Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecRF_VdwCSTab_GeomW3P1_c.c
Location:line 432, column 5
Description:Value stored to 'crf' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_c
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: CubicSplineTable
53 * Geometry: Water3-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecRF_VdwCSTab_GeomW3P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83 real velec,felec,velecsum,facel,crf,krf,krf2;
84 real *charge;
85 int nvdwtype;
86 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
87 int *vdwtype;
88 real *vdwparam;
89 int vfitab;
90 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
91 real *vftab;
92
93 x = xx[0];
94 f = ff[0];
95
96 nri = nlist->nri;
97 iinr = nlist->iinr;
98 jindex = nlist->jindex;
99 jjnr = nlist->jjnr;
100 shiftidx = nlist->shift;
101 gid = nlist->gid;
102 shiftvec = fr->shift_vec[0];
103 fshift = fr->fshift[0];
104 facel = fr->epsfac;
105 charge = mdatoms->chargeA;
106 krf = fr->ic->k_rf;
107 krf2 = krf*2.0;
108 crf = fr->ic->c_rf;
109 nvdwtype = fr->ntype;
110 vdwparam = fr->nbfp;
111 vdwtype = mdatoms->typeA;
112
113 vftab = kernel_data->table_vdw->data;
114 vftabscale = kernel_data->table_vdw->scale;
115
116 /* Setup water-specific parameters */
117 inr = nlist->iinr[0];
118 iq0 = facel*charge[inr+0];
119 iq1 = facel*charge[inr+1];
120 iq2 = facel*charge[inr+2];
121 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
122
123 outeriter = 0;
124 inneriter = 0;
125
126 /* Start outer loop over neighborlists */
127 for(iidx=0; iidx<nri; iidx++)
128 {
129 /* Load shift vector for this list */
130 i_shift_offset = DIM3*shiftidx[iidx];
131 shX = shiftvec[i_shift_offset+XX0];
132 shY = shiftvec[i_shift_offset+YY1];
133 shZ = shiftvec[i_shift_offset+ZZ2];
134
135 /* Load limits for loop over neighbors */
136 j_index_start = jindex[iidx];
137 j_index_end = jindex[iidx+1];
138
139 /* Get outer coordinate index */
140 inr = iinr[iidx];
141 i_coord_offset = DIM3*inr;
142
143 /* Load i particle coords and add shift vector */
144 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
145 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
146 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
147 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
148 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
149 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
150 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
151 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
152 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
153
154 fix0 = 0.0;
155 fiy0 = 0.0;
156 fiz0 = 0.0;
157 fix1 = 0.0;
158 fiy1 = 0.0;
159 fiz1 = 0.0;
160 fix2 = 0.0;
161 fiy2 = 0.0;
162 fiz2 = 0.0;
163
164 /* Reset potential sums */
165 velecsum = 0.0;
166 vvdwsum = 0.0;
167
168 /* Start inner kernel loop */
169 for(jidx=j_index_start; jidx<j_index_end; jidx++)
170 {
171 /* Get j neighbor index, and coordinate index */
172 jnr = jjnr[jidx];
173 j_coord_offset = DIM3*jnr;
174
175 /* load j atom coordinates */
176 jx0 = x[j_coord_offset+DIM3*0+XX0];
177 jy0 = x[j_coord_offset+DIM3*0+YY1];
178 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
179
180 /* Calculate displacement vector */
181 dx00 = ix0 - jx0;
182 dy00 = iy0 - jy0;
183 dz00 = iz0 - jz0;
184 dx10 = ix1 - jx0;
185 dy10 = iy1 - jy0;
186 dz10 = iz1 - jz0;
187 dx20 = ix2 - jx0;
188 dy20 = iy2 - jy0;
189 dz20 = iz2 - jz0;
190
191 /* Calculate squared distance and things based on it */
192 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
193 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
194 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
195
196 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
197 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
198 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
199
200 rinvsq00 = rinv00*rinv00;
201 rinvsq10 = rinv10*rinv10;
202 rinvsq20 = rinv20*rinv20;
203
204 /* Load parameters for j particles */
205 jq0 = charge[jnr+0];
206 vdwjidx0 = 2*vdwtype[jnr+0];
207
208 /**************************
209 * CALCULATE INTERACTIONS *
210 **************************/
211
212 r00 = rsq00*rinv00;
213
214 qq00 = iq0*jq0;
215 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
216 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
217
218 /* Calculate table index by multiplying r with table scale and truncate to integer */
219 rt = r00*vftabscale;
220 vfitab = rt;
221 vfeps = rt-vfitab;
222 vfitab = 2*4*vfitab;
223
224 /* REACTION-FIELD ELECTROSTATICS */
225 velec = qq00*(rinv00+krf*rsq00-crf);
226 felec = qq00*(rinv00*rinvsq00-krf2);
227
228 /* CUBIC SPLINE TABLE DISPERSION */
229 vfitab += 0;
230 Y = vftab[vfitab];
231 F = vftab[vfitab+1];
232 Geps = vfeps*vftab[vfitab+2];
233 Heps2 = vfeps*vfeps*vftab[vfitab+3];
234 Fp = F+Geps+Heps2;
235 VV = Y+vfeps*Fp;
236 vvdw6 = c6_00*VV;
237 FF = Fp+Geps+2.0*Heps2;
238 fvdw6 = c6_00*FF;
239
240 /* CUBIC SPLINE TABLE REPULSION */
241 Y = vftab[vfitab+4];
242 F = vftab[vfitab+5];
243 Geps = vfeps*vftab[vfitab+6];
244 Heps2 = vfeps*vfeps*vftab[vfitab+7];
245 Fp = F+Geps+Heps2;
246 VV = Y+vfeps*Fp;
247 vvdw12 = c12_00*VV;
248 FF = Fp+Geps+2.0*Heps2;
249 fvdw12 = c12_00*FF;
250 vvdw = vvdw12+vvdw6;
251 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
252
253 /* Update potential sums from outer loop */
254 velecsum += velec;
255 vvdwsum += vvdw;
256
257 fscal = felec+fvdw;
258
259 /* Calculate temporary vectorial force */
260 tx = fscal*dx00;
261 ty = fscal*dy00;
262 tz = fscal*dz00;
263
264 /* Update vectorial force */
265 fix0 += tx;
266 fiy0 += ty;
267 fiz0 += tz;
268 f[j_coord_offset+DIM3*0+XX0] -= tx;
269 f[j_coord_offset+DIM3*0+YY1] -= ty;
270 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
271
272 /**************************
273 * CALCULATE INTERACTIONS *
274 **************************/
275
276 qq10 = iq1*jq0;
277
278 /* REACTION-FIELD ELECTROSTATICS */
279 velec = qq10*(rinv10+krf*rsq10-crf);
280 felec = qq10*(rinv10*rinvsq10-krf2);
281
282 /* Update potential sums from outer loop */
283 velecsum += velec;
284
285 fscal = felec;
286
287 /* Calculate temporary vectorial force */
288 tx = fscal*dx10;
289 ty = fscal*dy10;
290 tz = fscal*dz10;
291
292 /* Update vectorial force */
293 fix1 += tx;
294 fiy1 += ty;
295 fiz1 += tz;
296 f[j_coord_offset+DIM3*0+XX0] -= tx;
297 f[j_coord_offset+DIM3*0+YY1] -= ty;
298 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
299
300 /**************************
301 * CALCULATE INTERACTIONS *
302 **************************/
303
304 qq20 = iq2*jq0;
305
306 /* REACTION-FIELD ELECTROSTATICS */
307 velec = qq20*(rinv20+krf*rsq20-crf);
308 felec = qq20*(rinv20*rinvsq20-krf2);
309
310 /* Update potential sums from outer loop */
311 velecsum += velec;
312
313 fscal = felec;
314
315 /* Calculate temporary vectorial force */
316 tx = fscal*dx20;
317 ty = fscal*dy20;
318 tz = fscal*dz20;
319
320 /* Update vectorial force */
321 fix2 += tx;
322 fiy2 += ty;
323 fiz2 += tz;
324 f[j_coord_offset+DIM3*0+XX0] -= tx;
325 f[j_coord_offset+DIM3*0+YY1] -= ty;
326 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
327
328 /* Inner loop uses 130 flops */
329 }
330 /* End of innermost loop */
331
332 tx = ty = tz = 0;
333 f[i_coord_offset+DIM3*0+XX0] += fix0;
334 f[i_coord_offset+DIM3*0+YY1] += fiy0;
335 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
336 tx += fix0;
337 ty += fiy0;
338 tz += fiz0;
339 f[i_coord_offset+DIM3*1+XX0] += fix1;
340 f[i_coord_offset+DIM3*1+YY1] += fiy1;
341 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
342 tx += fix1;
343 ty += fiy1;
344 tz += fiz1;
345 f[i_coord_offset+DIM3*2+XX0] += fix2;
346 f[i_coord_offset+DIM3*2+YY1] += fiy2;
347 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
348 tx += fix2;
349 ty += fiy2;
350 tz += fiz2;
351 fshift[i_shift_offset+XX0] += tx;
352 fshift[i_shift_offset+YY1] += ty;
353 fshift[i_shift_offset+ZZ2] += tz;
354
355 ggid = gid[iidx];
356 /* Update potential energies */
357 kernel_data->energygrp_elec[ggid] += velecsum;
358 kernel_data->energygrp_vdw[ggid] += vvdwsum;
359
360 /* Increment number of inner iterations */
361 inneriter += j_index_end - j_index_start;
362
363 /* Outer loop uses 32 flops */
364 }
365
366 /* Increment number of outer iterations */
367 outeriter += nri;
368
369 /* Update outer/inner flops */
370
371 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*130)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_VF] += outeriter*32 + inneriter
*130
;
372}
373/*
374 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_c
375 * Electrostatics interaction: ReactionField
376 * VdW interaction: CubicSplineTable
377 * Geometry: Water3-Particle
378 * Calculate force/pot: Force
379 */
380void
381nb_kernel_ElecRF_VdwCSTab_GeomW3P1_F_c
382 (t_nblist * gmx_restrict__restrict nlist,
383 rvec * gmx_restrict__restrict xx,
384 rvec * gmx_restrict__restrict ff,
385 t_forcerec * gmx_restrict__restrict fr,
386 t_mdatoms * gmx_restrict__restrict mdatoms,
387 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
388 t_nrnb * gmx_restrict__restrict nrnb)
389{
390 int i_shift_offset,i_coord_offset,j_coord_offset;
391 int j_index_start,j_index_end;
392 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
393 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
394 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
395 real *shiftvec,*fshift,*x,*f;
396 int vdwioffset0;
397 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
398 int vdwioffset1;
399 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
400 int vdwioffset2;
401 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
402 int vdwjidx0;
403 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
404 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
405 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
406 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
407 real velec,felec,velecsum,facel,crf,krf,krf2;
408 real *charge;
409 int nvdwtype;
410 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
411 int *vdwtype;
412 real *vdwparam;
413 int vfitab;
414 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
415 real *vftab;
416
417 x = xx[0];
418 f = ff[0];
419
420 nri = nlist->nri;
421 iinr = nlist->iinr;
422 jindex = nlist->jindex;
423 jjnr = nlist->jjnr;
424 shiftidx = nlist->shift;
425 gid = nlist->gid;
426 shiftvec = fr->shift_vec[0];
427 fshift = fr->fshift[0];
428 facel = fr->epsfac;
429 charge = mdatoms->chargeA;
430 krf = fr->ic->k_rf;
431 krf2 = krf*2.0;
432 crf = fr->ic->c_rf;
Value stored to 'crf' is never read
433 nvdwtype = fr->ntype;
434 vdwparam = fr->nbfp;
435 vdwtype = mdatoms->typeA;
436
437 vftab = kernel_data->table_vdw->data;
438 vftabscale = kernel_data->table_vdw->scale;
439
440 /* Setup water-specific parameters */
441 inr = nlist->iinr[0];
442 iq0 = facel*charge[inr+0];
443 iq1 = facel*charge[inr+1];
444 iq2 = facel*charge[inr+2];
445 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
446
447 outeriter = 0;
448 inneriter = 0;
449
450 /* Start outer loop over neighborlists */
451 for(iidx=0; iidx<nri; iidx++)
452 {
453 /* Load shift vector for this list */
454 i_shift_offset = DIM3*shiftidx[iidx];
455 shX = shiftvec[i_shift_offset+XX0];
456 shY = shiftvec[i_shift_offset+YY1];
457 shZ = shiftvec[i_shift_offset+ZZ2];
458
459 /* Load limits for loop over neighbors */
460 j_index_start = jindex[iidx];
461 j_index_end = jindex[iidx+1];
462
463 /* Get outer coordinate index */
464 inr = iinr[iidx];
465 i_coord_offset = DIM3*inr;
466
467 /* Load i particle coords and add shift vector */
468 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
469 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
470 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
471 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
472 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
473 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
474 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
475 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
476 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
477
478 fix0 = 0.0;
479 fiy0 = 0.0;
480 fiz0 = 0.0;
481 fix1 = 0.0;
482 fiy1 = 0.0;
483 fiz1 = 0.0;
484 fix2 = 0.0;
485 fiy2 = 0.0;
486 fiz2 = 0.0;
487
488 /* Start inner kernel loop */
489 for(jidx=j_index_start; jidx<j_index_end; jidx++)
490 {
491 /* Get j neighbor index, and coordinate index */
492 jnr = jjnr[jidx];
493 j_coord_offset = DIM3*jnr;
494
495 /* load j atom coordinates */
496 jx0 = x[j_coord_offset+DIM3*0+XX0];
497 jy0 = x[j_coord_offset+DIM3*0+YY1];
498 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
499
500 /* Calculate displacement vector */
501 dx00 = ix0 - jx0;
502 dy00 = iy0 - jy0;
503 dz00 = iz0 - jz0;
504 dx10 = ix1 - jx0;
505 dy10 = iy1 - jy0;
506 dz10 = iz1 - jz0;
507 dx20 = ix2 - jx0;
508 dy20 = iy2 - jy0;
509 dz20 = iz2 - jz0;
510
511 /* Calculate squared distance and things based on it */
512 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
513 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
514 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
515
516 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
517 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
518 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
519
520 rinvsq00 = rinv00*rinv00;
521 rinvsq10 = rinv10*rinv10;
522 rinvsq20 = rinv20*rinv20;
523
524 /* Load parameters for j particles */
525 jq0 = charge[jnr+0];
526 vdwjidx0 = 2*vdwtype[jnr+0];
527
528 /**************************
529 * CALCULATE INTERACTIONS *
530 **************************/
531
532 r00 = rsq00*rinv00;
533
534 qq00 = iq0*jq0;
535 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
536 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
537
538 /* Calculate table index by multiplying r with table scale and truncate to integer */
539 rt = r00*vftabscale;
540 vfitab = rt;
541 vfeps = rt-vfitab;
542 vfitab = 2*4*vfitab;
543
544 /* REACTION-FIELD ELECTROSTATICS */
545 felec = qq00*(rinv00*rinvsq00-krf2);
546
547 /* CUBIC SPLINE TABLE DISPERSION */
548 vfitab += 0;
549 F = vftab[vfitab+1];
550 Geps = vfeps*vftab[vfitab+2];
551 Heps2 = vfeps*vfeps*vftab[vfitab+3];
552 Fp = F+Geps+Heps2;
553 FF = Fp+Geps+2.0*Heps2;
554 fvdw6 = c6_00*FF;
555
556 /* CUBIC SPLINE TABLE REPULSION */
557 F = vftab[vfitab+5];
558 Geps = vfeps*vftab[vfitab+6];
559 Heps2 = vfeps*vfeps*vftab[vfitab+7];
560 Fp = F+Geps+Heps2;
561 FF = Fp+Geps+2.0*Heps2;
562 fvdw12 = c12_00*FF;
563 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
564
565 fscal = felec+fvdw;
566
567 /* Calculate temporary vectorial force */
568 tx = fscal*dx00;
569 ty = fscal*dy00;
570 tz = fscal*dz00;
571
572 /* Update vectorial force */
573 fix0 += tx;
574 fiy0 += ty;
575 fiz0 += tz;
576 f[j_coord_offset+DIM3*0+XX0] -= tx;
577 f[j_coord_offset+DIM3*0+YY1] -= ty;
578 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
579
580 /**************************
581 * CALCULATE INTERACTIONS *
582 **************************/
583
584 qq10 = iq1*jq0;
585
586 /* REACTION-FIELD ELECTROSTATICS */
587 felec = qq10*(rinv10*rinvsq10-krf2);
588
589 fscal = felec;
590
591 /* Calculate temporary vectorial force */
592 tx = fscal*dx10;
593 ty = fscal*dy10;
594 tz = fscal*dz10;
595
596 /* Update vectorial force */
597 fix1 += tx;
598 fiy1 += ty;
599 fiz1 += tz;
600 f[j_coord_offset+DIM3*0+XX0] -= tx;
601 f[j_coord_offset+DIM3*0+YY1] -= ty;
602 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
603
604 /**************************
605 * CALCULATE INTERACTIONS *
606 **************************/
607
608 qq20 = iq2*jq0;
609
610 /* REACTION-FIELD ELECTROSTATICS */
611 felec = qq20*(rinv20*rinvsq20-krf2);
612
613 fscal = felec;
614
615 /* Calculate temporary vectorial force */
616 tx = fscal*dx20;
617 ty = fscal*dy20;
618 tz = fscal*dz20;
619
620 /* Update vectorial force */
621 fix2 += tx;
622 fiy2 += ty;
623 fiz2 += tz;
624 f[j_coord_offset+DIM3*0+XX0] -= tx;
625 f[j_coord_offset+DIM3*0+YY1] -= ty;
626 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
627
628 /* Inner loop uses 107 flops */
629 }
630 /* End of innermost loop */
631
632 tx = ty = tz = 0;
633 f[i_coord_offset+DIM3*0+XX0] += fix0;
634 f[i_coord_offset+DIM3*0+YY1] += fiy0;
635 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
636 tx += fix0;
637 ty += fiy0;
638 tz += fiz0;
639 f[i_coord_offset+DIM3*1+XX0] += fix1;
640 f[i_coord_offset+DIM3*1+YY1] += fiy1;
641 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
642 tx += fix1;
643 ty += fiy1;
644 tz += fiz1;
645 f[i_coord_offset+DIM3*2+XX0] += fix2;
646 f[i_coord_offset+DIM3*2+YY1] += fiy2;
647 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
648 tx += fix2;
649 ty += fiy2;
650 tz += fiz2;
651 fshift[i_shift_offset+XX0] += tx;
652 fshift[i_shift_offset+YY1] += ty;
653 fshift[i_shift_offset+ZZ2] += tz;
654
655 /* Increment number of inner iterations */
656 inneriter += j_index_end - j_index_start;
657
658 /* Outer loop uses 30 flops */
659 }
660
661 /* Increment number of outer iterations */
662 outeriter += nri;
663
664 /* Update outer/inner flops */
665
666 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*107)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_F] += outeriter*30 + inneriter
*107
;
667}