Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecRF_VdwCSTab_GeomP1P1_c.c
Location:line 318, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_c
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: CubicSplineTable
53 * Geometry: Particle-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecRF_VdwCSTab_GeomP1P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwjidx0;
75 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77 real velec,felec,velecsum,facel,crf,krf,krf2;
78 real *charge;
79 int nvdwtype;
80 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
81 int *vdwtype;
82 real *vdwparam;
83 int vfitab;
84 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
85 real *vftab;
86
87 x = xx[0];
88 f = ff[0];
89
90 nri = nlist->nri;
91 iinr = nlist->iinr;
92 jindex = nlist->jindex;
93 jjnr = nlist->jjnr;
94 shiftidx = nlist->shift;
95 gid = nlist->gid;
96 shiftvec = fr->shift_vec[0];
97 fshift = fr->fshift[0];
98 facel = fr->epsfac;
99 charge = mdatoms->chargeA;
100 krf = fr->ic->k_rf;
101 krf2 = krf*2.0;
102 crf = fr->ic->c_rf;
103 nvdwtype = fr->ntype;
104 vdwparam = fr->nbfp;
105 vdwtype = mdatoms->typeA;
106
107 vftab = kernel_data->table_vdw->data;
108 vftabscale = kernel_data->table_vdw->scale;
109
110 outeriter = 0;
111 inneriter = 0;
112
113 /* Start outer loop over neighborlists */
114 for(iidx=0; iidx<nri; iidx++)
115 {
116 /* Load shift vector for this list */
117 i_shift_offset = DIM3*shiftidx[iidx];
118 shX = shiftvec[i_shift_offset+XX0];
119 shY = shiftvec[i_shift_offset+YY1];
120 shZ = shiftvec[i_shift_offset+ZZ2];
121
122 /* Load limits for loop over neighbors */
123 j_index_start = jindex[iidx];
124 j_index_end = jindex[iidx+1];
125
126 /* Get outer coordinate index */
127 inr = iinr[iidx];
128 i_coord_offset = DIM3*inr;
129
130 /* Load i particle coords and add shift vector */
131 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
132 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
133 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
134
135 fix0 = 0.0;
136 fiy0 = 0.0;
137 fiz0 = 0.0;
138
139 /* Load parameters for i particles */
140 iq0 = facel*charge[inr+0];
141 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
142
143 /* Reset potential sums */
144 velecsum = 0.0;
145 vvdwsum = 0.0;
146
147 /* Start inner kernel loop */
148 for(jidx=j_index_start; jidx<j_index_end; jidx++)
149 {
150 /* Get j neighbor index, and coordinate index */
151 jnr = jjnr[jidx];
152 j_coord_offset = DIM3*jnr;
153
154 /* load j atom coordinates */
155 jx0 = x[j_coord_offset+DIM3*0+XX0];
156 jy0 = x[j_coord_offset+DIM3*0+YY1];
157 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
158
159 /* Calculate displacement vector */
160 dx00 = ix0 - jx0;
161 dy00 = iy0 - jy0;
162 dz00 = iz0 - jz0;
163
164 /* Calculate squared distance and things based on it */
165 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
166
167 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
168
169 rinvsq00 = rinv00*rinv00;
170
171 /* Load parameters for j particles */
172 jq0 = charge[jnr+0];
173 vdwjidx0 = 2*vdwtype[jnr+0];
174
175 /**************************
176 * CALCULATE INTERACTIONS *
177 **************************/
178
179 r00 = rsq00*rinv00;
180
181 qq00 = iq0*jq0;
182 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
183 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
184
185 /* Calculate table index by multiplying r with table scale and truncate to integer */
186 rt = r00*vftabscale;
187 vfitab = rt;
188 vfeps = rt-vfitab;
189 vfitab = 2*4*vfitab;
190
191 /* REACTION-FIELD ELECTROSTATICS */
192 velec = qq00*(rinv00+krf*rsq00-crf);
193 felec = qq00*(rinv00*rinvsq00-krf2);
194
195 /* CUBIC SPLINE TABLE DISPERSION */
196 vfitab += 0;
197 Y = vftab[vfitab];
198 F = vftab[vfitab+1];
199 Geps = vfeps*vftab[vfitab+2];
200 Heps2 = vfeps*vfeps*vftab[vfitab+3];
201 Fp = F+Geps+Heps2;
202 VV = Y+vfeps*Fp;
203 vvdw6 = c6_00*VV;
204 FF = Fp+Geps+2.0*Heps2;
205 fvdw6 = c6_00*FF;
206
207 /* CUBIC SPLINE TABLE REPULSION */
208 Y = vftab[vfitab+4];
209 F = vftab[vfitab+5];
210 Geps = vfeps*vftab[vfitab+6];
211 Heps2 = vfeps*vfeps*vftab[vfitab+7];
212 Fp = F+Geps+Heps2;
213 VV = Y+vfeps*Fp;
214 vvdw12 = c12_00*VV;
215 FF = Fp+Geps+2.0*Heps2;
216 fvdw12 = c12_00*FF;
217 vvdw = vvdw12+vvdw6;
218 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
219
220 /* Update potential sums from outer loop */
221 velecsum += velec;
222 vvdwsum += vvdw;
223
224 fscal = felec+fvdw;
225
226 /* Calculate temporary vectorial force */
227 tx = fscal*dx00;
228 ty = fscal*dy00;
229 tz = fscal*dz00;
230
231 /* Update vectorial force */
232 fix0 += tx;
233 fiy0 += ty;
234 fiz0 += tz;
235 f[j_coord_offset+DIM3*0+XX0] -= tx;
236 f[j_coord_offset+DIM3*0+YY1] -= ty;
237 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
238
239 /* Inner loop uses 66 flops */
240 }
241 /* End of innermost loop */
242
243 tx = ty = tz = 0;
244 f[i_coord_offset+DIM3*0+XX0] += fix0;
245 f[i_coord_offset+DIM3*0+YY1] += fiy0;
246 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
247 tx += fix0;
248 ty += fiy0;
249 tz += fiz0;
250 fshift[i_shift_offset+XX0] += tx;
251 fshift[i_shift_offset+YY1] += ty;
252 fshift[i_shift_offset+ZZ2] += tz;
253
254 ggid = gid[iidx];
255 /* Update potential energies */
256 kernel_data->energygrp_elec[ggid] += velecsum;
257 kernel_data->energygrp_vdw[ggid] += vvdwsum;
258
259 /* Increment number of inner iterations */
260 inneriter += j_index_end - j_index_start;
261
262 /* Outer loop uses 15 flops */
263 }
264
265 /* Increment number of outer iterations */
266 outeriter += nri;
267
268 /* Update outer/inner flops */
269
270 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*66)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_VF] += outeriter*15 + inneriter
*66
;
271}
272/*
273 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_c
274 * Electrostatics interaction: ReactionField
275 * VdW interaction: CubicSplineTable
276 * Geometry: Particle-Particle
277 * Calculate force/pot: Force
278 */
279void
280nb_kernel_ElecRF_VdwCSTab_GeomP1P1_F_c
281 (t_nblist * gmx_restrict__restrict nlist,
282 rvec * gmx_restrict__restrict xx,
283 rvec * gmx_restrict__restrict ff,
284 t_forcerec * gmx_restrict__restrict fr,
285 t_mdatoms * gmx_restrict__restrict mdatoms,
286 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
287 t_nrnb * gmx_restrict__restrict nrnb)
288{
289 int i_shift_offset,i_coord_offset,j_coord_offset;
290 int j_index_start,j_index_end;
291 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
292 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
293 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
294 real *shiftvec,*fshift,*x,*f;
295 int vdwioffset0;
296 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
297 int vdwjidx0;
298 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
299 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
300 real velec,felec,velecsum,facel,crf,krf,krf2;
301 real *charge;
302 int nvdwtype;
303 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
304 int *vdwtype;
305 real *vdwparam;
306 int vfitab;
307 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
308 real *vftab;
309
310 x = xx[0];
311 f = ff[0];
312
313 nri = nlist->nri;
314 iinr = nlist->iinr;
315 jindex = nlist->jindex;
316 jjnr = nlist->jjnr;
317 shiftidx = nlist->shift;
318 gid = nlist->gid;
Value stored to 'gid' is never read
319 shiftvec = fr->shift_vec[0];
320 fshift = fr->fshift[0];
321 facel = fr->epsfac;
322 charge = mdatoms->chargeA;
323 krf = fr->ic->k_rf;
324 krf2 = krf*2.0;
325 crf = fr->ic->c_rf;
326 nvdwtype = fr->ntype;
327 vdwparam = fr->nbfp;
328 vdwtype = mdatoms->typeA;
329
330 vftab = kernel_data->table_vdw->data;
331 vftabscale = kernel_data->table_vdw->scale;
332
333 outeriter = 0;
334 inneriter = 0;
335
336 /* Start outer loop over neighborlists */
337 for(iidx=0; iidx<nri; iidx++)
338 {
339 /* Load shift vector for this list */
340 i_shift_offset = DIM3*shiftidx[iidx];
341 shX = shiftvec[i_shift_offset+XX0];
342 shY = shiftvec[i_shift_offset+YY1];
343 shZ = shiftvec[i_shift_offset+ZZ2];
344
345 /* Load limits for loop over neighbors */
346 j_index_start = jindex[iidx];
347 j_index_end = jindex[iidx+1];
348
349 /* Get outer coordinate index */
350 inr = iinr[iidx];
351 i_coord_offset = DIM3*inr;
352
353 /* Load i particle coords and add shift vector */
354 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
355 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
356 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
357
358 fix0 = 0.0;
359 fiy0 = 0.0;
360 fiz0 = 0.0;
361
362 /* Load parameters for i particles */
363 iq0 = facel*charge[inr+0];
364 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
365
366 /* Start inner kernel loop */
367 for(jidx=j_index_start; jidx<j_index_end; jidx++)
368 {
369 /* Get j neighbor index, and coordinate index */
370 jnr = jjnr[jidx];
371 j_coord_offset = DIM3*jnr;
372
373 /* load j atom coordinates */
374 jx0 = x[j_coord_offset+DIM3*0+XX0];
375 jy0 = x[j_coord_offset+DIM3*0+YY1];
376 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
377
378 /* Calculate displacement vector */
379 dx00 = ix0 - jx0;
380 dy00 = iy0 - jy0;
381 dz00 = iz0 - jz0;
382
383 /* Calculate squared distance and things based on it */
384 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
385
386 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
387
388 rinvsq00 = rinv00*rinv00;
389
390 /* Load parameters for j particles */
391 jq0 = charge[jnr+0];
392 vdwjidx0 = 2*vdwtype[jnr+0];
393
394 /**************************
395 * CALCULATE INTERACTIONS *
396 **************************/
397
398 r00 = rsq00*rinv00;
399
400 qq00 = iq0*jq0;
401 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
402 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
403
404 /* Calculate table index by multiplying r with table scale and truncate to integer */
405 rt = r00*vftabscale;
406 vfitab = rt;
407 vfeps = rt-vfitab;
408 vfitab = 2*4*vfitab;
409
410 /* REACTION-FIELD ELECTROSTATICS */
411 felec = qq00*(rinv00*rinvsq00-krf2);
412
413 /* CUBIC SPLINE TABLE DISPERSION */
414 vfitab += 0;
415 F = vftab[vfitab+1];
416 Geps = vfeps*vftab[vfitab+2];
417 Heps2 = vfeps*vfeps*vftab[vfitab+3];
418 Fp = F+Geps+Heps2;
419 FF = Fp+Geps+2.0*Heps2;
420 fvdw6 = c6_00*FF;
421
422 /* CUBIC SPLINE TABLE REPULSION */
423 F = vftab[vfitab+5];
424 Geps = vfeps*vftab[vfitab+6];
425 Heps2 = vfeps*vfeps*vftab[vfitab+7];
426 Fp = F+Geps+Heps2;
427 FF = Fp+Geps+2.0*Heps2;
428 fvdw12 = c12_00*FF;
429 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
430
431 fscal = felec+fvdw;
432
433 /* Calculate temporary vectorial force */
434 tx = fscal*dx00;
435 ty = fscal*dy00;
436 tz = fscal*dz00;
437
438 /* Update vectorial force */
439 fix0 += tx;
440 fiy0 += ty;
441 fiz0 += tz;
442 f[j_coord_offset+DIM3*0+XX0] -= tx;
443 f[j_coord_offset+DIM3*0+YY1] -= ty;
444 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
445
446 /* Inner loop uses 53 flops */
447 }
448 /* End of innermost loop */
449
450 tx = ty = tz = 0;
451 f[i_coord_offset+DIM3*0+XX0] += fix0;
452 f[i_coord_offset+DIM3*0+YY1] += fiy0;
453 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
454 tx += fix0;
455 ty += fiy0;
456 tz += fiz0;
457 fshift[i_shift_offset+XX0] += tx;
458 fshift[i_shift_offset+YY1] += ty;
459 fshift[i_shift_offset+ZZ2] += tz;
460
461 /* Increment number of inner iterations */
462 inneriter += j_index_end - j_index_start;
463
464 /* Outer loop uses 13 flops */
465 }
466
467 /* Increment number of outer iterations */
468 outeriter += nri;
469
470 /* Update outer/inner flops */
471
472 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*53)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_F] += outeriter*13 + inneriter
*53
;
473}