Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecRFCut_VdwBhamSh_GeomW3P1_c.c
Location:line 439, column 5
Description:Value stored to 'sh_vdw_invrcut6' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwBhamSh_GeomW3P1_VF_c
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: Buckingham
53 * Geometry: Water3-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecRFCut_VdwBhamSh_GeomW3P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83 real velec,felec,velecsum,facel,crf,krf,krf2;
84 real *charge;
85 int nvdwtype;
86 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
87 int *vdwtype;
88 real *vdwparam;
89
90 x = xx[0];
91 f = ff[0];
92
93 nri = nlist->nri;
94 iinr = nlist->iinr;
95 jindex = nlist->jindex;
96 jjnr = nlist->jjnr;
97 shiftidx = nlist->shift;
98 gid = nlist->gid;
99 shiftvec = fr->shift_vec[0];
100 fshift = fr->fshift[0];
101 facel = fr->epsfac;
102 charge = mdatoms->chargeA;
103 krf = fr->ic->k_rf;
104 krf2 = krf*2.0;
105 crf = fr->ic->c_rf;
106 nvdwtype = fr->ntype;
107 vdwparam = fr->nbfp;
108 vdwtype = mdatoms->typeA;
109
110 /* Setup water-specific parameters */
111 inr = nlist->iinr[0];
112 iq0 = facel*charge[inr+0];
113 iq1 = facel*charge[inr+1];
114 iq2 = facel*charge[inr+2];
115 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
116
117 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
118 rcutoff = fr->rcoulomb;
119 rcutoff2 = rcutoff*rcutoff;
120
121 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
122 rvdw = fr->rvdw;
123
124 outeriter = 0;
125 inneriter = 0;
126
127 /* Start outer loop over neighborlists */
128 for(iidx=0; iidx<nri; iidx++)
129 {
130 /* Load shift vector for this list */
131 i_shift_offset = DIM3*shiftidx[iidx];
132 shX = shiftvec[i_shift_offset+XX0];
133 shY = shiftvec[i_shift_offset+YY1];
134 shZ = shiftvec[i_shift_offset+ZZ2];
135
136 /* Load limits for loop over neighbors */
137 j_index_start = jindex[iidx];
138 j_index_end = jindex[iidx+1];
139
140 /* Get outer coordinate index */
141 inr = iinr[iidx];
142 i_coord_offset = DIM3*inr;
143
144 /* Load i particle coords and add shift vector */
145 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
146 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
147 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
148 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
149 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
150 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
151 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
152 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
153 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
154
155 fix0 = 0.0;
156 fiy0 = 0.0;
157 fiz0 = 0.0;
158 fix1 = 0.0;
159 fiy1 = 0.0;
160 fiz1 = 0.0;
161 fix2 = 0.0;
162 fiy2 = 0.0;
163 fiz2 = 0.0;
164
165 /* Reset potential sums */
166 velecsum = 0.0;
167 vvdwsum = 0.0;
168
169 /* Start inner kernel loop */
170 for(jidx=j_index_start; jidx<j_index_end; jidx++)
171 {
172 /* Get j neighbor index, and coordinate index */
173 jnr = jjnr[jidx];
174 j_coord_offset = DIM3*jnr;
175
176 /* load j atom coordinates */
177 jx0 = x[j_coord_offset+DIM3*0+XX0];
178 jy0 = x[j_coord_offset+DIM3*0+YY1];
179 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
180
181 /* Calculate displacement vector */
182 dx00 = ix0 - jx0;
183 dy00 = iy0 - jy0;
184 dz00 = iz0 - jz0;
185 dx10 = ix1 - jx0;
186 dy10 = iy1 - jy0;
187 dz10 = iz1 - jz0;
188 dx20 = ix2 - jx0;
189 dy20 = iy2 - jy0;
190 dz20 = iz2 - jz0;
191
192 /* Calculate squared distance and things based on it */
193 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
194 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
195 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
196
197 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
198 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
199 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
200
201 rinvsq00 = rinv00*rinv00;
202 rinvsq10 = rinv10*rinv10;
203 rinvsq20 = rinv20*rinv20;
204
205 /* Load parameters for j particles */
206 jq0 = charge[jnr+0];
207 vdwjidx0 = 3*vdwtype[jnr+0];
208
209 /**************************
210 * CALCULATE INTERACTIONS *
211 **************************/
212
213 if (rsq00<rcutoff2)
214 {
215
216 r00 = rsq00*rinv00;
217
218 qq00 = iq0*jq0;
219 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
220 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
221 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
222
223 /* REACTION-FIELD ELECTROSTATICS */
224 velec = qq00*(rinv00+krf*rsq00-crf);
225 felec = qq00*(rinv00*rinvsq00-krf2);
226
227 /* BUCKINGHAM DISPERSION/REPULSION */
228 rinvsix = rinvsq00*rinvsq00*rinvsq00;
229 vvdw6 = c6_00*rinvsix;
230 br = cexp2_00*r00;
231 vvdwexp = cexp1_00*exp(-br);
232 vvdw = (vvdwexp-cexp1_00*exp(-cexp2_00*rvdw)) - (vvdw6 - c6_00*sh_vdw_invrcut6)*(1.0/6.0);
233 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
234
235 /* Update potential sums from outer loop */
236 velecsum += velec;
237 vvdwsum += vvdw;
238
239 fscal = felec+fvdw;
240
241 /* Calculate temporary vectorial force */
242 tx = fscal*dx00;
243 ty = fscal*dy00;
244 tz = fscal*dz00;
245
246 /* Update vectorial force */
247 fix0 += tx;
248 fiy0 += ty;
249 fiz0 += tz;
250 f[j_coord_offset+DIM3*0+XX0] -= tx;
251 f[j_coord_offset+DIM3*0+YY1] -= ty;
252 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
253
254 }
255
256 /**************************
257 * CALCULATE INTERACTIONS *
258 **************************/
259
260 if (rsq10<rcutoff2)
261 {
262
263 qq10 = iq1*jq0;
264
265 /* REACTION-FIELD ELECTROSTATICS */
266 velec = qq10*(rinv10+krf*rsq10-crf);
267 felec = qq10*(rinv10*rinvsq10-krf2);
268
269 /* Update potential sums from outer loop */
270 velecsum += velec;
271
272 fscal = felec;
273
274 /* Calculate temporary vectorial force */
275 tx = fscal*dx10;
276 ty = fscal*dy10;
277 tz = fscal*dz10;
278
279 /* Update vectorial force */
280 fix1 += tx;
281 fiy1 += ty;
282 fiz1 += tz;
283 f[j_coord_offset+DIM3*0+XX0] -= tx;
284 f[j_coord_offset+DIM3*0+YY1] -= ty;
285 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
286
287 }
288
289 /**************************
290 * CALCULATE INTERACTIONS *
291 **************************/
292
293 if (rsq20<rcutoff2)
294 {
295
296 qq20 = iq2*jq0;
297
298 /* REACTION-FIELD ELECTROSTATICS */
299 velec = qq20*(rinv20+krf*rsq20-crf);
300 felec = qq20*(rinv20*rinvsq20-krf2);
301
302 /* Update potential sums from outer loop */
303 velecsum += velec;
304
305 fscal = felec;
306
307 /* Calculate temporary vectorial force */
308 tx = fscal*dx20;
309 ty = fscal*dy20;
310 tz = fscal*dz20;
311
312 /* Update vectorial force */
313 fix2 += tx;
314 fiy2 += ty;
315 fiz2 += tz;
316 f[j_coord_offset+DIM3*0+XX0] -= tx;
317 f[j_coord_offset+DIM3*0+YY1] -= ty;
318 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
319
320 }
321
322 /* Inner loop uses 166 flops */
323 }
324 /* End of innermost loop */
325
326 tx = ty = tz = 0;
327 f[i_coord_offset+DIM3*0+XX0] += fix0;
328 f[i_coord_offset+DIM3*0+YY1] += fiy0;
329 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
330 tx += fix0;
331 ty += fiy0;
332 tz += fiz0;
333 f[i_coord_offset+DIM3*1+XX0] += fix1;
334 f[i_coord_offset+DIM3*1+YY1] += fiy1;
335 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
336 tx += fix1;
337 ty += fiy1;
338 tz += fiz1;
339 f[i_coord_offset+DIM3*2+XX0] += fix2;
340 f[i_coord_offset+DIM3*2+YY1] += fiy2;
341 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
342 tx += fix2;
343 ty += fiy2;
344 tz += fiz2;
345 fshift[i_shift_offset+XX0] += tx;
346 fshift[i_shift_offset+YY1] += ty;
347 fshift[i_shift_offset+ZZ2] += tz;
348
349 ggid = gid[iidx];
350 /* Update potential energies */
351 kernel_data->energygrp_elec[ggid] += velecsum;
352 kernel_data->energygrp_vdw[ggid] += vvdwsum;
353
354 /* Increment number of inner iterations */
355 inneriter += j_index_end - j_index_start;
356
357 /* Outer loop uses 32 flops */
358 }
359
360 /* Increment number of outer iterations */
361 outeriter += nri;
362
363 /* Update outer/inner flops */
364
365 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*166)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_VF] += outeriter*32 + inneriter
*166
;
366}
367/*
368 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwBhamSh_GeomW3P1_F_c
369 * Electrostatics interaction: ReactionField
370 * VdW interaction: Buckingham
371 * Geometry: Water3-Particle
372 * Calculate force/pot: Force
373 */
374void
375nb_kernel_ElecRFCut_VdwBhamSh_GeomW3P1_F_c
376 (t_nblist * gmx_restrict__restrict nlist,
377 rvec * gmx_restrict__restrict xx,
378 rvec * gmx_restrict__restrict ff,
379 t_forcerec * gmx_restrict__restrict fr,
380 t_mdatoms * gmx_restrict__restrict mdatoms,
381 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
382 t_nrnb * gmx_restrict__restrict nrnb)
383{
384 int i_shift_offset,i_coord_offset,j_coord_offset;
385 int j_index_start,j_index_end;
386 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
387 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
388 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
389 real *shiftvec,*fshift,*x,*f;
390 int vdwioffset0;
391 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
392 int vdwioffset1;
393 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
394 int vdwioffset2;
395 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
396 int vdwjidx0;
397 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
398 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
399 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
400 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
401 real velec,felec,velecsum,facel,crf,krf,krf2;
402 real *charge;
403 int nvdwtype;
404 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
405 int *vdwtype;
406 real *vdwparam;
407
408 x = xx[0];
409 f = ff[0];
410
411 nri = nlist->nri;
412 iinr = nlist->iinr;
413 jindex = nlist->jindex;
414 jjnr = nlist->jjnr;
415 shiftidx = nlist->shift;
416 gid = nlist->gid;
417 shiftvec = fr->shift_vec[0];
418 fshift = fr->fshift[0];
419 facel = fr->epsfac;
420 charge = mdatoms->chargeA;
421 krf = fr->ic->k_rf;
422 krf2 = krf*2.0;
423 crf = fr->ic->c_rf;
424 nvdwtype = fr->ntype;
425 vdwparam = fr->nbfp;
426 vdwtype = mdatoms->typeA;
427
428 /* Setup water-specific parameters */
429 inr = nlist->iinr[0];
430 iq0 = facel*charge[inr+0];
431 iq1 = facel*charge[inr+1];
432 iq2 = facel*charge[inr+2];
433 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
434
435 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
436 rcutoff = fr->rcoulomb;
437 rcutoff2 = rcutoff*rcutoff;
438
439 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
Value stored to 'sh_vdw_invrcut6' is never read
440 rvdw = fr->rvdw;
441
442 outeriter = 0;
443 inneriter = 0;
444
445 /* Start outer loop over neighborlists */
446 for(iidx=0; iidx<nri; iidx++)
447 {
448 /* Load shift vector for this list */
449 i_shift_offset = DIM3*shiftidx[iidx];
450 shX = shiftvec[i_shift_offset+XX0];
451 shY = shiftvec[i_shift_offset+YY1];
452 shZ = shiftvec[i_shift_offset+ZZ2];
453
454 /* Load limits for loop over neighbors */
455 j_index_start = jindex[iidx];
456 j_index_end = jindex[iidx+1];
457
458 /* Get outer coordinate index */
459 inr = iinr[iidx];
460 i_coord_offset = DIM3*inr;
461
462 /* Load i particle coords and add shift vector */
463 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
464 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
465 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
466 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
467 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
468 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
469 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
470 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
471 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
472
473 fix0 = 0.0;
474 fiy0 = 0.0;
475 fiz0 = 0.0;
476 fix1 = 0.0;
477 fiy1 = 0.0;
478 fiz1 = 0.0;
479 fix2 = 0.0;
480 fiy2 = 0.0;
481 fiz2 = 0.0;
482
483 /* Start inner kernel loop */
484 for(jidx=j_index_start; jidx<j_index_end; jidx++)
485 {
486 /* Get j neighbor index, and coordinate index */
487 jnr = jjnr[jidx];
488 j_coord_offset = DIM3*jnr;
489
490 /* load j atom coordinates */
491 jx0 = x[j_coord_offset+DIM3*0+XX0];
492 jy0 = x[j_coord_offset+DIM3*0+YY1];
493 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
494
495 /* Calculate displacement vector */
496 dx00 = ix0 - jx0;
497 dy00 = iy0 - jy0;
498 dz00 = iz0 - jz0;
499 dx10 = ix1 - jx0;
500 dy10 = iy1 - jy0;
501 dz10 = iz1 - jz0;
502 dx20 = ix2 - jx0;
503 dy20 = iy2 - jy0;
504 dz20 = iz2 - jz0;
505
506 /* Calculate squared distance and things based on it */
507 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
508 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
509 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
510
511 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
512 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
513 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
514
515 rinvsq00 = rinv00*rinv00;
516 rinvsq10 = rinv10*rinv10;
517 rinvsq20 = rinv20*rinv20;
518
519 /* Load parameters for j particles */
520 jq0 = charge[jnr+0];
521 vdwjidx0 = 3*vdwtype[jnr+0];
522
523 /**************************
524 * CALCULATE INTERACTIONS *
525 **************************/
526
527 if (rsq00<rcutoff2)
528 {
529
530 r00 = rsq00*rinv00;
531
532 qq00 = iq0*jq0;
533 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
534 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
535 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
536
537 /* REACTION-FIELD ELECTROSTATICS */
538 felec = qq00*(rinv00*rinvsq00-krf2);
539
540 /* BUCKINGHAM DISPERSION/REPULSION */
541 rinvsix = rinvsq00*rinvsq00*rinvsq00;
542 vvdw6 = c6_00*rinvsix;
543 br = cexp2_00*r00;
544 vvdwexp = cexp1_00*exp(-br);
545 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
546
547 fscal = felec+fvdw;
548
549 /* Calculate temporary vectorial force */
550 tx = fscal*dx00;
551 ty = fscal*dy00;
552 tz = fscal*dz00;
553
554 /* Update vectorial force */
555 fix0 += tx;
556 fiy0 += ty;
557 fiz0 += tz;
558 f[j_coord_offset+DIM3*0+XX0] -= tx;
559 f[j_coord_offset+DIM3*0+YY1] -= ty;
560 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
561
562 }
563
564 /**************************
565 * CALCULATE INTERACTIONS *
566 **************************/
567
568 if (rsq10<rcutoff2)
569 {
570
571 qq10 = iq1*jq0;
572
573 /* REACTION-FIELD ELECTROSTATICS */
574 felec = qq10*(rinv10*rinvsq10-krf2);
575
576 fscal = felec;
577
578 /* Calculate temporary vectorial force */
579 tx = fscal*dx10;
580 ty = fscal*dy10;
581 tz = fscal*dz10;
582
583 /* Update vectorial force */
584 fix1 += tx;
585 fiy1 += ty;
586 fiz1 += tz;
587 f[j_coord_offset+DIM3*0+XX0] -= tx;
588 f[j_coord_offset+DIM3*0+YY1] -= ty;
589 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
590
591 }
592
593 /**************************
594 * CALCULATE INTERACTIONS *
595 **************************/
596
597 if (rsq20<rcutoff2)
598 {
599
600 qq20 = iq2*jq0;
601
602 /* REACTION-FIELD ELECTROSTATICS */
603 felec = qq20*(rinv20*rinvsq20-krf2);
604
605 fscal = felec;
606
607 /* Calculate temporary vectorial force */
608 tx = fscal*dx20;
609 ty = fscal*dy20;
610 tz = fscal*dz20;
611
612 /* Update vectorial force */
613 fix2 += tx;
614 fiy2 += ty;
615 fiz2 += tz;
616 f[j_coord_offset+DIM3*0+XX0] -= tx;
617 f[j_coord_offset+DIM3*0+YY1] -= ty;
618 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
619
620 }
621
622 /* Inner loop uses 117 flops */
623 }
624 /* End of innermost loop */
625
626 tx = ty = tz = 0;
627 f[i_coord_offset+DIM3*0+XX0] += fix0;
628 f[i_coord_offset+DIM3*0+YY1] += fiy0;
629 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
630 tx += fix0;
631 ty += fiy0;
632 tz += fiz0;
633 f[i_coord_offset+DIM3*1+XX0] += fix1;
634 f[i_coord_offset+DIM3*1+YY1] += fiy1;
635 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
636 tx += fix1;
637 ty += fiy1;
638 tz += fiz1;
639 f[i_coord_offset+DIM3*2+XX0] += fix2;
640 f[i_coord_offset+DIM3*2+YY1] += fiy2;
641 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
642 tx += fix2;
643 ty += fiy2;
644 tz += fiz2;
645 fshift[i_shift_offset+XX0] += tx;
646 fshift[i_shift_offset+YY1] += ty;
647 fshift[i_shift_offset+ZZ2] += tz;
648
649 /* Increment number of inner iterations */
650 inneriter += j_index_end - j_index_start;
651
652 /* Outer loop uses 30 flops */
653 }
654
655 /* Increment number of outer iterations */
656 outeriter += nri;
657
658 /* Update outer/inner flops */
659
660 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*117)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_F] += outeriter*30 + inneriter
*117
;
661}