTERACTIONS *
436 **************************/
437
438 /* REACTION-FIELD ELECTROSTATICS */
439 velec = qq20*(rinv20+krf*rsq20-crf);
440 felec = qq20*(rinv20*rinvsq20-krf2);
441
442 /* Update potential sums from outer loop */
443 velecsum += velec;
444
445 fscal = felec;
446
447 /* Calculate temporary vectorial force */
448 tx = fscal*dx20;
449 ty = fscal*dy20;
450 tz = fscal*dz20;
451
452 /* Update vectorial force */
453 fix2 += tx;
454 fiy2 += ty;
455 fiz2 += tz;
456 f[j_coord_offset+DIM3*0+XX0] -= tx;
457 f[j_coord_offset+DIM3*0+YY1] -= ty;
458 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
459
460 /**************************
461 * CALCULATE INTERACTIONS *
462 **************************/
463
464 /* REACTION-FIELD ELECTROSTATICS */
465 velec = qq21*(rinv21+krf*rsq21-crf);
466 felec = qq21*(rinv21*rinvsq21-krf2);
467
468 /* Update potential sums from outer loop */
469 velecsum += velec;
470
471 fscal = felec;
472
473 /* Calculate temporary vectorial force */
474 tx = fscal*dx21;
475 ty = fscal*dy21;
476 tz = fscal*dz21;
477
478 /* Update vectorial force */
479 fix2 += tx;
480 fiy2 += ty;
481 fiz2 += tz;
482 f[j_coord_offset+DIM3*1+XX0] -= tx;
483 f[j_coord_offset+DIM3*1+YY1] -= ty;
484 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
485
486 /**************************
487 * CALCULATE INTERACTIONS *
488 **************************/
489
490 /* REACTION-FIELD ELECTROSTATICS */
491 velec = qq22*(rinv22+krf*rsq22-crf);
492 felec = qq22*(rinv22*rinvsq22-krf2);
493
494 /* Update potential sums from outer loop */
495 velecsum += velec;
496
497 fscal = felec;
498
499 /* Calculate temporary vectorial force */
500 tx = fscal*dx22;
501 ty = fscal*dy22;
502 tz = fscal*dz22;
503
504 /* Update vectorial force */
505 fix2 += tx;
506 fiy2 += ty;
507 fiz2 += tz;
508 f[j_coord_offset+DIM3*2+XX0] -= tx;
509 f[j_coord_offset+DIM3*2+YY1] -= ty;
510 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
511
512 /* Inner loop uses 318 flops */
513 }
514 /* End of innermost loop */
515
516 tx = ty = tz = 0;
517 f[i_coord_offset+DIM3*0+XX0] += fix0;
518 f[i_coord_offset+DIM3*0+YY1] += fiy0;
519 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
520 tx += fix0;
521 ty += fiy0;
522 tz += fiz0;
523 f[i_coord_offset+DIM3*1+XX0] += fix1;
524 f[i_coord_offset+DIM3*1+YY1] += fiy1;
525 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
526 tx += fix1;
527 ty += fiy1;
528 tz += fiz1;
529 f[i_coord_offset+DIM3*2+XX0] += fix2;
530 f[i_coord_offset+DIM3*2+YY1] += fiy2;
531 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
532 tx += fix2;
533 ty += fiy2;
534 tz += fiz2;
535 fshift[i_shift_offset+XX0] += tx;
536 fshift[i_shift_offset+YY1] += ty;
537 fshift[i_shift_offset+ZZ2] += tz;
538
539 ggid = gid[iidx];
540 /* Update potential energies */
541 kernel_data->energygrp_elec[ggid] += velecsum;
542 kernel_data->energygrp_vdw[ggid] += vvdwsum;
543
544 /* Increment number of inner iterations */
545 inneriter += j_index_end - j_index_start;
546
547 /* Outer loop uses 32 flops */
548 }
549
550 /* Increment number of outer iterations */
551 outeriter += nri;
552
553 /* Update outer/inner flops */
554
555 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*32 + inneriter*318)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_VF] += outeriter*32 +
inneriter*318
;
556}
557/*
558 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwBham_GeomW3W3_F_c
559 * Electrostatics interaction: ReactionField
560 * VdW interaction: Buckingham
561 * Geometry: Water3-Water3
562 * Calculate force/pot: Force
563 */
564void
565nb_kernel_ElecRF_VdwBham_GeomW3W3_F_c
566 (t_nblist * gmx_restrict__restrict nlist,
567 rvec * gmx_restrict__restrict xx,
568 rvec * gmx_restrict__restrict ff,
569 t_forcerec * gmx_restrict__restrict fr,
570 t_mdatoms * gmx_restrict__restrict mdatoms,
571 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
572 t_nrnb * gmx_restrict__restrict nrnb)
573{
574 int i_shift_offset,i_coord_offset,j_coord_offset;
575 int j_index_start,j_index_end;
576 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
577 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
578 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
579 real *shiftvec,*fshift,*x,*f;
580 int vdwioffset0;
581 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
582 int vdwioffset1;
583 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
584 int vdwioffset2;
585 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
586 int vdwjidx0;
587 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
588 int vdwjidx1;
589 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
590 int vdwjidx2;
591 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
592 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
593 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
594 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
595 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
596 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
597 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
598 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
599 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
600 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
601 real velec,felec,velecsum,facel,crf,krf,krf2;
602 real *charge;
603 int nvdwtype;
604 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
605 int *vdwtype;
606 real *vdwparam;
607
608 x = xx[0];
609 f = ff[0];
610
611 nri = nlist->nri;
612 iinr = nlist->iinr;
613 jindex = nlist->jindex;
614 jjnr = nlist->jjnr;
615 shiftidx = nlist->shift;
616 gid = nlist->gid;
Value stored to 'gid' is never read
617 shiftvec = fr->shift_vec[0];
618 fshift = fr->fshift[0];
619 facel = fr->epsfac;
620 charge = mdatoms->chargeA;
621 krf = fr->ic->k_rf;
622 krf2 = krf*2.0;
623 crf = fr->ic->c_rf;
624 nvdwtype = fr->ntype;
625 vdwparam = fr->nbfp;
626 vdwtype = mdatoms->typeA;
627
628 /* Setup water-specific parameters */
629 inr = nlist->iinr[0];
630 iq0 = facel*charge[inr+0];
631 iq1 = facel*charge[inr+1];
632 iq2 = facel*charge[inr+2];
633 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
634
635 jq0 = charge[inr+0];
636 jq1 = charge[inr+1];
637 jq2 = charge[inr+2];
638 vdwjidx0 = 3*vdwtype[inr+0];
639 qq00 = iq0*jq0;
640 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
641 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
642 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
643 qq01 = iq0*jq1;
644 qq02 = iq0*jq2;
645 qq10 = iq1*jq0;
646 qq11 = iq1*jq1;
647 qq12 = iq1*jq2;
648 qq20 = iq2*jq0;
649 qq21 = iq2*jq1;
650 qq22 = iq2*jq2;
651
652 outeriter = 0;
653 inneriter = 0;
654
655 /* Start outer loop over neighborlists */
656 for(iidx=0; iidx<nri; iidx++)
657 {
658 /* Load shift vector for this list */
659 i_shift_offset = DIM3*shiftidx[iidx];
660 shX = shiftvec[i_shift_offset+XX0];
661 shY = shiftvec[i_shift_offset+YY1];
662 shZ = shiftvec[i_shift_offset+ZZ2];
663
664 /* Load limits for loop over neighbors */
665 j_index_start = jindex[iidx];
666 j_index_end = jindex[iidx+1];
667
668 /* Get outer coordinate index */
669 inr = iinr[iidx];
670 i_coord_offset = DIM3*inr;
671
672 /* Load i particle coords and add shift vector */
673 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
674 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
675 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
676 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
677 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
678 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
679 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
680 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
681 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
682
683 fix0 = 0.0;
684 fiy0 = 0.0;
685 fiz0 = 0.0;
686 fix1 = 0.0;
687 fiy1 = 0.0;
688 fiz1 = 0.0;
689 fix2 = 0.0;
690 fiy2 = 0.0;
691 fiz2 = 0.0;
692
693 /* Start inner kernel loop */
694 for(jidx=j_index_start; jidx<j_index_end; jidx++)
695 {
696 /* Get j neighbor index, and coordinate index */
697 jnr = jjnr[jidx];
698 j_coord_offset = DIM3*jnr;
699
700 /* load j atom coordinates */
701 jx0 = x[j_coord_offset+DIM3*0+XX0];
702 jy0 = x[j_coord_offset+DIM3*0+YY1];
703 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
704 jx1 = x[j_coord_offset+DIM3*1+XX0];
705 jy1 = x[j_coord_offset+DIM3*1+YY1];
706 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
707 jx2 = x[j_coord_offset+DIM3*2+XX0];
708 jy2 = x[j_coord_offset+DIM3*2+YY1];
709 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
710
711 /* Calculate displacement vector */
712 dx00 = ix0 - jx0;
713 dy00 = iy0 - jy0;
714 dz00 = iz0 - jz0;
715 dx01 = ix0 - jx1;
716 dy01 = iy0 - jy1;
717 dz01 = iz0 - jz1;
718 dx02 = ix0 - jx2;
719 dy02 = iy0 - jy2;
720 dz02 = iz0 - jz2;
721 dx10 = ix1 - jx0;
722 dy10 = iy1 - jy0;
723 dz10 = iz1 - jz0;
724 dx11 = ix1 - jx1;
725 dy11 = iy1 - jy1;
726 dz11 = iz1 - jz1;
727 dx12 = ix1 - jx2;
728 dy12 = iy1 - jy2;
729 dz12 = iz1 - jz2;
730 dx20 = ix2 - jx0;
731 dy20 = iy2 - jy0;
732 dz20 = iz2 - jz0;
733 dx21 = ix2 - jx1;
734 dy21 = iy2 - jy1;
735 dz21 = iz2 - jz1;
736 dx22 = ix2 - jx2;
737 dy22 = iy2 - jy2;
738 dz22 = iz2 - jz2;
739
740 /* Calculate squared distance and things based on it */
741 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
742 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
743 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
744 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
745 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
746 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
747 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
748 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
749 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
750
751 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
752 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
753 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
754 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
755 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
756 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
757 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
758 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
759 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
760
761 rinvsq00 = rinv00*rinv00;
762 rinvsq01 = rinv01*rinv01;
763 rinvsq02 = rinv02*rinv02;
764 rinvsq10 = rinv10*rinv10;
765 rinvsq11 = rinv11*rinv11;
766 rinvsq12 = rinv12*rinv12;
767 rinvsq20 = rinv20*rinv20;
768 rinvsq21 = rinv21*rinv21;
769 rinvsq22 = rinv22*rinv22;
770
771 /**************************
772 * CALCULATE INTERACTIONS *
773 **************************/
774
775 r00 = rsq00*rinv00;
776
777 /* REACTION-FIELD ELECTROSTATICS */
778 felec = qq00*(rinv00*rinvsq00-krf2);
779
780 /* BUCKINGHAM DISPERSION/REPULSION */
781 rinvsix = rinvsq00*rinvsq00*rinvsq00;
782 vvdw6 = c6_00*rinvsix;
783 br = cexp2_00*r00;
784 vvdwexp = cexp1_00*exp(-br);
785 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
786
787 fscal = felec+fvdw;
788
789 /* Calculate temporary vectorial force */
790 tx = fscal*dx00;
791 ty = fscal*dy00;
792 tz = fscal*dz00;
793
794 /* Update vectorial force */
795 fix0 += tx;
796 fiy0 += ty;
797 fiz0 += tz;
798 f[j_coord_offset+DIM3*0+XX0] -= tx;
799 f[j_coord_offset+DIM3*0+YY1] -= ty;
800 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
801
802 /**************************
803 * CALCULATE INTERACTIONS *
804 **************************/
805
806 /* REACTION-FIELD ELECTROSTATICS */
807 felec = qq01*(rinv01*rinvsq01-krf2);
808
809 fscal = felec;
810
811 /* Calculate temporary vectorial force */
812 tx = fscal*dx01;
813 ty = fscal*dy01;
814 tz = fscal*dz01;
815
816 /* Update vectorial force */
817 fix0 += tx;
818 fiy0 += ty;
819 fiz0 += tz;
820 f[j_coord_offset+DIM3*1+XX0] -= tx;
821 f[j_coord_offset+DIM3*1+YY1] -= ty;
822 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
823
824 /**************************
825 * CALCULATE INTERACTIONS *
826 **************************/
827
828 /* REACTION-FIELD ELECTROSTATICS */
829 felec = qq02*(rinv02*rinvsq02-krf2);
830
831 fscal = felec;
832
833 /* Calculate temporary vectorial force */
834 tx = fscal*dx02;
835 ty = fscal*dy02;
836 tz = fscal*dz02;
837
838 /* Update vectorial force */
839 fix0 += tx;
840 fiy0 += ty;
841 fiz0 += tz;
842 f[j_coord_offset+DIM3*2+XX0] -= tx;
843 f[j_coord_offset+DIM3*2+YY1] -= ty;
844 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
845
846 /**************************
847 * CALCULATE INTERACTIONS *
848 **************************/
849
850 /* REACTION-FIELD ELECTROSTATICS */
851 felec = qq10*(rinv10*rinvsq10-krf2);
852
853 fscal = felec;
854
855 /* Calculate temporary vectorial force */
856 tx = fscal*dx10;
857 ty = fscal*dy10;
858 tz = fscal*dz10;
859
860 /* Update vectorial force */
861 fix1 += tx;
862 fiy1 += ty;
863 fiz1 += tz;
864 f[j_coord_offset+DIM3*0+XX0] -= tx;
865 f[j_coord_offset+DIM3*0+YY1] -= ty;
866 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
867
868 /**************************
869 * CALCULATE INTERACTIONS *
870 **************************/
871
872 /* REACTION-FIELD ELECTROSTATICS */
873 felec = qq11*(rinv11*rinvsq11-krf2);
874
875 fscal = felec;
876
877 /* Calculate temporary vectorial force */
878 tx = fscal*dx11;
879 ty = fscal*dy11;
880 tz = fscal*dz11;
881
882 /* Update vectorial force */
883 fix1 += tx;
884 fiy1 += ty;
885 fiz1 += tz;
886 f[j_coord_offset+DIM3*1+XX0] -= tx;
887 f[j_coord_offset+DIM3*1+YY1] -= ty;
888 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
889
890 /**************************
891 * CALCULATE INTERACTIONS *
892 **************************/
893
894 /* REACTION-FIELD ELECTROSTATICS */
895 felec = qq12*(rinv12*rinvsq12-krf2);
896
897 fscal = felec;
898
899 /* Calculate temporary vectorial force */
900 tx = fscal*dx12;
901 ty = fscal*dy12;
902 tz = fscal*dz12;
903
904 /* Update vectorial force */
905 fix1 += tx;
906 fiy1 += ty;
907 fiz1 += tz;
908 f[j_coord_offset+DIM3*2+XX0] -= tx;
909 f[j_coord_offset+DIM3*2+YY1] -= ty;
910 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
911
912 /**************************
913 * CALCULATE INTERACTIONS *
914 **************************/
915
916 /* REACTION-FIELD ELECTROSTATICS */
917 felec = qq20*(rinv20*rinvsq20-krf2);
918
919 fscal = felec;
920
921 /* Calculate temporary vectorial force */
922 tx = fscal*dx20;
923 ty = fscal*dy20;
924 tz = fscal*dz20;
925
926 /* Update vectorial force */
927 fix2 += tx;
928 fiy2 += ty;
929 fiz2 += tz;
930 f[j_coord_offset+DIM3*0+XX0] -= tx;
931 f[j_coord_offset+DIM3*0+YY1] -= ty;
932 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
933
934 /**************************
935 * CALCULATE INTERACTIONS *
936 **************************/
937
938 /* REACTION-FIELD ELECTROSTATICS */
939 felec = qq21*(rinv21*rinvsq21-krf2);
940
941 fscal = felec;
942
943 /* Calculate temporary vectorial force */
944 tx = fscal*dx21;
945 ty = fscal*dy21;
946 tz = fscal*dz21;
947
948 /* Update vectorial force */
949 fix2 += tx;
950 fiy2 += ty;
951 fiz2 += tz;
952 f[j_coord_offset+DIM3*1+XX0] -= tx;
953 f[j_coord_offset+DIM3*1+YY1] -= ty;
954 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
955
956 /**************************
957 * CALCULATE INTERACTIONS *
958 **************************/
959
960 /* REACTION-FIELD ELECTROSTATICS */
961 felec = qq22*(rinv22*rinvsq22-krf2);
962
963 fscal = felec;
964
965 /* Calculate temporary vectorial force */
966 tx = fscal*dx22;
967 ty = fscal*dy22;
968 tz = fscal*dz22;
969
970 /* Update vectorial force */
971 fix2 += tx;
972 fiy2 += ty;
973 fiz2 += tz;
974 f[j_coord_offset+DIM3*2+XX0] -= tx;
975 f[j_coord_offset+DIM3*2+YY1] -= ty;
976 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
977
978 /* Inner loop uses 270 flops */
979 }
980 /* End of innermost loop */
981
982 tx = ty = tz = 0;
983 f[i_coord_offset+DIM3*0+XX0] += fix0;
984 f[i_coord_offset+DIM3*0+YY1] += fiy0;
985 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
986 tx += fix0;
987 ty += fiy0;
988 tz += fiz0;
989 f[i_coord_offset+DIM3*1+XX0] += fix1;
990 f[i_coord_offset+DIM3*1+YY1] += fiy1;
991 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
992 tx += fix1;
993 ty += fiy1;
994 tz += fiz1;
995 f[i_coord_offset+DIM3*2+XX0] += fix2;
996 f[i_coord_offset+DIM3*2+YY1] += fiy2;
997 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
998 tx += fix2;
999 ty += fiy2;
1000 tz += fiz2;
1001 fshift[i_shift_offset+XX0] += tx;
1002 fshift[i_shift_offset+YY1] += ty;
1003 fshift[i_shift_offset+ZZ2] += tz;
1004
1005 /* Increment number of inner iterations */
1006 inneriter += j_index_end - j_index_start;
1007
1008 /* Outer loop uses 30 flops */
1009 }
1010
1011 /* Increment number of outer iterations */
1012 outeriter += nri;
1013
1014 /* Update outer/inner flops */
1015
1016 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*30 + inneriter*270)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_F] += outeriter*30 + inneriter
*270
;
1017}