Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEw_VdwNone_GeomP1P1_c.c
Location:line 275, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: None
53 * Geometry: Particle-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEw_VdwNone_GeomP1P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwjidx0;
75 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77 real velec,felec,velecsum,facel,crf,krf,krf2;
78 real *charge;
79 int ewitab;
80 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
81 real *ewtab;
82
83 x = xx[0];
84 f = ff[0];
85
86 nri = nlist->nri;
87 iinr = nlist->iinr;
88 jindex = nlist->jindex;
89 jjnr = nlist->jjnr;
90 shiftidx = nlist->shift;
91 gid = nlist->gid;
92 shiftvec = fr->shift_vec[0];
93 fshift = fr->fshift[0];
94 facel = fr->epsfac;
95 charge = mdatoms->chargeA;
96
97 sh_ewald = fr->ic->sh_ewald;
98 ewtab = fr->ic->tabq_coul_FDV0;
99 ewtabscale = fr->ic->tabq_scale;
100 ewtabhalfspace = 0.5/ewtabscale;
101
102 outeriter = 0;
103 inneriter = 0;
104
105 /* Start outer loop over neighborlists */
106 for(iidx=0; iidx<nri; iidx++)
107 {
108 /* Load shift vector for this list */
109 i_shift_offset = DIM3*shiftidx[iidx];
110 shX = shiftvec[i_shift_offset+XX0];
111 shY = shiftvec[i_shift_offset+YY1];
112 shZ = shiftvec[i_shift_offset+ZZ2];
113
114 /* Load limits for loop over neighbors */
115 j_index_start = jindex[iidx];
116 j_index_end = jindex[iidx+1];
117
118 /* Get outer coordinate index */
119 inr = iinr[iidx];
120 i_coord_offset = DIM3*inr;
121
122 /* Load i particle coords and add shift vector */
123 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
124 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
125 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
126
127 fix0 = 0.0;
128 fiy0 = 0.0;
129 fiz0 = 0.0;
130
131 /* Load parameters for i particles */
132 iq0 = facel*charge[inr+0];
133
134 /* Reset potential sums */
135 velecsum = 0.0;
136
137 /* Start inner kernel loop */
138 for(jidx=j_index_start; jidx<j_index_end; jidx++)
139 {
140 /* Get j neighbor index, and coordinate index */
141 jnr = jjnr[jidx];
142 j_coord_offset = DIM3*jnr;
143
144 /* load j atom coordinates */
145 jx0 = x[j_coord_offset+DIM3*0+XX0];
146 jy0 = x[j_coord_offset+DIM3*0+YY1];
147 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
148
149 /* Calculate displacement vector */
150 dx00 = ix0 - jx0;
151 dy00 = iy0 - jy0;
152 dz00 = iz0 - jz0;
153
154 /* Calculate squared distance and things based on it */
155 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
156
157 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
158
159 rinvsq00 = rinv00*rinv00;
160
161 /* Load parameters for j particles */
162 jq0 = charge[jnr+0];
163
164 /**************************
165 * CALCULATE INTERACTIONS *
166 **************************/
167
168 r00 = rsq00*rinv00;
169
170 qq00 = iq0*jq0;
171
172 /* EWALD ELECTROSTATICS */
173
174 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
175 ewrt = r00*ewtabscale;
176 ewitab = ewrt;
177 eweps = ewrt-ewitab;
178 ewitab = 4*ewitab;
179 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
180 velec = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
181 felec = qq00*rinv00*(rinvsq00-felec);
182
183 /* Update potential sums from outer loop */
184 velecsum += velec;
185
186 fscal = felec;
187
188 /* Calculate temporary vectorial force */
189 tx = fscal*dx00;
190 ty = fscal*dy00;
191 tz = fscal*dz00;
192
193 /* Update vectorial force */
194 fix0 += tx;
195 fiy0 += ty;
196 fiz0 += tz;
197 f[j_coord_offset+DIM3*0+XX0] -= tx;
198 f[j_coord_offset+DIM3*0+YY1] -= ty;
199 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
200
201 /* Inner loop uses 41 flops */
202 }
203 /* End of innermost loop */
204
205 tx = ty = tz = 0;
206 f[i_coord_offset+DIM3*0+XX0] += fix0;
207 f[i_coord_offset+DIM3*0+YY1] += fiy0;
208 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
209 tx += fix0;
210 ty += fiy0;
211 tz += fiz0;
212 fshift[i_shift_offset+XX0] += tx;
213 fshift[i_shift_offset+YY1] += ty;
214 fshift[i_shift_offset+ZZ2] += tz;
215
216 ggid = gid[iidx];
217 /* Update potential energies */
218 kernel_data->energygrp_elec[ggid] += velecsum;
219
220 /* Increment number of inner iterations */
221 inneriter += j_index_end - j_index_start;
222
223 /* Outer loop uses 14 flops */
224 }
225
226 /* Increment number of outer iterations */
227 outeriter += nri;
228
229 /* Update outer/inner flops */
230
231 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*14 + inneriter*41)(nrnb)->n[eNR_NBKERNEL_ELEC_VF] += outeriter*14 + inneriter
*41
;
232}
233/*
234 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwNone_GeomP1P1_F_c
235 * Electrostatics interaction: Ewald
236 * VdW interaction: None
237 * Geometry: Particle-Particle
238 * Calculate force/pot: Force
239 */
240void
241nb_kernel_ElecEw_VdwNone_GeomP1P1_F_c
242 (t_nblist * gmx_restrict__restrict nlist,
243 rvec * gmx_restrict__restrict xx,
244 rvec * gmx_restrict__restrict ff,
245 t_forcerec * gmx_restrict__restrict fr,
246 t_mdatoms * gmx_restrict__restrict mdatoms,
247 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
248 t_nrnb * gmx_restrict__restrict nrnb)
249{
250 int i_shift_offset,i_coord_offset,j_coord_offset;
251 int j_index_start,j_index_end;
252 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
253 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
254 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
255 real *shiftvec,*fshift,*x,*f;
256 int vdwioffset0;
257 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
258 int vdwjidx0;
259 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
260 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
261 real velec,felec,velecsum,facel,crf,krf,krf2;
262 real *charge;
263 int ewitab;
264 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
265 real *ewtab;
266
267 x = xx[0];
268 f = ff[0];
269
270 nri = nlist->nri;
271 iinr = nlist->iinr;
272 jindex = nlist->jindex;
273 jjnr = nlist->jjnr;
274 shiftidx = nlist->shift;
275 gid = nlist->gid;
Value stored to 'gid' is never read
276 shiftvec = fr->shift_vec[0];
277 fshift = fr->fshift[0];
278 facel = fr->epsfac;
279 charge = mdatoms->chargeA;
280
281 sh_ewald = fr->ic->sh_ewald;
282 ewtab = fr->ic->tabq_coul_F;
283 ewtabscale = fr->ic->tabq_scale;
284 ewtabhalfspace = 0.5/ewtabscale;
285
286 outeriter = 0;
287 inneriter = 0;
288
289 /* Start outer loop over neighborlists */
290 for(iidx=0; iidx<nri; iidx++)
291 {
292 /* Load shift vector for this list */
293 i_shift_offset = DIM3*shiftidx[iidx];
294 shX = shiftvec[i_shift_offset+XX0];
295 shY = shiftvec[i_shift_offset+YY1];
296 shZ = shiftvec[i_shift_offset+ZZ2];
297
298 /* Load limits for loop over neighbors */
299 j_index_start = jindex[iidx];
300 j_index_end = jindex[iidx+1];
301
302 /* Get outer coordinate index */
303 inr = iinr[iidx];
304 i_coord_offset = DIM3*inr;
305
306 /* Load i particle coords and add shift vector */
307 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
308 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
309 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
310
311 fix0 = 0.0;
312 fiy0 = 0.0;
313 fiz0 = 0.0;
314
315 /* Load parameters for i particles */
316 iq0 = facel*charge[inr+0];
317
318 /* Start inner kernel loop */
319 for(jidx=j_index_start; jidx<j_index_end; jidx++)
320 {
321 /* Get j neighbor index, and coordinate index */
322 jnr = jjnr[jidx];
323 j_coord_offset = DIM3*jnr;
324
325 /* load j atom coordinates */
326 jx0 = x[j_coord_offset+DIM3*0+XX0];
327 jy0 = x[j_coord_offset+DIM3*0+YY1];
328 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
329
330 /* Calculate displacement vector */
331 dx00 = ix0 - jx0;
332 dy00 = iy0 - jy0;
333 dz00 = iz0 - jz0;
334
335 /* Calculate squared distance and things based on it */
336 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
337
338 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
339
340 rinvsq00 = rinv00*rinv00;
341
342 /* Load parameters for j particles */
343 jq0 = charge[jnr+0];
344
345 /**************************
346 * CALCULATE INTERACTIONS *
347 **************************/
348
349 r00 = rsq00*rinv00;
350
351 qq00 = iq0*jq0;
352
353 /* EWALD ELECTROSTATICS */
354
355 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
356 ewrt = r00*ewtabscale;
357 ewitab = ewrt;
358 eweps = ewrt-ewitab;
359 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
360 felec = qq00*rinv00*(rinvsq00-felec);
361
362 fscal = felec;
363
364 /* Calculate temporary vectorial force */
365 tx = fscal*dx00;
366 ty = fscal*dy00;
367 tz = fscal*dz00;
368
369 /* Update vectorial force */
370 fix0 += tx;
371 fiy0 += ty;
372 fiz0 += tz;
373 f[j_coord_offset+DIM3*0+XX0] -= tx;
374 f[j_coord_offset+DIM3*0+YY1] -= ty;
375 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
376
377 /* Inner loop uses 34 flops */
378 }
379 /* End of innermost loop */
380
381 tx = ty = tz = 0;
382 f[i_coord_offset+DIM3*0+XX0] += fix0;
383 f[i_coord_offset+DIM3*0+YY1] += fiy0;
384 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
385 tx += fix0;
386 ty += fiy0;
387 tz += fiz0;
388 fshift[i_shift_offset+XX0] += tx;
389 fshift[i_shift_offset+YY1] += ty;
390 fshift[i_shift_offset+ZZ2] += tz;
391
392 /* Increment number of inner iterations */
393 inneriter += j_index_end - j_index_start;
394
395 /* Outer loop uses 13 flops */
396 }
397
398 /* Increment number of outer iterations */
399 outeriter += nri;
400
401 /* Update outer/inner flops */
402
403 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*13 + inneriter*34)(nrnb)->n[eNR_NBKERNEL_ELEC_F] += outeriter*13 + inneriter
*34
;
404}