Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecEwSh_VdwNone_GeomP1P1_sse4_1_single.c
Location:line 464, column 5
Description:Value stored to 'j_coord_offsetC' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwNone_GeomP1P1_VF_sse4_1_single
54 * Electrostatics interaction: Ewald
55 * VdW interaction: None
56 * Geometry: Particle-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecEwSh_VdwNone_GeomP1P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
91 real *charge;
92 __m128i ewitab;
93 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
94 real *ewtab;
95 __m128 dummy_mask,cutoff_mask;
96 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
97 __m128 one = _mm_set1_ps(1.0);
98 __m128 two = _mm_set1_ps(2.0);
99 x = xx[0];
100 f = ff[0];
101
102 nri = nlist->nri;
103 iinr = nlist->iinr;
104 jindex = nlist->jindex;
105 jjnr = nlist->jjnr;
106 shiftidx = nlist->shift;
107 gid = nlist->gid;
108 shiftvec = fr->shift_vec[0];
109 fshift = fr->fshift[0];
110 facel = _mm_set1_ps(fr->epsfac);
111 charge = mdatoms->chargeA;
112
113 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
114 ewtab = fr->ic->tabq_coul_FDV0;
115 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
116 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
117
118 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
119 rcutoff_scalar = fr->rcoulomb;
120 rcutoff = _mm_set1_ps(rcutoff_scalar);
121 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
122
123 /* Avoid stupid compiler warnings */
124 jnrA = jnrB = jnrC = jnrD = 0;
125 j_coord_offsetA = 0;
126 j_coord_offsetB = 0;
127 j_coord_offsetC = 0;
128 j_coord_offsetD = 0;
129
130 outeriter = 0;
131 inneriter = 0;
132
133 for(iidx=0;iidx<4*DIM3;iidx++)
134 {
135 scratch[iidx] = 0.0;
136 }
137
138 /* Start outer loop over neighborlists */
139 for(iidx=0; iidx<nri; iidx++)
140 {
141 /* Load shift vector for this list */
142 i_shift_offset = DIM3*shiftidx[iidx];
143
144 /* Load limits for loop over neighbors */
145 j_index_start = jindex[iidx];
146 j_index_end = jindex[iidx+1];
147
148 /* Get outer coordinate index */
149 inr = iinr[iidx];
150 i_coord_offset = DIM3*inr;
151
152 /* Load i particle coords and add shift vector */
153 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
154
155 fix0 = _mm_setzero_ps();
156 fiy0 = _mm_setzero_ps();
157 fiz0 = _mm_setzero_ps();
158
159 /* Load parameters for i particles */
160 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
161
162 /* Reset potential sums */
163 velecsum = _mm_setzero_ps();
164
165 /* Start inner kernel loop */
166 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
167 {
168
169 /* Get j neighbor index, and coordinate index */
170 jnrA = jjnr[jidx];
171 jnrB = jjnr[jidx+1];
172 jnrC = jjnr[jidx+2];
173 jnrD = jjnr[jidx+3];
174 j_coord_offsetA = DIM3*jnrA;
175 j_coord_offsetB = DIM3*jnrB;
176 j_coord_offsetC = DIM3*jnrC;
177 j_coord_offsetD = DIM3*jnrD;
178
179 /* load j atom coordinates */
180 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
181 x+j_coord_offsetC,x+j_coord_offsetD,
182 &jx0,&jy0,&jz0);
183
184 /* Calculate displacement vector */
185 dx00 = _mm_sub_ps(ix0,jx0);
186 dy00 = _mm_sub_ps(iy0,jy0);
187 dz00 = _mm_sub_ps(iz0,jz0);
188
189 /* Calculate squared distance and things based on it */
190 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
191
192 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
193
194 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
195
196 /* Load parameters for j particles */
197 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
198 charge+jnrC+0,charge+jnrD+0);
199
200 /**************************
201 * CALCULATE INTERACTIONS *
202 **************************/
203
204 if (gmx_mm_any_lt(rsq00,rcutoff2))
205 {
206
207 r00 = _mm_mul_ps(rsq00,rinv00);
208
209 /* Compute parameters for interactions between i and j atoms */
210 qq00 = _mm_mul_ps(iq0,jq0);
211
212 /* EWALD ELECTROSTATICS */
213
214 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
215 ewrt = _mm_mul_ps(r00,ewtabscale);
216 ewitab = _mm_cvttps_epi32(ewrt);
217 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
218 ewitab = _mm_slli_epi32(ewitab,2);
219 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
220 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
221 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
222 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
223 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
224 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
225 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
226 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
227 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
228
229 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
230
231 /* Update potential sum for this i atom from the interaction with this j atom. */
232 velec = _mm_and_ps(velec,cutoff_mask);
233 velecsum = _mm_add_ps(velecsum,velec);
234
235 fscal = felec;
236
237 fscal = _mm_and_ps(fscal,cutoff_mask);
238
239 /* Calculate temporary vectorial force */
240 tx = _mm_mul_ps(fscal,dx00);
241 ty = _mm_mul_ps(fscal,dy00);
242 tz = _mm_mul_ps(fscal,dz00);
243
244 /* Update vectorial force */
245 fix0 = _mm_add_ps(fix0,tx);
246 fiy0 = _mm_add_ps(fiy0,ty);
247 fiz0 = _mm_add_ps(fiz0,tz);
248
249 fjptrA = f+j_coord_offsetA;
250 fjptrB = f+j_coord_offsetB;
251 fjptrC = f+j_coord_offsetC;
252 fjptrD = f+j_coord_offsetD;
253 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
254
255 }
256
257 /* Inner loop uses 46 flops */
258 }
259
260 if(jidx<j_index_end)
261 {
262
263 /* Get j neighbor index, and coordinate index */
264 jnrlistA = jjnr[jidx];
265 jnrlistB = jjnr[jidx+1];
266 jnrlistC = jjnr[jidx+2];
267 jnrlistD = jjnr[jidx+3];
268 /* Sign of each element will be negative for non-real atoms.
269 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
270 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
271 */
272 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
273 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
274 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
275 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
276 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
277 j_coord_offsetA = DIM3*jnrA;
278 j_coord_offsetB = DIM3*jnrB;
279 j_coord_offsetC = DIM3*jnrC;
280 j_coord_offsetD = DIM3*jnrD;
281
282 /* load j atom coordinates */
283 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
284 x+j_coord_offsetC,x+j_coord_offsetD,
285 &jx0,&jy0,&jz0);
286
287 /* Calculate displacement vector */
288 dx00 = _mm_sub_ps(ix0,jx0);
289 dy00 = _mm_sub_ps(iy0,jy0);
290 dz00 = _mm_sub_ps(iz0,jz0);
291
292 /* Calculate squared distance and things based on it */
293 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
294
295 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
296
297 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
298
299 /* Load parameters for j particles */
300 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
301 charge+jnrC+0,charge+jnrD+0);
302
303 /**************************
304 * CALCULATE INTERACTIONS *
305 **************************/
306
307 if (gmx_mm_any_lt(rsq00,rcutoff2))
308 {
309
310 r00 = _mm_mul_ps(rsq00,rinv00);
311 r00 = _mm_andnot_ps(dummy_mask,r00);
312
313 /* Compute parameters for interactions between i and j atoms */
314 qq00 = _mm_mul_ps(iq0,jq0);
315
316 /* EWALD ELECTROSTATICS */
317
318 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
319 ewrt = _mm_mul_ps(r00,ewtabscale);
320 ewitab = _mm_cvttps_epi32(ewrt);
321 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
322 ewitab = _mm_slli_epi32(ewitab,2);
323 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
324 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
325 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
326 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
327 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
328 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
329 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
330 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
331 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
332
333 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
334
335 /* Update potential sum for this i atom from the interaction with this j atom. */
336 velec = _mm_and_ps(velec,cutoff_mask);
337 velec = _mm_andnot_ps(dummy_mask,velec);
338 velecsum = _mm_add_ps(velecsum,velec);
339
340 fscal = felec;
341
342 fscal = _mm_and_ps(fscal,cutoff_mask);
343
344 fscal = _mm_andnot_ps(dummy_mask,fscal);
345
346 /* Calculate temporary vectorial force */
347 tx = _mm_mul_ps(fscal,dx00);
348 ty = _mm_mul_ps(fscal,dy00);
349 tz = _mm_mul_ps(fscal,dz00);
350
351 /* Update vectorial force */
352 fix0 = _mm_add_ps(fix0,tx);
353 fiy0 = _mm_add_ps(fiy0,ty);
354 fiz0 = _mm_add_ps(fiz0,tz);
355
356 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
357 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
358 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
359 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
360 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
361
362 }
363
364 /* Inner loop uses 47 flops */
365 }
366
367 /* End of innermost loop */
368
369 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
370 f+i_coord_offset,fshift+i_shift_offset);
371
372 ggid = gid[iidx];
373 /* Update potential energies */
374 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
375
376 /* Increment number of inner iterations */
377 inneriter += j_index_end - j_index_start;
378
379 /* Outer loop uses 8 flops */
380 }
381
382 /* Increment number of outer iterations */
383 outeriter += nri;
384
385 /* Update outer/inner flops */
386
387 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*47)(nrnb)->n[eNR_NBKERNEL_ELEC_VF] += outeriter*8 + inneriter
*47
;
388}
389/*
390 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwNone_GeomP1P1_F_sse4_1_single
391 * Electrostatics interaction: Ewald
392 * VdW interaction: None
393 * Geometry: Particle-Particle
394 * Calculate force/pot: Force
395 */
396void
397nb_kernel_ElecEwSh_VdwNone_GeomP1P1_F_sse4_1_single
398 (t_nblist * gmx_restrict nlist,
399 rvec * gmx_restrict xx,
400 rvec * gmx_restrict ff,
401 t_forcerec * gmx_restrict fr,
402 t_mdatoms * gmx_restrict mdatoms,
403 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
404 t_nrnb * gmx_restrict nrnb)
405{
406 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
407 * just 0 for non-waters.
408 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
409 * jnr indices corresponding to data put in the four positions in the SIMD register.
410 */
411 int i_shift_offset,i_coord_offset,outeriter,inneriter;
412 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
413 int jnrA,jnrB,jnrC,jnrD;
414 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
415 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
416 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
417 real rcutoff_scalar;
418 real *shiftvec,*fshift,*x,*f;
419 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
420 real scratch[4*DIM3];
421 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
422 int vdwioffset0;
423 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
424 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
425 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
426 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
427 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
428 real *charge;
429 __m128i ewitab;
430 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
431 real *ewtab;
432 __m128 dummy_mask,cutoff_mask;
433 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
434 __m128 one = _mm_set1_ps(1.0);
435 __m128 two = _mm_set1_ps(2.0);
436 x = xx[0];
437 f = ff[0];
438
439 nri = nlist->nri;
440 iinr = nlist->iinr;
441 jindex = nlist->jindex;
442 jjnr = nlist->jjnr;
443 shiftidx = nlist->shift;
444 gid = nlist->gid;
445 shiftvec = fr->shift_vec[0];
446 fshift = fr->fshift[0];
447 facel = _mm_set1_ps(fr->epsfac);
448 charge = mdatoms->chargeA;
449
450 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
451 ewtab = fr->ic->tabq_coul_F;
452 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
453 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
454
455 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
456 rcutoff_scalar = fr->rcoulomb;
457 rcutoff = _mm_set1_ps(rcutoff_scalar);
458 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
459
460 /* Avoid stupid compiler warnings */
461 jnrA = jnrB = jnrC = jnrD = 0;
462 j_coord_offsetA = 0;
463 j_coord_offsetB = 0;
464 j_coord_offsetC = 0;
Value stored to 'j_coord_offsetC' is never read
465 j_coord_offsetD = 0;
466
467 outeriter = 0;
468 inneriter = 0;
469
470 for(iidx=0;iidx<4*DIM3;iidx++)
471 {
472 scratch[iidx] = 0.0;
473 }
474
475 /* Start outer loop over neighborlists */
476 for(iidx=0; iidx<nri; iidx++)
477 {
478 /* Load shift vector for this list */
479 i_shift_offset = DIM3*shiftidx[iidx];
480
481 /* Load limits for loop over neighbors */
482 j_index_start = jindex[iidx];
483 j_index_end = jindex[iidx+1];
484
485 /* Get outer coordinate index */
486 inr = iinr[iidx];
487 i_coord_offset = DIM3*inr;
488
489 /* Load i particle coords and add shift vector */
490 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
491
492 fix0 = _mm_setzero_ps();
493 fiy0 = _mm_setzero_ps();
494 fiz0 = _mm_setzero_ps();
495
496 /* Load parameters for i particles */
497 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
498
499 /* Start inner kernel loop */
500 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
501 {
502
503 /* Get j neighbor index, and coordinate index */
504 jnrA = jjnr[jidx];
505 jnrB = jjnr[jidx+1];
506 jnrC = jjnr[jidx+2];
507 jnrD = jjnr[jidx+3];
508 j_coord_offsetA = DIM3*jnrA;
509 j_coord_offsetB = DIM3*jnrB;
510 j_coord_offsetC = DIM3*jnrC;
511 j_coord_offsetD = DIM3*jnrD;
512
513 /* load j atom coordinates */
514 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
515 x+j_coord_offsetC,x+j_coord_offsetD,
516 &jx0,&jy0,&jz0);
517
518 /* Calculate displacement vector */
519 dx00 = _mm_sub_ps(ix0,jx0);
520 dy00 = _mm_sub_ps(iy0,jy0);
521 dz00 = _mm_sub_ps(iz0,jz0);
522
523 /* Calculate squared distance and things based on it */
524 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
525
526 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
527
528 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
529
530 /* Load parameters for j particles */
531 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
532 charge+jnrC+0,charge+jnrD+0);
533
534 /**************************
535 * CALCULATE INTERACTIONS *
536 **************************/
537
538 if (gmx_mm_any_lt(rsq00,rcutoff2))
539 {
540
541 r00 = _mm_mul_ps(rsq00,rinv00);
542
543 /* Compute parameters for interactions between i and j atoms */
544 qq00 = _mm_mul_ps(iq0,jq0);
545
546 /* EWALD ELECTROSTATICS */
547
548 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
549 ewrt = _mm_mul_ps(r00,ewtabscale);
550 ewitab = _mm_cvttps_epi32(ewrt);
551 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
552 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
553 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
554 &ewtabF,&ewtabFn);
555 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
556 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
557
558 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
559
560 fscal = felec;
561
562 fscal = _mm_and_ps(fscal,cutoff_mask);
563
564 /* Calculate temporary vectorial force */
565 tx = _mm_mul_ps(fscal,dx00);
566 ty = _mm_mul_ps(fscal,dy00);
567 tz = _mm_mul_ps(fscal,dz00);
568
569 /* Update vectorial force */
570 fix0 = _mm_add_ps(fix0,tx);
571 fiy0 = _mm_add_ps(fiy0,ty);
572 fiz0 = _mm_add_ps(fiz0,tz);
573
574 fjptrA = f+j_coord_offsetA;
575 fjptrB = f+j_coord_offsetB;
576 fjptrC = f+j_coord_offsetC;
577 fjptrD = f+j_coord_offsetD;
578 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
579
580 }
581
582 /* Inner loop uses 39 flops */
583 }
584
585 if(jidx<j_index_end)
586 {
587
588 /* Get j neighbor index, and coordinate index */
589 jnrlistA = jjnr[jidx];
590 jnrlistB = jjnr[jidx+1];
591 jnrlistC = jjnr[jidx+2];
592 jnrlistD = jjnr[jidx+3];
593 /* Sign of each element will be negative for non-real atoms.
594 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
595 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
596 */
597 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
598 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
599 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
600 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
601 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
602 j_coord_offsetA = DIM3*jnrA;
603 j_coord_offsetB = DIM3*jnrB;
604 j_coord_offsetC = DIM3*jnrC;
605 j_coord_offsetD = DIM3*jnrD;
606
607 /* load j atom coordinates */
608 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
609 x+j_coord_offsetC,x+j_coord_offsetD,
610 &jx0,&jy0,&jz0);
611
612 /* Calculate displacement vector */
613 dx00 = _mm_sub_ps(ix0,jx0);
614 dy00 = _mm_sub_ps(iy0,jy0);
615 dz00 = _mm_sub_ps(iz0,jz0);
616
617 /* Calculate squared distance and things based on it */
618 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
619
620 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
621
622 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
623
624 /* Load parameters for j particles */
625 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
626 charge+jnrC+0,charge+jnrD+0);
627
628 /**************************
629 * CALCULATE INTERACTIONS *
630 **************************/
631
632 if (gmx_mm_any_lt(rsq00,rcutoff2))
633 {
634
635 r00 = _mm_mul_ps(rsq00,rinv00);
636 r00 = _mm_andnot_ps(dummy_mask,r00);
637
638 /* Compute parameters for interactions between i and j atoms */
639 qq00 = _mm_mul_ps(iq0,jq0);
640
641 /* EWALD ELECTROSTATICS */
642
643 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
644 ewrt = _mm_mul_ps(r00,ewtabscale);
645 ewitab = _mm_cvttps_epi32(ewrt);
646 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
647 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
648 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
649 &ewtabF,&ewtabFn);
650 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
651 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
652
653 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
654
655 fscal = felec;
656
657 fscal = _mm_and_ps(fscal,cutoff_mask);
658
659 fscal = _mm_andnot_ps(dummy_mask,fscal);
660
661 /* Calculate temporary vectorial force */
662 tx = _mm_mul_ps(fscal,dx00);
663 ty = _mm_mul_ps(fscal,dy00);
664 tz = _mm_mul_ps(fscal,dz00);
665
666 /* Update vectorial force */
667 fix0 = _mm_add_ps(fix0,tx);
668 fiy0 = _mm_add_ps(fiy0,ty);
669 fiz0 = _mm_add_ps(fiz0,tz);
670
671 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
672 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
673 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
674 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
675 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
676
677 }
678
679 /* Inner loop uses 40 flops */
680 }
681
682 /* End of innermost loop */
683
684 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
685 f+i_coord_offset,fshift+i_shift_offset);
686
687 /* Increment number of inner iterations */
688 inneriter += j_index_end - j_index_start;
689
690 /* Outer loop uses 7 flops */
691 }
692
693 /* Increment number of outer iterations */
694 outeriter += nri;
695
696 /* Update outer/inner flops */
697
698 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*40)(nrnb)->n[eNR_NBKERNEL_ELEC_F] += outeriter*7 + inneriter*
40
;
699}