Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_sse4_1_single.c
Location:line 457, column 22
Description:Value stored to 'one' during its initialization is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_sse4_1_single
54 * Electrostatics interaction: ReactionField
55 * VdW interaction: LennardJones
56 * Geometry: Particle-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
91 real *charge;
92 int nvdwtype;
93 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94 int *vdwtype;
95 real *vdwparam;
96 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
97 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
98 __m128 dummy_mask,cutoff_mask;
99 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
100 __m128 one = _mm_set1_ps(1.0);
101 __m128 two = _mm_set1_ps(2.0);
102 x = xx[0];
103 f = ff[0];
104
105 nri = nlist->nri;
106 iinr = nlist->iinr;
107 jindex = nlist->jindex;
108 jjnr = nlist->jjnr;
109 shiftidx = nlist->shift;
110 gid = nlist->gid;
111 shiftvec = fr->shift_vec[0];
112 fshift = fr->fshift[0];
113 facel = _mm_set1_ps(fr->epsfac);
114 charge = mdatoms->chargeA;
115 krf = _mm_set1_ps(fr->ic->k_rf);
116 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
117 crf = _mm_set1_ps(fr->ic->c_rf);
118 nvdwtype = fr->ntype;
119 vdwparam = fr->nbfp;
120 vdwtype = mdatoms->typeA;
121
122 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
123 rcutoff_scalar = fr->rcoulomb;
124 rcutoff = _mm_set1_ps(rcutoff_scalar);
125 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
126
127 sh_vdw_invrcut6 = _mm_set1_ps(fr->ic->sh_invrc6);
128 rvdw = _mm_set1_ps(fr->rvdw);
129
130 /* Avoid stupid compiler warnings */
131 jnrA = jnrB = jnrC = jnrD = 0;
132 j_coord_offsetA = 0;
133 j_coord_offsetB = 0;
134 j_coord_offsetC = 0;
135 j_coord_offsetD = 0;
136
137 outeriter = 0;
138 inneriter = 0;
139
140 for(iidx=0;iidx<4*DIM3;iidx++)
141 {
142 scratch[iidx] = 0.0;
143 }
144
145 /* Start outer loop over neighborlists */
146 for(iidx=0; iidx<nri; iidx++)
147 {
148 /* Load shift vector for this list */
149 i_shift_offset = DIM3*shiftidx[iidx];
150
151 /* Load limits for loop over neighbors */
152 j_index_start = jindex[iidx];
153 j_index_end = jindex[iidx+1];
154
155 /* Get outer coordinate index */
156 inr = iinr[iidx];
157 i_coord_offset = DIM3*inr;
158
159 /* Load i particle coords and add shift vector */
160 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
161
162 fix0 = _mm_setzero_ps();
163 fiy0 = _mm_setzero_ps();
164 fiz0 = _mm_setzero_ps();
165
166 /* Load parameters for i particles */
167 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
168 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
169
170 /* Reset potential sums */
171 velecsum = _mm_setzero_ps();
172 vvdwsum = _mm_setzero_ps();
173
174 /* Start inner kernel loop */
175 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
176 {
177
178 /* Get j neighbor index, and coordinate index */
179 jnrA = jjnr[jidx];
180 jnrB = jjnr[jidx+1];
181 jnrC = jjnr[jidx+2];
182 jnrD = jjnr[jidx+3];
183 j_coord_offsetA = DIM3*jnrA;
184 j_coord_offsetB = DIM3*jnrB;
185 j_coord_offsetC = DIM3*jnrC;
186 j_coord_offsetD = DIM3*jnrD;
187
188 /* load j atom coordinates */
189 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
190 x+j_coord_offsetC,x+j_coord_offsetD,
191 &jx0,&jy0,&jz0);
192
193 /* Calculate displacement vector */
194 dx00 = _mm_sub_ps(ix0,jx0);
195 dy00 = _mm_sub_ps(iy0,jy0);
196 dz00 = _mm_sub_ps(iz0,jz0);
197
198 /* Calculate squared distance and things based on it */
199 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
200
201 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
202
203 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
204
205 /* Load parameters for j particles */
206 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
207 charge+jnrC+0,charge+jnrD+0);
208 vdwjidx0A = 2*vdwtype[jnrA+0];
209 vdwjidx0B = 2*vdwtype[jnrB+0];
210 vdwjidx0C = 2*vdwtype[jnrC+0];
211 vdwjidx0D = 2*vdwtype[jnrD+0];
212
213 /**************************
214 * CALCULATE INTERACTIONS *
215 **************************/
216
217 if (gmx_mm_any_lt(rsq00,rcutoff2))
218 {
219
220 /* Compute parameters for interactions between i and j atoms */
221 qq00 = _mm_mul_ps(iq0,jq0);
222 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
223 vdwparam+vdwioffset0+vdwjidx0B,
224 vdwparam+vdwioffset0+vdwjidx0C,
225 vdwparam+vdwioffset0+vdwjidx0D,
226 &c6_00,&c12_00);
227
228 /* REACTION-FIELD ELECTROSTATICS */
229 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
230 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
231
232 /* LENNARD-JONES DISPERSION/REPULSION */
233
234 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
235 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
236 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
237 vvdw = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
238 _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
239 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
240
241 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
242
243 /* Update potential sum for this i atom from the interaction with this j atom. */
244 velec = _mm_and_ps(velec,cutoff_mask);
245 velecsum = _mm_add_ps(velecsum,velec);
246 vvdw = _mm_and_ps(vvdw,cutoff_mask);
247 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
248
249 fscal = _mm_add_ps(felec,fvdw);
250
251 fscal = _mm_and_ps(fscal,cutoff_mask);
252
253 /* Calculate temporary vectorial force */
254 tx = _mm_mul_ps(fscal,dx00);
255 ty = _mm_mul_ps(fscal,dy00);
256 tz = _mm_mul_ps(fscal,dz00);
257
258 /* Update vectorial force */
259 fix0 = _mm_add_ps(fix0,tx);
260 fiy0 = _mm_add_ps(fiy0,ty);
261 fiz0 = _mm_add_ps(fiz0,tz);
262
263 fjptrA = f+j_coord_offsetA;
264 fjptrB = f+j_coord_offsetB;
265 fjptrC = f+j_coord_offsetC;
266 fjptrD = f+j_coord_offsetD;
267 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
268
269 }
270
271 /* Inner loop uses 54 flops */
272 }
273
274 if(jidx<j_index_end)
275 {
276
277 /* Get j neighbor index, and coordinate index */
278 jnrlistA = jjnr[jidx];
279 jnrlistB = jjnr[jidx+1];
280 jnrlistC = jjnr[jidx+2];
281 jnrlistD = jjnr[jidx+3];
282 /* Sign of each element will be negative for non-real atoms.
283 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
284 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
285 */
286 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
287 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
288 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
289 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
290 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
291 j_coord_offsetA = DIM3*jnrA;
292 j_coord_offsetB = DIM3*jnrB;
293 j_coord_offsetC = DIM3*jnrC;
294 j_coord_offsetD = DIM3*jnrD;
295
296 /* load j atom coordinates */
297 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
298 x+j_coord_offsetC,x+j_coord_offsetD,
299 &jx0,&jy0,&jz0);
300
301 /* Calculate displacement vector */
302 dx00 = _mm_sub_ps(ix0,jx0);
303 dy00 = _mm_sub_ps(iy0,jy0);
304 dz00 = _mm_sub_ps(iz0,jz0);
305
306 /* Calculate squared distance and things based on it */
307 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
308
309 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
310
311 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
312
313 /* Load parameters for j particles */
314 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
315 charge+jnrC+0,charge+jnrD+0);
316 vdwjidx0A = 2*vdwtype[jnrA+0];
317 vdwjidx0B = 2*vdwtype[jnrB+0];
318 vdwjidx0C = 2*vdwtype[jnrC+0];
319 vdwjidx0D = 2*vdwtype[jnrD+0];
320
321 /**************************
322 * CALCULATE INTERACTIONS *
323 **************************/
324
325 if (gmx_mm_any_lt(rsq00,rcutoff2))
326 {
327
328 /* Compute parameters for interactions between i and j atoms */
329 qq00 = _mm_mul_ps(iq0,jq0);
330 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
331 vdwparam+vdwioffset0+vdwjidx0B,
332 vdwparam+vdwioffset0+vdwjidx0C,
333 vdwparam+vdwioffset0+vdwjidx0D,
334 &c6_00,&c12_00);
335
336 /* REACTION-FIELD ELECTROSTATICS */
337 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
338 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
339
340 /* LENNARD-JONES DISPERSION/REPULSION */
341
342 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
343 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
344 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
345 vvdw = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
346 _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
347 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
348
349 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
350
351 /* Update potential sum for this i atom from the interaction with this j atom. */
352 velec = _mm_and_ps(velec,cutoff_mask);
353 velec = _mm_andnot_ps(dummy_mask,velec);
354 velecsum = _mm_add_ps(velecsum,velec);
355 vvdw = _mm_and_ps(vvdw,cutoff_mask);
356 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
357 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
358
359 fscal = _mm_add_ps(felec,fvdw);
360
361 fscal = _mm_and_ps(fscal,cutoff_mask);
362
363 fscal = _mm_andnot_ps(dummy_mask,fscal);
364
365 /* Calculate temporary vectorial force */
366 tx = _mm_mul_ps(fscal,dx00);
367 ty = _mm_mul_ps(fscal,dy00);
368 tz = _mm_mul_ps(fscal,dz00);
369
370 /* Update vectorial force */
371 fix0 = _mm_add_ps(fix0,tx);
372 fiy0 = _mm_add_ps(fiy0,ty);
373 fiz0 = _mm_add_ps(fiz0,tz);
374
375 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
376 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
377 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
378 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
379 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
380
381 }
382
383 /* Inner loop uses 54 flops */
384 }
385
386 /* End of innermost loop */
387
388 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
389 f+i_coord_offset,fshift+i_shift_offset);
390
391 ggid = gid[iidx];
392 /* Update potential energies */
393 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
394 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
395
396 /* Increment number of inner iterations */
397 inneriter += j_index_end - j_index_start;
398
399 /* Outer loop uses 9 flops */
400 }
401
402 /* Increment number of outer iterations */
403 outeriter += nri;
404
405 /* Update outer/inner flops */
406
407 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*54)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_VF] += outeriter*9 + inneriter
*54
;
408}
409/*
410 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_sse4_1_single
411 * Electrostatics interaction: ReactionField
412 * VdW interaction: LennardJones
413 * Geometry: Particle-Particle
414 * Calculate force/pot: Force
415 */
416void
417nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_sse4_1_single
418 (t_nblist * gmx_restrict nlist,
419 rvec * gmx_restrict xx,
420 rvec * gmx_restrict ff,
421 t_forcerec * gmx_restrict fr,
422 t_mdatoms * gmx_restrict mdatoms,
423 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
424 t_nrnb * gmx_restrict nrnb)
425{
426 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
427 * just 0 for non-waters.
428 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
429 * jnr indices corresponding to data put in the four positions in the SIMD register.
430 */
431 int i_shift_offset,i_coord_offset,outeriter,inneriter;
432 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
433 int jnrA,jnrB,jnrC,jnrD;
434 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
435 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
436 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
437 real rcutoff_scalar;
438 real *shiftvec,*fshift,*x,*f;
439 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
440 real scratch[4*DIM3];
441 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
442 int vdwioffset0;
443 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
444 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
445 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
446 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
447 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
448 real *charge;
449 int nvdwtype;
450 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
451 int *vdwtype;
452 real *vdwparam;
453 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
454 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
455 __m128 dummy_mask,cutoff_mask;
456 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
457 __m128 one = _mm_set1_ps(1.0);
Value stored to 'one' during its initialization is never read
458 __m128 two = _mm_set1_ps(2.0);
459 x = xx[0];
460 f = ff[0];
461
462 nri = nlist->nri;
463 iinr = nlist->iinr;
464 jindex = nlist->jindex;
465 jjnr = nlist->jjnr;
466 shiftidx = nlist->shift;
467 gid = nlist->gid;
468 shiftvec = fr->shift_vec[0];
469 fshift = fr->fshift[0];
470 facel = _mm_set1_ps(fr->epsfac);
471 charge = mdatoms->chargeA;
472 krf = _mm_set1_ps(fr->ic->k_rf);
473 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
474 crf = _mm_set1_ps(fr->ic->c_rf);
475 nvdwtype = fr->ntype;
476 vdwparam = fr->nbfp;
477 vdwtype = mdatoms->typeA;
478
479 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
480 rcutoff_scalar = fr->rcoulomb;
481 rcutoff = _mm_set1_ps(rcutoff_scalar);
482 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
483
484 sh_vdw_invrcut6 = _mm_set1_ps(fr->ic->sh_invrc6);
485 rvdw = _mm_set1_ps(fr->rvdw);
486
487 /* Avoid stupid compiler warnings */
488 jnrA = jnrB = jnrC = jnrD = 0;
489 j_coord_offsetA = 0;
490 j_coord_offsetB = 0;
491 j_coord_offsetC = 0;
492 j_coord_offsetD = 0;
493
494 outeriter = 0;
495 inneriter = 0;
496
497 for(iidx=0;iidx<4*DIM3;iidx++)
498 {
499 scratch[iidx] = 0.0;
500 }
501
502 /* Start outer loop over neighborlists */
503 for(iidx=0; iidx<nri; iidx++)
504 {
505 /* Load shift vector for this list */
506 i_shift_offset = DIM3*shiftidx[iidx];
507
508 /* Load limits for loop over neighbors */
509 j_index_start = jindex[iidx];
510 j_index_end = jindex[iidx+1];
511
512 /* Get outer coordinate index */
513 inr = iinr[iidx];
514 i_coord_offset = DIM3*inr;
515
516 /* Load i particle coords and add shift vector */
517 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
518
519 fix0 = _mm_setzero_ps();
520 fiy0 = _mm_setzero_ps();
521 fiz0 = _mm_setzero_ps();
522
523 /* Load parameters for i particles */
524 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
525 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
526
527 /* Start inner kernel loop */
528 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
529 {
530
531 /* Get j neighbor index, and coordinate index */
532 jnrA = jjnr[jidx];
533 jnrB = jjnr[jidx+1];
534 jnrC = jjnr[jidx+2];
535 jnrD = jjnr[jidx+3];
536 j_coord_offsetA = DIM3*jnrA;
537 j_coord_offsetB = DIM3*jnrB;
538 j_coord_offsetC = DIM3*jnrC;
539 j_coord_offsetD = DIM3*jnrD;
540
541 /* load j atom coordinates */
542 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
543 x+j_coord_offsetC,x+j_coord_offsetD,
544 &jx0,&jy0,&jz0);
545
546 /* Calculate displacement vector */
547 dx00 = _mm_sub_ps(ix0,jx0);
548 dy00 = _mm_sub_ps(iy0,jy0);
549 dz00 = _mm_sub_ps(iz0,jz0);
550
551 /* Calculate squared distance and things based on it */
552 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
553
554 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
555
556 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
557
558 /* Load parameters for j particles */
559 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
560 charge+jnrC+0,charge+jnrD+0);
561 vdwjidx0A = 2*vdwtype[jnrA+0];
562 vdwjidx0B = 2*vdwtype[jnrB+0];
563 vdwjidx0C = 2*vdwtype[jnrC+0];
564 vdwjidx0D = 2*vdwtype[jnrD+0];
565
566 /**************************
567 * CALCULATE INTERACTIONS *
568 **************************/
569
570 if (gmx_mm_any_lt(rsq00,rcutoff2))
571 {
572
573 /* Compute parameters for interactions between i and j atoms */
574 qq00 = _mm_mul_ps(iq0,jq0);
575 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
576 vdwparam+vdwioffset0+vdwjidx0B,
577 vdwparam+vdwioffset0+vdwjidx0C,
578 vdwparam+vdwioffset0+vdwjidx0D,
579 &c6_00,&c12_00);
580
581 /* REACTION-FIELD ELECTROSTATICS */
582 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
583
584 /* LENNARD-JONES DISPERSION/REPULSION */
585
586 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
587 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
588
589 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
590
591 fscal = _mm_add_ps(felec,fvdw);
592
593 fscal = _mm_and_ps(fscal,cutoff_mask);
594
595 /* Calculate temporary vectorial force */
596 tx = _mm_mul_ps(fscal,dx00);
597 ty = _mm_mul_ps(fscal,dy00);
598 tz = _mm_mul_ps(fscal,dz00);
599
600 /* Update vectorial force */
601 fix0 = _mm_add_ps(fix0,tx);
602 fiy0 = _mm_add_ps(fiy0,ty);
603 fiz0 = _mm_add_ps(fiz0,tz);
604
605 fjptrA = f+j_coord_offsetA;
606 fjptrB = f+j_coord_offsetB;
607 fjptrC = f+j_coord_offsetC;
608 fjptrD = f+j_coord_offsetD;
609 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
610
611 }
612
613 /* Inner loop uses 37 flops */
614 }
615
616 if(jidx<j_index_end)
617 {
618
619 /* Get j neighbor index, and coordinate index */
620 jnrlistA = jjnr[jidx];
621 jnrlistB = jjnr[jidx+1];
622 jnrlistC = jjnr[jidx+2];
623 jnrlistD = jjnr[jidx+3];
624 /* Sign of each element will be negative for non-real atoms.
625 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
626 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
627 */
628 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
629 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
630 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
631 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
632 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
633 j_coord_offsetA = DIM3*jnrA;
634 j_coord_offsetB = DIM3*jnrB;
635 j_coord_offsetC = DIM3*jnrC;
636 j_coord_offsetD = DIM3*jnrD;
637
638 /* load j atom coordinates */
639 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
640 x+j_coord_offsetC,x+j_coord_offsetD,
641 &jx0,&jy0,&jz0);
642
643 /* Calculate displacement vector */
644 dx00 = _mm_sub_ps(ix0,jx0);
645 dy00 = _mm_sub_ps(iy0,jy0);
646 dz00 = _mm_sub_ps(iz0,jz0);
647
648 /* Calculate squared distance and things based on it */
649 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
650
651 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
652
653 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
654
655 /* Load parameters for j particles */
656 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
657 charge+jnrC+0,charge+jnrD+0);
658 vdwjidx0A = 2*vdwtype[jnrA+0];
659 vdwjidx0B = 2*vdwtype[jnrB+0];
660 vdwjidx0C = 2*vdwtype[jnrC+0];
661 vdwjidx0D = 2*vdwtype[jnrD+0];
662
663 /**************************
664 * CALCULATE INTERACTIONS *
665 **************************/
666
667 if (gmx_mm_any_lt(rsq00,rcutoff2))
668 {
669
670 /* Compute parameters for interactions between i and j atoms */
671 qq00 = _mm_mul_ps(iq0,jq0);
672 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
673 vdwparam+vdwioffset0+vdwjidx0B,
674 vdwparam+vdwioffset0+vdwjidx0C,
675 vdwparam+vdwioffset0+vdwjidx0D,
676 &c6_00,&c12_00);
677
678 /* REACTION-FIELD ELECTROSTATICS */
679 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
680
681 /* LENNARD-JONES DISPERSION/REPULSION */
682
683 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
684 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
685
686 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
687
688 fscal = _mm_add_ps(felec,fvdw);
689
690 fscal = _mm_and_ps(fscal,cutoff_mask);
691
692 fscal = _mm_andnot_ps(dummy_mask,fscal);
693
694 /* Calculate temporary vectorial force */
695 tx = _mm_mul_ps(fscal,dx00);
696 ty = _mm_mul_ps(fscal,dy00);
697 tz = _mm_mul_ps(fscal,dz00);
698
699 /* Update vectorial force */
700 fix0 = _mm_add_ps(fix0,tx);
701 fiy0 = _mm_add_ps(fiy0,ty);
702 fiz0 = _mm_add_ps(fiz0,tz);
703
704 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
705 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
706 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
707 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
708 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
709
710 }
711
712 /* Inner loop uses 37 flops */
713 }
714
715 /* End of innermost loop */
716
717 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
718 f+i_coord_offset,fshift+i_shift_offset);
719
720 /* Increment number of inner iterations */
721 inneriter += j_index_end - j_index_start;
722
723 /* Outer loop uses 7 flops */
724 }
725
726 /* Increment number of outer iterations */
727 outeriter += nri;
728
729 /* Update outer/inner flops */
730
731 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*37)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_F] += outeriter*7 + inneriter
*37
;
732}