Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEw_VdwCSTab_GeomW3W3_c.c
Location:line 749, column 5
Description:Value stored to 'ewtabhalfspace' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwCSTab_GeomW3W3_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: CubicSplineTable
53 * Geometry: Water3-Water3
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEw_VdwCSTab_GeomW3W3_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 int vdwjidx1;
81 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
82 int vdwjidx2;
83 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
84 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
85 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
86 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
87 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
88 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
89 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
90 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
91 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
92 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
93 real velec,felec,velecsum,facel,crf,krf,krf2;
94 real *charge;
95 int nvdwtype;
96 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
97 int *vdwtype;
98 real *vdwparam;
99 int vfitab;
100 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
101 real *vftab;
102 int ewitab;
103 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
104 real *ewtab;
105
106 x = xx[0];
107 f = ff[0];
108
109 nri = nlist->nri;
110 iinr = nlist->iinr;
111 jindex = nlist->jindex;
112 jjnr = nlist->jjnr;
113 shiftidx = nlist->shift;
114 gid = nlist->gid;
115 shiftvec = fr->shift_vec[0];
116 fshift = fr->fshift[0];
117 facel = fr->epsfac;
118 charge = mdatoms->chargeA;
119 nvdwtype = fr->ntype;
120 vdwparam = fr->nbfp;
121 vdwtype = mdatoms->typeA;
122
123 vftab = kernel_data->table_vdw->data;
124 vftabscale = kernel_data->table_vdw->scale;
125
126 sh_ewald = fr->ic->sh_ewald;
127 ewtab = fr->ic->tabq_coul_FDV0;
128 ewtabscale = fr->ic->tabq_scale;
129 ewtabhalfspace = 0.5/ewtabscale;
130
131 /* Setup water-specific parameters */
132 inr = nlist->iinr[0];
133 iq0 = facel*charge[inr+0];
134 iq1 = facel*charge[inr+1];
135 iq2 = facel*charge[inr+2];
136 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
137
138 jq0 = charge[inr+0];
139 jq1 = charge[inr+1];
140 jq2 = charge[inr+2];
141 vdwjidx0 = 2*vdwtype[inr+0];
142 qq00 = iq0*jq0;
143 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
144 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
145 qq01 = iq0*jq1;
146 qq02 = iq0*jq2;
147 qq10 = iq1*jq0;
148 qq11 = iq1*jq1;
149 qq12 = iq1*jq2;
150 qq20 = iq2*jq0;
151 qq21 = iq2*jq1;
152 qq22 = iq2*jq2;
153
154 outeriter = 0;
155 inneriter = 0;
156
157 /* Start outer loop over neighborlists */
158 for(iidx=0; iidx<nri; iidx++)
159 {
160 /* Load shift vector for this list */
161 i_shift_offset = DIM3*shiftidx[iidx];
162 shX = shiftvec[i_shift_offset+XX0];
163 shY = shiftvec[i_shift_offset+YY1];
164 shZ = shiftvec[i_shift_offset+ZZ2];
165
166 /* Load limits for loop over neighbors */
167 j_index_start = jindex[iidx];
168 j_index_end = jindex[iidx+1];
169
170 /* Get outer coordinate index */
171 inr = iinr[iidx];
172 i_coord_offset = DIM3*inr;
173
174 /* Load i particle coords and add shift vector */
175 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
176 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
177 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
178 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
179 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
180 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
181 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
182 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
183 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
184
185 fix0 = 0.0;
186 fiy0 = 0.0;
187 fiz0 = 0.0;
188 fix1 = 0.0;
189 fiy1 = 0.0;
190 fiz1 = 0.0;
191 fix2 = 0.0;
192 fiy2 = 0.0;
193 fiz2 = 0.0;
194
195 /* Reset potential sums */
196 velecsum = 0.0;
197 vvdwsum = 0.0;
198
199 /* Start inner kernel loop */
200 for(jidx=j_index_start; jidx<j_index_end; jidx++)
201 {
202 /* Get j neighbor index, and coordinate index */
203 jnr = jjnr[jidx];
204 j_coord_offset = DIM3*jnr;
205
206 /* load j atom coordinates */
207 jx0 = x[j_coord_offset+DIM3*0+XX0];
208 jy0 = x[j_coord_offset+DIM3*0+YY1];
209 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
210 jx1 = x[j_coord_offset+DIM3*1+XX0];
211 jy1 = x[j_coord_offset+DIM3*1+YY1];
212 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
213 jx2 = x[j_coord_offset+DIM3*2+XX0];
214 jy2 = x[j_coord_offset+DIM3*2+YY1];
215 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
216
217 /* Calculate displacement vector */
218 dx00 = ix0 - jx0;
219 dy00 = iy0 - jy0;
220 dz00 = iz0 - jz0;
221 dx01 = ix0 - jx1;
222 dy01 = iy0 - jy1;
223 dz01 = iz0 - jz1;
224 dx02 = ix0 - jx2;
225 dy02 = iy0 - jy2;
226 dz02 = iz0 - jz2;
227 dx10 = ix1 - jx0;
228 dy10 = iy1 - jy0;
229 dz10 = iz1 - jz0;
230 dx11 = ix1 - jx1;
231 dy11 = iy1 - jy1;
232 dz11 = iz1 - jz1;
233 dx12 = ix1 - jx2;
234 dy12 = iy1 - jy2;
235 dz12 = iz1 - jz2;
236 dx20 = ix2 - jx0;
237 dy20 = iy2 - jy0;
238 dz20 = iz2 - jz0;
239 dx21 = ix2 - jx1;
240 dy21 = iy2 - jy1;
241 dz21 = iz2 - jz1;
242 dx22 = ix2 - jx2;
243 dy22 = iy2 - jy2;
244 dz22 = iz2 - jz2;
245
246 /* Calculate squared distance and things based on it */
247 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
248 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
249 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
250 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
251 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
252 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
253 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
254 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
255 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
256
257 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
258 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
259 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
260 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
261 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
262 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
263 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
264 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
265 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
266
267 rinvsq00 = rinv00*rinv00;
268 rinvsq01 = rinv01*rinv01;
269 rinvsq02 = rinv02*rinv02;
270 rinvsq10 = rinv10*rinv10;
271 rinvsq11 = rinv11*rinv11;
272 rinvsq12 = rinv12*rinv12;
273 rinvsq20 = rinv20*rinv20;
274 rinvsq21 = rinv21*rinv21;
275 rinvsq22 = rinv22*rinv22;
276
277 /**************************
278 * CALCULATE INTERACTIONS *
279 **************************/
280
281 r00 = rsq00*rinv00;
282
283 /* Calculate table index by multiplying r with table scale and truncate to integer */
284 rt = r00*vftabscale;
285 vfitab = rt;
286 vfeps = rt-vfitab;
287 vfitab = 2*4*vfitab;
288
289 /* EWALD ELECTROSTATICS */
290
291 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
292 ewrt = r00*ewtabscale;
293 ewitab = ewrt;
294 eweps = ewrt-ewitab;
295 ewitab = 4*ewitab;
296 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
297 velec = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
298 felec = qq00*rinv00*(rinvsq00-felec);
299
300 /* CUBIC SPLINE TABLE DISPERSION */
301 vfitab += 0;
302 Y = vftab[vfitab];
303 F = vftab[vfitab+1];
304 Geps = vfeps*vftab[vfitab+2];
305 Heps2 = vfeps*vfeps*vftab[vfitab+3];
306 Fp = F+Geps+Heps2;
307 VV = Y+vfeps*Fp;
308 vvdw6 = c6_00*VV;
309 FF = Fp+Geps+2.0*Heps2;
310 fvdw6 = c6_00*FF;
311
312 /* CUBIC SPLINE TABLE REPULSION */
313 Y = vftab[vfitab+4];
314 F = vftab[vfitab+5];
315 Geps = vfeps*vftab[vfitab+6];
316 Heps2 = vfeps*vfeps*vftab[vfitab+7];
317 Fp = F+Geps+Heps2;
318 VV = Y+vfeps*Fp;
319 vvdw12 = c12_00*VV;
320 FF = Fp+Geps+2.0*Heps2;
321 fvdw12 = c12_00*FF;
322 vvdw = vvdw12+vvdw6;
323 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
324
325 /* Update potential sums from outer loop */
326 velecsum += velec;
327 vvdwsum += vvdw;
328
329 fscal = felec+fvdw;
330
331 /* Calculate temporary vectorial force */
332 tx = fscal*dx00;
333 ty = fscal*dy00;
334 tz = fscal*dz00;
335
336 /* Update vectorial force */
337 fix0 += tx;
338 fiy0 += ty;
339 fiz0 += tz;
340 f[j_coord_offset+DIM3*0+XX0] -= tx;
341 f[j_coord_offset+DIM3*0+YY1] -= ty;
342 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
343
344 /**************************
345 * CALCULATE INTERACTIONS *
346 **************************/
347
348 r01 = rsq01*rinv01;
349
350 /* EWALD ELECTROSTATICS */
351
352 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
353 ewrt = r01*ewtabscale;
354 ewitab = ewrt;
355 eweps = ewrt-ewitab;
356 ewitab = 4*ewitab;
357 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
358 velec = qq01*(rinv01-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
359 felec = qq01*rinv01*(rinvsq01-felec);
360
361 /* Update potential sums from outer loop */
362 velecsum += velec;
363
364 fscal = felec;
365
366 /* Calculate temporary vectorial force */
367 tx = fscal*dx01;
368 ty = fscal*dy01;
369 tz = fscal*dz01;
370
371 /* Update vectorial force */
372 fix0 += tx;
373 fiy0 += ty;
374 fiz0 += tz;
375 f[j_coord_offset+DIM3*1+XX0] -= tx;
376 f[j_coord_offset+DIM3*1+YY1] -= ty;
377 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
378
379 /**************************
380 * CALCULATE INTERACTIONS *
381 **************************/
382
383 r02 = rsq02*rinv02;
384
385 /* EWALD ELECTROSTATICS */
386
387 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
388 ewrt = r02*ewtabscale;
389 ewitab = ewrt;
390 eweps = ewrt-ewitab;
391 ewitab = 4*ewitab;
392 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
393 velec = qq02*(rinv02-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
394 felec = qq02*rinv02*(rinvsq02-felec);
395
396 /* Update potential sums from outer loop */
397 velecsum += velec;
398
399 fscal = felec;
400
401 /* Calculate temporary vectorial force */
402 tx = fscal*dx02;
403 ty = fscal*dy02;
404 tz = fscal*dz02;
405
406 /* Update vectorial force */
407 fix0 += tx;
408 fiy0 += ty;
409 fiz0 += tz;
410 f[j_coord_offset+DIM3*2+XX0] -= tx;
411 f[j_coord_offset+DIM3*2+YY1] -= ty;
412 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
413
414 /**************************
415 * CALCULATE INTERACTIONS *
416 **************************/
417
418 r10 = rsq10*rinv10;
419
420 /* EWALD ELECTROSTATICS */
421
422 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
423 ewrt = r10*ewtabscale;
424 ewitab = ewrt;
425 eweps = ewrt-ewitab;
426 ewitab = 4*ewitab;
427 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
428 velec = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
429 felec = qq10*rinv10*(rinvsq10-felec);
430
431 /* Update potential sums from outer loop */
432 velecsum += velec;
433
434 fscal = felec;
435
436 /* Calculate temporary vectorial force */
437 tx = fscal*dx10;
438 ty = fscal*dy10;
439 tz = fscal*dz10;
440
441 /* Update vectorial force */
442 fix1 += tx;
443 fiy1 += ty;
444 fiz1 += tz;
445 f[j_coord_offset+DIM3*0+XX0] -= tx;
446 f[j_coord_offset+DIM3*0+YY1] -= ty;
447 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
448
449 /**************************
450 * CALCULATE INTERACTIONS *
451 **************************/
452
453 r11 = rsq11*rinv11;
454
455 /* EWALD ELECTROSTATICS */
456
457 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
458 ewrt = r11*ewtabscale;
459 ewitab = ewrt;
460 eweps = ewrt-ewitab;
461 ewitab = 4*ewitab;
462 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
463 velec = qq11*(rinv11-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
464 felec = qq11*rinv11*(rinvsq11-felec);
465
466 /* Update potential sums from outer loop */
467 velecsum += velec;
468
469 fscal = felec;
470
471 /* Calculate temporary vectorial force */
472 tx = fscal*dx11;
473 ty = fscal*dy11;
474 tz = fscal*dz11;
475
476 /* Update vectorial force */
477 fix1 += tx;
478 fiy1 += ty;
479 fiz1 += tz;
480 f[j_coord_offset+DIM3*1+XX0] -= tx;
481 f[j_coord_offset+DIM3*1+YY1] -= ty;
482 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
483
484 /**************************
485 * CALCULATE INTERACTIONS *
486 **************************/
487
488 r12 = rsq12*rinv12;
489
490 /* EWALD ELECTROSTATICS */
491
492 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
493 ewrt = r12*ewtabscale;
494 ewitab = ewrt;
495 eweps = ewrt-ewitab;
496 ewitab = 4*ewitab;
497 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
498 velec = qq12*(rinv12-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
499 felec = qq12*rinv12*(rinvsq12-felec);
500
501 /* Update potential sums from outer loop */
502 velecsum += velec;
503
504 fscal = felec;
505
506 /* Calculate temporary vectorial force */
507 tx = fscal*dx12;
508 ty = fscal*dy12;
509 tz = fscal*dz12;
510
511 /* Update vectorial force */
512 fix1 += tx;
513 fiy1 += ty;
514 fiz1 += tz;
515 f[j_coord_offset+DIM3*2+XX0] -= tx;
516 f[j_coord_offset+DIM3*2+YY1] -= ty;
517 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
518
519 /**************************
520 * CALCULATE INTERACTIONS *
521 **************************/
522
523 r20 = rsq20*rinv20;
524
525 /* EWALD ELECTROSTATICS */
526
527 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
528 ewrt = r20*ewtabscale;
529 ewitab = ewrt;
530 eweps = ewrt-ewitab;
531 ewitab = 4*ewitab;
532 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
533 velec = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
534 felec = qq20*rinv20*(rinvsq20-felec);
535
536 /* Update potential sums from outer loop */
537 velecsum += velec;
538
539 fscal = felec;
540
541 /* Calculate temporary vectorial force */
542 tx = fscal*dx20;
543 ty = fscal*dy20;
544 tz = fscal*dz20;
545
546 /* Update vectorial force */
547 fix2 += tx;
548 fiy2 += ty;
549 fiz2 += tz;
550 f[j_coord_offset+DIM3*0+XX0] -= tx;
551 f[j_coord_offset+DIM3*0+YY1] -= ty;
552 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
553
554 /**************************
555 * CALCULATE INTERACTIONS *
556 **************************/
557
558 r21 = rsq21*rinv21;
559
560 /* EWALD ELECTROSTATICS */
561
562 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
563 ewrt = r21*ewtabscale;
564 ewitab = ewrt;
565 eweps = ewrt-ewitab;
566 ewitab = 4*ewitab;
567 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
568 velec = qq21*(rinv21-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
569 felec = qq21*rinv21*(rinvsq21-felec);
570
571 /* Update potential sums from outer loop */
572 velecsum += velec;
573
574 fscal = felec;
575
576 /* Calculate temporary vectorial force */
577 tx = fscal*dx21;
578 ty = fscal*dy21;
579 tz = fscal*dz21;
580
581 /* Update vectorial force */
582 fix2 += tx;
583 fiy2 += ty;
584 fiz2 += tz;
585 f[j_coord_offset+DIM3*1+XX0] -= tx;
586 f[j_coord_offset+DIM3*1+YY1] -= ty;
587 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
588
589 /**************************
590 * CALCULATE INTERACTIONS *
591 **************************/
592
593 r22 = rsq22*rinv22;
594
595 /* EWALD ELECTROSTATICS */
596
597 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
598 ewrt = r22*ewtabscale;
599 ewitab = ewrt;
600 eweps = ewrt-ewitab;
601 ewitab = 4*ewitab;
602 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
603 velec = qq22*(rinv22-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
604 felec = qq22*rinv22*(rinvsq22-felec);
605
606 /* Update potential sums from outer loop */
607 velecsum += velec;
608
609 fscal = felec;
610
611 /* Calculate temporary vectorial force */
612 tx = fscal*dx22;
613 ty = fscal*dy22;
614 tz = fscal*dz22;
615
616 /* Update vectorial force */
617 fix2 += tx;
618 fiy2 += ty;
619 fiz2 += tz;
620 f[j_coord_offset+DIM3*2+XX0] -= tx;
621 f[j_coord_offset+DIM3*2+YY1] -= ty;
622 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
623
624 /* Inner loop uses 393 flops */
625 }
626 /* End of innermost loop */
627
628 tx = ty = tz = 0;
629 f[i_coord_offset+DIM3*0+XX0] += fix0;
630 f[i_coord_offset+DIM3*0+YY1] += fiy0;
631 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
632 tx += fix0;
633 ty += fiy0;
634 tz += fiz0;
635 f[i_coord_offset+DIM3*1+XX0] += fix1;
636 f[i_coord_offset+DIM3*1+YY1] += fiy1;
637 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
638 tx += fix1;
639 ty += fiy1;
640 tz += fiz1;
641 f[i_coord_offset+DIM3*2+XX0] += fix2;
642 f[i_coord_offset+DIM3*2+YY1] += fiy2;
643 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
644 tx += fix2;
645 ty += fiy2;
646 tz += fiz2;
647 fshift[i_shift_offset+XX0] += tx;
648 fshift[i_shift_offset+YY1] += ty;
649 fshift[i_shift_offset+ZZ2] += tz;
650
651 ggid = gid[iidx];
652 /* Update potential energies */
653 kernel_data->energygrp_elec[ggid] += velecsum;
654 kernel_data->energygrp_vdw[ggid] += vvdwsum;
655
656 /* Increment number of inner iterations */
657 inneriter += j_index_end - j_index_start;
658
659 /* Outer loop uses 32 flops */
660 }
661
662 /* Increment number of outer iterations */
663 outeriter += nri;
664
665 /* Update outer/inner flops */
666
667 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*32 + inneriter*393)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_VF] += outeriter*32 +
inneriter*393
;
668}
669/*
670 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwCSTab_GeomW3W3_F_c
671 * Electrostatics interaction: Ewald
672 * VdW interaction: CubicSplineTable
673 * Geometry: Water3-Water3
674 * Calculate force/pot: Force
675 */
676void
677nb_kernel_ElecEw_VdwCSTab_GeomW3W3_F_c
678 (t_nblist * gmx_restrict__restrict nlist,
679 rvec * gmx_restrict__restrict xx,
680 rvec * gmx_restrict__restrict ff,
681 t_forcerec * gmx_restrict__restrict fr,
682 t_mdatoms * gmx_restrict__restrict mdatoms,
683 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
684 t_nrnb * gmx_restrict__restrict nrnb)
685{
686 int i_shift_offset,i_coord_offset,j_coord_offset;
687 int j_index_start,j_index_end;
688 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
689 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
690 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
691 real *shiftvec,*fshift,*x,*f;
692 int vdwioffset0;
693 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
694 int vdwioffset1;
695 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
696 int vdwioffset2;
697 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
698 int vdwjidx0;
699 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
700 int vdwjidx1;
701 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
702 int vdwjidx2;
703 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
704 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
705 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
706 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
707 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
708 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
709 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
710 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
711 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
712 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
713 real velec,felec,velecsum,facel,crf,krf,krf2;
714 real *charge;
715 int nvdwtype;
716 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
717 int *vdwtype;
718 real *vdwparam;
719 int vfitab;
720 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
721 real *vftab;
722 int ewitab;
723 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
724 real *ewtab;
725
726 x = xx[0];
727 f = ff[0];
728
729 nri = nlist->nri;
730 iinr = nlist->iinr;
731 jindex = nlist->jindex;
732 jjnr = nlist->jjnr;
733 shiftidx = nlist->shift;
734 gid = nlist->gid;
735 shiftvec = fr->shift_vec[0];
736 fshift = fr->fshift[0];
737 facel = fr->epsfac;
738 charge = mdatoms->chargeA;
739 nvdwtype = fr->ntype;
740 vdwparam = fr->nbfp;
741 vdwtype = mdatoms->typeA;
742
743 vftab = kernel_data->table_vdw->data;
744 vftabscale = kernel_data->table_vdw->scale;
745
746 sh_ewald = fr->ic->sh_ewald;
747 ewtab = fr->ic->tabq_coul_F;
748 ewtabscale = fr->ic->tabq_scale;
749 ewtabhalfspace = 0.5/ewtabscale;
Value stored to 'ewtabhalfspace' is never read
750
751 /* Setup water-specific parameters */
752 inr = nlist->iinr[0];
753 iq0 = facel*charge[inr+0];
754 iq1 = facel*charge[inr+1];
755 iq2 = facel*charge[inr+2];
756 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
757
758 jq0 = charge[inr+0];
759 jq1 = charge[inr+1];
760 jq2 = charge[inr+2];
761 vdwjidx0 = 2*vdwtype[inr+0];
762 qq00 = iq0*jq0;
763 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
764 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
765 qq01 = iq0*jq1;
766 qq02 = iq0*jq2;
767 qq10 = iq1*jq0;
768 qq11 = iq1*jq1;
769 qq12 = iq1*jq2;
770 qq20 = iq2*jq0;
771 qq21 = iq2*jq1;
772 qq22 = iq2*jq2;
773
774 outeriter = 0;
775 inneriter = 0;
776
777 /* Start outer loop over neighborlists */
778 for(iidx=0; iidx<nri; iidx++)
779 {
780 /* Load shift vector for this list */
781 i_shift_offset = DIM3*shiftidx[iidx];
782 shX = shiftvec[i_shift_offset+XX0];
783 shY = shiftvec[i_shift_offset+YY1];
784 shZ = shiftvec[i_shift_offset+ZZ2];
785
786 /* Load limits for loop over neighbors */
787 j_index_start = jindex[iidx];
788 j_index_end = jindex[iidx+1];
789
790 /* Get outer coordinate index */
791 inr = iinr[iidx];
792 i_coord_offset = DIM3*inr;
793
794 /* Load i particle coords and add shift vector */
795 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
796 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
797 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
798 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
799 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
800 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
801 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
802 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
803 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
804
805 fix0 = 0.0;
806 fiy0 = 0.0;
807 fiz0 = 0.0;
808 fix1 = 0.0;
809 fiy1 = 0.0;
810 fiz1 = 0.0;
811 fix2 = 0.0;
812 fiy2 = 0.0;
813 fiz2 = 0.0;
814
815 /* Start inner kernel loop */
816 for(jidx=j_index_start; jidx<j_index_end; jidx++)
817 {
818 /* Get j neighbor index, and coordinate index */
819 jnr = jjnr[jidx];
820 j_coord_offset = DIM3*jnr;
821
822 /* load j atom coordinates */
823 jx0 = x[j_coord_offset+DIM3*0+XX0];
824 jy0 = x[j_coord_offset+DIM3*0+YY1];
825 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
826 jx1 = x[j_coord_offset+DIM3*1+XX0];
827 jy1 = x[j_coord_offset+DIM3*1+YY1];
828 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
829 jx2 = x[j_coord_offset+DIM3*2+XX0];
830 jy2 = x[j_coord_offset+DIM3*2+YY1];
831 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
832
833 /* Calculate displacement vector */
834 dx00 = ix0 - jx0;
835 dy00 = iy0 - jy0;
836 dz00 = iz0 - jz0;
837 dx01 = ix0 - jx1;
838 dy01 = iy0 - jy1;
839 dz01 = iz0 - jz1;
840 dx02 = ix0 - jx2;
841 dy02 = iy0 - jy2;
842 dz02 = iz0 - jz2;
843 dx10 = ix1 - jx0;
844 dy10 = iy1 - jy0;
845 dz10 = iz1 - jz0;
846 dx11 = ix1 - jx1;
847 dy11 = iy1 - jy1;
848 dz11 = iz1 - jz1;
849 dx12 = ix1 - jx2;
850 dy12 = iy1 - jy2;
851 dz12 = iz1 - jz2;
852 dx20 = ix2 - jx0;
853 dy20 = iy2 - jy0;
854 dz20 = iz2 - jz0;
855 dx21 = ix2 - jx1;
856 dy21 = iy2 - jy1;
857 dz21 = iz2 - jz1;
858 dx22 = ix2 - jx2;
859 dy22 = iy2 - jy2;
860 dz22 = iz2 - jz2;
861
862 /* Calculate squared distance and things based on it */
863 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
864 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
865 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
866 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
867 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
868 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
869 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
870 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
871 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
872
873 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
874 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
875 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
876 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
877 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
878 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
879 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
880 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
881 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
882
883 rinvsq00 = rinv00*rinv00;
884 rinvsq01 = rinv01*rinv01;
885 rinvsq02 = rinv02*rinv02;
886 rinvsq10 = rinv10*rinv10;
887 rinvsq11 = rinv11*rinv11;
888 rinvsq12 = rinv12*rinv12;
889 rinvsq20 = rinv20*rinv20;
890 rinvsq21 = rinv21*rinv21;
891 rinvsq22 = rinv22*rinv22;
892
893 /**************************
894 * CALCULATE INTERACTIONS *
895 **************************/
896
897 r00 = rsq00*rinv00;
898
899 /* Calculate table index by multiplying r with table scale and truncate to integer */
900 rt = r00*vftabscale;
901 vfitab = rt;
902 vfeps = rt-vfitab;
903 vfitab = 2*4*vfitab;
904
905 /* EWALD ELECTROSTATICS */
906
907 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
908 ewrt = r00*ewtabscale;
909 ewitab = ewrt;
910 eweps = ewrt-ewitab;
911 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
912 felec = qq00*rinv00*(rinvsq00-felec);
913
914 /* CUBIC SPLINE TABLE DISPERSION */
915 vfitab += 0;
916 F = vftab[vfitab+1];
917 Geps = vfeps*vftab[vfitab+2];
918 Heps2 = vfeps*vfeps*vftab[vfitab+3];
919 Fp = F+Geps+Heps2;
920 FF = Fp+Geps+2.0*Heps2;
921 fvdw6 = c6_00*FF;
922
923 /* CUBIC SPLINE TABLE REPULSION */
924 F = vftab[vfitab+5];
925 Geps = vfeps*vftab[vfitab+6];
926 Heps2 = vfeps*vfeps*vftab[vfitab+7];
927 Fp = F+Geps+Heps2;
928 FF = Fp+Geps+2.0*Heps2;
929 fvdw12 = c12_00*FF;
930 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
931
932 fscal = felec+fvdw;
933
934 /* Calculate temporary vectorial force */
935 tx = fscal*dx00;
936 ty = fscal*dy00;
937 tz = fscal*dz00;
938
939 /* Update vectorial force */
940 fix0 += tx;
941 fiy0 += ty;
942 fiz0 += tz;
943 f[j_coord_offset+DIM3*0+XX0] -= tx;
944 f[j_coord_offset+DIM3*0+YY1] -= ty;
945 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
946
947 /**************************
948 * CALCULATE INTERACTIONS *
949 **************************/
950
951 r01 = rsq01*rinv01;
952
953 /* EWALD ELECTROSTATICS */
954
955 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
956 ewrt = r01*ewtabscale;
957 ewitab = ewrt;
958 eweps = ewrt-ewitab;
959 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
960 felec = qq01*rinv01*(rinvsq01-felec);
961
962 fscal = felec;
963
964 /* Calculate temporary vectorial force */
965 tx = fscal*dx01;
966 ty = fscal*dy01;
967 tz = fscal*dz01;
968
969 /* Update vectorial force */
970 fix0 += tx;
971 fiy0 += ty;
972 fiz0 += tz;
973 f[j_coord_offset+DIM3*1+XX0] -= tx;
974 f[j_coord_offset+DIM3*1+YY1] -= ty;
975 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
976
977 /**************************
978 * CALCULATE INTERACTIONS *
979 **************************/
980
981 r02 = rsq02*rinv02;
982
983 /* EWALD ELECTROSTATICS */
984
985 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
986 ewrt = r02*ewtabscale;
987 ewitab = ewrt;
988 eweps = ewrt-ewitab;
989 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
990 felec = qq02*rinv02*(rinvsq02-felec);
991
992 fscal = felec;
993
994 /* Calculate temporary vectorial force */
995 tx = fscal*dx02;
996 ty = fscal*dy02;
997 tz = fscal*dz02;
998
999 /* Update vectorial force */
1000 fix0 += tx;
1001 fiy0 += ty;
1002 fiz0 += tz;
1003 f[j_coord_offset+DIM3*2+XX0] -= tx;
1004 f[j_coord_offset+DIM3*2+YY1] -= ty;
1005 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1006
1007 /**************************
1008 * CALCULATE INTERACTIONS *
1009 **************************/
1010
1011 r10 = rsq10*rinv10;
1012
1013 /* EWALD ELECTROSTATICS */
1014
1015 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1016 ewrt = r10*ewtabscale;
1017 ewitab = ewrt;
1018 eweps = ewrt-ewitab;
1019 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1020 felec = qq10*rinv10*(rinvsq10-felec);
1021
1022 fscal = felec;
1023
1024 /* Calculate temporary vectorial force */
1025 tx = fscal*dx10;
1026 ty = fscal*dy10;
1027 tz = fscal*dz10;
1028
1029 /* Update vectorial force */
1030 fix1 += tx;
1031 fiy1 += ty;
1032 fiz1 += tz;
1033 f[j_coord_offset+DIM3*0+XX0] -= tx;
1034 f[j_coord_offset+DIM3*0+YY1] -= ty;
1035 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1036
1037 /**************************
1038 * CALCULATE INTERACTIONS *
1039 **************************/
1040
1041 r11 = rsq11*rinv11;
1042
1043 /* EWALD ELECTROSTATICS */
1044
1045 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1046 ewrt = r11*ewtabscale;
1047 ewitab = ewrt;
1048 eweps = ewrt-ewitab;
1049 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1050 felec = qq11*rinv11*(rinvsq11-felec);
1051
1052 fscal = felec;
1053
1054 /* Calculate temporary vectorial force */
1055 tx = fscal*dx11;
1056 ty = fscal*dy11;
1057 tz = fscal*dz11;
1058
1059 /* Update vectorial force */
1060 fix1 += tx;
1061 fiy1 += ty;
1062 fiz1 += tz;
1063 f[j_coord_offset+DIM3*1+XX0] -= tx;
1064 f[j_coord_offset+DIM3*1+YY1] -= ty;
1065 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1066
1067 /**************************
1068 * CALCULATE INTERACTIONS *
1069 **************************/
1070
1071 r12 = rsq12*rinv12;
1072
1073 /* EWALD ELECTROSTATICS */
1074
1075 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1076 ewrt = r12*ewtabscale;
1077 ewitab = ewrt;
1078 eweps = ewrt-ewitab;
1079 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1080 felec = qq12*rinv12*(rinvsq12-felec);
1081
1082 fscal = felec;
1083
1084 /* Calculate temporary vectorial force */
1085 tx = fscal*dx12;
1086 ty = fscal*dy12;
1087 tz = fscal*dz12;
1088
1089 /* Update vectorial force */
1090 fix1 += tx;
1091 fiy1 += ty;
1092 fiz1 += tz;
1093 f[j_coord_offset+DIM3*2+XX0] -= tx;
1094 f[j_coord_offset+DIM3*2+YY1] -= ty;
1095 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1096
1097 /**************************
1098 * CALCULATE INTERACTIONS *
1099 **************************/
1100
1101 r20 = rsq20*rinv20;
1102
1103 /* EWALD ELECTROSTATICS */
1104
1105 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1106 ewrt = r20*ewtabscale;
1107 ewitab = ewrt;
1108 eweps = ewrt-ewitab;
1109 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1110 felec = qq20*rinv20*(rinvsq20-felec);
1111
1112 fscal = felec;
1113
1114 /* Calculate temporary vectorial force */
1115 tx = fscal*dx20;
1116 ty = fscal*dy20;
1117 tz = fscal*dz20;
1118
1119 /* Update vectorial force */
1120 fix2 += tx;
1121 fiy2 += ty;
1122 fiz2 += tz;
1123 f[j_coord_offset+DIM3*0+XX0] -= tx;
1124 f[j_coord_offset+DIM3*0+YY1] -= ty;
1125 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1126
1127 /**************************
1128 * CALCULATE INTERACTIONS *
1129 **************************/
1130
1131 r21 = rsq21*rinv21;
1132
1133 /* EWALD ELECTROSTATICS */
1134
1135 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1136 ewrt = r21*ewtabscale;
1137 ewitab = ewrt;
1138 eweps = ewrt-ewitab;
1139 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1140 felec = qq21*rinv21*(rinvsq21-felec);
1141
1142 fscal = felec;
1143
1144 /* Calculate temporary vectorial force */
1145 tx = fscal*dx21;
1146 ty = fscal*dy21;
1147 tz = fscal*dz21;
1148
1149 /* Update vectorial force */
1150 fix2 += tx;
1151 fiy2 += ty;
1152 fiz2 += tz;
1153 f[j_coord_offset+DIM3*1+XX0] -= tx;
1154 f[j_coord_offset+DIM3*1+YY1] -= ty;
1155 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1156
1157 /**************************
1158 * CALCULATE INTERACTIONS *
1159 **************************/
1160
1161 r22 = rsq22*rinv22;
1162
1163 /* EWALD ELECTROSTATICS */
1164
1165 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1166 ewrt = r22*ewtabscale;
1167 ewitab = ewrt;
1168 eweps = ewrt-ewitab;
1169 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1170 felec = qq22*rinv22*(rinvsq22-felec);
1171
1172 fscal = felec;
1173
1174 /* Calculate temporary vectorial force */
1175 tx = fscal*dx22;
1176 ty = fscal*dy22;
1177 tz = fscal*dz22;
1178
1179 /* Update vectorial force */
1180 fix2 += tx;
1181 fiy2 += ty;
1182 fiz2 += tz;
1183 f[j_coord_offset+DIM3*2+XX0] -= tx;
1184 f[j_coord_offset+DIM3*2+YY1] -= ty;
1185 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1186
1187 /* Inner loop uses 322 flops */
1188 }
1189 /* End of innermost loop */
1190
1191 tx = ty = tz = 0;
1192 f[i_coord_offset+DIM3*0+XX0] += fix0;
1193 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1194 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1195 tx += fix0;
1196 ty += fiy0;
1197 tz += fiz0;
1198 f[i_coord_offset+DIM3*1+XX0] += fix1;
1199 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1200 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1201 tx += fix1;
1202 ty += fiy1;
1203 tz += fiz1;
1204 f[i_coord_offset+DIM3*2+XX0] += fix2;
1205 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1206 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1207 tx += fix2;
1208 ty += fiy2;
1209 tz += fiz2;
1210 fshift[i_shift_offset+XX0] += tx;
1211 fshift[i_shift_offset+YY1] += ty;
1212 fshift[i_shift_offset+ZZ2] += tz;
1213
1214 /* Increment number of inner iterations */
1215 inneriter += j_index_end - j_index_start;
1216
1217 /* Outer loop uses 30 flops */
1218 }
1219
1220 /* Increment number of outer iterations */
1221 outeriter += nri;
1222
1223 /* Update outer/inner flops */
1224
1225 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*30 + inneriter*322)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_F] += outeriter*30 + inneriter
*322
;
1226}