Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_sse4_1_single.c
Location:line 822, column 5
Description:Value stored to 'j_coord_offsetA' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_sse4_1_single
54 * Electrostatics interaction: CubicSplineTable
55 * VdW interaction: LennardJones
56 * Geometry: Water4-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwioffset1;
88 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89 int vdwioffset2;
90 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91 int vdwioffset3;
92 __m128 ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
94 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98 __m128 dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
100 real *charge;
101 int nvdwtype;
102 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103 int *vdwtype;
104 real *vdwparam;
105 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
106 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
107 __m128i vfitab;
108 __m128i ifour = _mm_set1_epi32(4);
109 __m128 rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
110 real *vftab;
111 __m128 dummy_mask,cutoff_mask;
112 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
113 __m128 one = _mm_set1_ps(1.0);
114 __m128 two = _mm_set1_ps(2.0);
115 x = xx[0];
116 f = ff[0];
117
118 nri = nlist->nri;
119 iinr = nlist->iinr;
120 jindex = nlist->jindex;
121 jjnr = nlist->jjnr;
122 shiftidx = nlist->shift;
123 gid = nlist->gid;
124 shiftvec = fr->shift_vec[0];
125 fshift = fr->fshift[0];
126 facel = _mm_set1_ps(fr->epsfac);
127 charge = mdatoms->chargeA;
128 nvdwtype = fr->ntype;
129 vdwparam = fr->nbfp;
130 vdwtype = mdatoms->typeA;
131
132 vftab = kernel_data->table_elec->data;
133 vftabscale = _mm_set1_ps(kernel_data->table_elec->scale);
134
135 /* Setup water-specific parameters */
136 inr = nlist->iinr[0];
137 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
138 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
139 iq3 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
140 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
141
142 /* Avoid stupid compiler warnings */
143 jnrA = jnrB = jnrC = jnrD = 0;
144 j_coord_offsetA = 0;
145 j_coord_offsetB = 0;
146 j_coord_offsetC = 0;
147 j_coord_offsetD = 0;
148
149 outeriter = 0;
150 inneriter = 0;
151
152 for(iidx=0;iidx<4*DIM3;iidx++)
153 {
154 scratch[iidx] = 0.0;
155 }
156
157 /* Start outer loop over neighborlists */
158 for(iidx=0; iidx<nri; iidx++)
159 {
160 /* Load shift vector for this list */
161 i_shift_offset = DIM3*shiftidx[iidx];
162
163 /* Load limits for loop over neighbors */
164 j_index_start = jindex[iidx];
165 j_index_end = jindex[iidx+1];
166
167 /* Get outer coordinate index */
168 inr = iinr[iidx];
169 i_coord_offset = DIM3*inr;
170
171 /* Load i particle coords and add shift vector */
172 gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
173 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
174
175 fix0 = _mm_setzero_ps();
176 fiy0 = _mm_setzero_ps();
177 fiz0 = _mm_setzero_ps();
178 fix1 = _mm_setzero_ps();
179 fiy1 = _mm_setzero_ps();
180 fiz1 = _mm_setzero_ps();
181 fix2 = _mm_setzero_ps();
182 fiy2 = _mm_setzero_ps();
183 fiz2 = _mm_setzero_ps();
184 fix3 = _mm_setzero_ps();
185 fiy3 = _mm_setzero_ps();
186 fiz3 = _mm_setzero_ps();
187
188 /* Reset potential sums */
189 velecsum = _mm_setzero_ps();
190 vvdwsum = _mm_setzero_ps();
191
192 /* Start inner kernel loop */
193 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
194 {
195
196 /* Get j neighbor index, and coordinate index */
197 jnrA = jjnr[jidx];
198 jnrB = jjnr[jidx+1];
199 jnrC = jjnr[jidx+2];
200 jnrD = jjnr[jidx+3];
201 j_coord_offsetA = DIM3*jnrA;
202 j_coord_offsetB = DIM3*jnrB;
203 j_coord_offsetC = DIM3*jnrC;
204 j_coord_offsetD = DIM3*jnrD;
205
206 /* load j atom coordinates */
207 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
208 x+j_coord_offsetC,x+j_coord_offsetD,
209 &jx0,&jy0,&jz0);
210
211 /* Calculate displacement vector */
212 dx00 = _mm_sub_ps(ix0,jx0);
213 dy00 = _mm_sub_ps(iy0,jy0);
214 dz00 = _mm_sub_ps(iz0,jz0);
215 dx10 = _mm_sub_ps(ix1,jx0);
216 dy10 = _mm_sub_ps(iy1,jy0);
217 dz10 = _mm_sub_ps(iz1,jz0);
218 dx20 = _mm_sub_ps(ix2,jx0);
219 dy20 = _mm_sub_ps(iy2,jy0);
220 dz20 = _mm_sub_ps(iz2,jz0);
221 dx30 = _mm_sub_ps(ix3,jx0);
222 dy30 = _mm_sub_ps(iy3,jy0);
223 dz30 = _mm_sub_ps(iz3,jz0);
224
225 /* Calculate squared distance and things based on it */
226 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
227 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
228 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
229 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
230
231 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
232 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
233 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
234
235 rinvsq00 = gmx_mm_inv_psgmx_simd_inv_f(rsq00);
236
237 /* Load parameters for j particles */
238 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
239 charge+jnrC+0,charge+jnrD+0);
240 vdwjidx0A = 2*vdwtype[jnrA+0];
241 vdwjidx0B = 2*vdwtype[jnrB+0];
242 vdwjidx0C = 2*vdwtype[jnrC+0];
243 vdwjidx0D = 2*vdwtype[jnrD+0];
244
245 fjx0 = _mm_setzero_ps();
246 fjy0 = _mm_setzero_ps();
247 fjz0 = _mm_setzero_ps();
248
249 /**************************
250 * CALCULATE INTERACTIONS *
251 **************************/
252
253 /* Compute parameters for interactions between i and j atoms */
254 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
255 vdwparam+vdwioffset0+vdwjidx0B,
256 vdwparam+vdwioffset0+vdwjidx0C,
257 vdwparam+vdwioffset0+vdwjidx0D,
258 &c6_00,&c12_00);
259
260 /* LENNARD-JONES DISPERSION/REPULSION */
261
262 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
263 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
264 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
265 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
266 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
267
268 /* Update potential sum for this i atom from the interaction with this j atom. */
269 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
270
271 fscal = fvdw;
272
273 /* Calculate temporary vectorial force */
274 tx = _mm_mul_ps(fscal,dx00);
275 ty = _mm_mul_ps(fscal,dy00);
276 tz = _mm_mul_ps(fscal,dz00);
277
278 /* Update vectorial force */
279 fix0 = _mm_add_ps(fix0,tx);
280 fiy0 = _mm_add_ps(fiy0,ty);
281 fiz0 = _mm_add_ps(fiz0,tz);
282
283 fjx0 = _mm_add_ps(fjx0,tx);
284 fjy0 = _mm_add_ps(fjy0,ty);
285 fjz0 = _mm_add_ps(fjz0,tz);
286
287 /**************************
288 * CALCULATE INTERACTIONS *
289 **************************/
290
291 r10 = _mm_mul_ps(rsq10,rinv10);
292
293 /* Compute parameters for interactions between i and j atoms */
294 qq10 = _mm_mul_ps(iq1,jq0);
295
296 /* Calculate table index by multiplying r with table scale and truncate to integer */
297 rt = _mm_mul_ps(r10,vftabscale);
298 vfitab = _mm_cvttps_epi32(rt);
299 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
300 vfitab = _mm_slli_epi32(vfitab,2);
301
302 /* CUBIC SPLINE TABLE ELECTROSTATICS */
303 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
304 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
305 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
306 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
307 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
308 Heps = _mm_mul_ps(vfeps,H);
309 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
310 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
311 velec = _mm_mul_ps(qq10,VV);
312 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
313 felec = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
314
315 /* Update potential sum for this i atom from the interaction with this j atom. */
316 velecsum = _mm_add_ps(velecsum,velec);
317
318 fscal = felec;
319
320 /* Calculate temporary vectorial force */
321 tx = _mm_mul_ps(fscal,dx10);
322 ty = _mm_mul_ps(fscal,dy10);
323 tz = _mm_mul_ps(fscal,dz10);
324
325 /* Update vectorial force */
326 fix1 = _mm_add_ps(fix1,tx);
327 fiy1 = _mm_add_ps(fiy1,ty);
328 fiz1 = _mm_add_ps(fiz1,tz);
329
330 fjx0 = _mm_add_ps(fjx0,tx);
331 fjy0 = _mm_add_ps(fjy0,ty);
332 fjz0 = _mm_add_ps(fjz0,tz);
333
334 /**************************
335 * CALCULATE INTERACTIONS *
336 **************************/
337
338 r20 = _mm_mul_ps(rsq20,rinv20);
339
340 /* Compute parameters for interactions between i and j atoms */
341 qq20 = _mm_mul_ps(iq2,jq0);
342
343 /* Calculate table index by multiplying r with table scale and truncate to integer */
344 rt = _mm_mul_ps(r20,vftabscale);
345 vfitab = _mm_cvttps_epi32(rt);
346 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
347 vfitab = _mm_slli_epi32(vfitab,2);
348
349 /* CUBIC SPLINE TABLE ELECTROSTATICS */
350 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
351 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
352 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
353 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
354 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
355 Heps = _mm_mul_ps(vfeps,H);
356 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
357 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
358 velec = _mm_mul_ps(qq20,VV);
359 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
360 felec = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
361
362 /* Update potential sum for this i atom from the interaction with this j atom. */
363 velecsum = _mm_add_ps(velecsum,velec);
364
365 fscal = felec;
366
367 /* Calculate temporary vectorial force */
368 tx = _mm_mul_ps(fscal,dx20);
369 ty = _mm_mul_ps(fscal,dy20);
370 tz = _mm_mul_ps(fscal,dz20);
371
372 /* Update vectorial force */
373 fix2 = _mm_add_ps(fix2,tx);
374 fiy2 = _mm_add_ps(fiy2,ty);
375 fiz2 = _mm_add_ps(fiz2,tz);
376
377 fjx0 = _mm_add_ps(fjx0,tx);
378 fjy0 = _mm_add_ps(fjy0,ty);
379 fjz0 = _mm_add_ps(fjz0,tz);
380
381 /**************************
382 * CALCULATE INTERACTIONS *
383 **************************/
384
385 r30 = _mm_mul_ps(rsq30,rinv30);
386
387 /* Compute parameters for interactions between i and j atoms */
388 qq30 = _mm_mul_ps(iq3,jq0);
389
390 /* Calculate table index by multiplying r with table scale and truncate to integer */
391 rt = _mm_mul_ps(r30,vftabscale);
392 vfitab = _mm_cvttps_epi32(rt);
393 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
394 vfitab = _mm_slli_epi32(vfitab,2);
395
396 /* CUBIC SPLINE TABLE ELECTROSTATICS */
397 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
398 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
399 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
400 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
401 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
402 Heps = _mm_mul_ps(vfeps,H);
403 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
404 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
405 velec = _mm_mul_ps(qq30,VV);
406 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
407 felec = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
408
409 /* Update potential sum for this i atom from the interaction with this j atom. */
410 velecsum = _mm_add_ps(velecsum,velec);
411
412 fscal = felec;
413
414 /* Calculate temporary vectorial force */
415 tx = _mm_mul_ps(fscal,dx30);
416 ty = _mm_mul_ps(fscal,dy30);
417 tz = _mm_mul_ps(fscal,dz30);
418
419 /* Update vectorial force */
420 fix3 = _mm_add_ps(fix3,tx);
421 fiy3 = _mm_add_ps(fiy3,ty);
422 fiz3 = _mm_add_ps(fiz3,tz);
423
424 fjx0 = _mm_add_ps(fjx0,tx);
425 fjy0 = _mm_add_ps(fjy0,ty);
426 fjz0 = _mm_add_ps(fjz0,tz);
427
428 fjptrA = f+j_coord_offsetA;
429 fjptrB = f+j_coord_offsetB;
430 fjptrC = f+j_coord_offsetC;
431 fjptrD = f+j_coord_offsetD;
432
433 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
434
435 /* Inner loop uses 161 flops */
436 }
437
438 if(jidx<j_index_end)
439 {
440
441 /* Get j neighbor index, and coordinate index */
442 jnrlistA = jjnr[jidx];
443 jnrlistB = jjnr[jidx+1];
444 jnrlistC = jjnr[jidx+2];
445 jnrlistD = jjnr[jidx+3];
446 /* Sign of each element will be negative for non-real atoms.
447 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
448 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
449 */
450 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
451 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
452 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
453 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
454 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
455 j_coord_offsetA = DIM3*jnrA;
456 j_coord_offsetB = DIM3*jnrB;
457 j_coord_offsetC = DIM3*jnrC;
458 j_coord_offsetD = DIM3*jnrD;
459
460 /* load j atom coordinates */
461 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
462 x+j_coord_offsetC,x+j_coord_offsetD,
463 &jx0,&jy0,&jz0);
464
465 /* Calculate displacement vector */
466 dx00 = _mm_sub_ps(ix0,jx0);
467 dy00 = _mm_sub_ps(iy0,jy0);
468 dz00 = _mm_sub_ps(iz0,jz0);
469 dx10 = _mm_sub_ps(ix1,jx0);
470 dy10 = _mm_sub_ps(iy1,jy0);
471 dz10 = _mm_sub_ps(iz1,jz0);
472 dx20 = _mm_sub_ps(ix2,jx0);
473 dy20 = _mm_sub_ps(iy2,jy0);
474 dz20 = _mm_sub_ps(iz2,jz0);
475 dx30 = _mm_sub_ps(ix3,jx0);
476 dy30 = _mm_sub_ps(iy3,jy0);
477 dz30 = _mm_sub_ps(iz3,jz0);
478
479 /* Calculate squared distance and things based on it */
480 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
481 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
482 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
483 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
484
485 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
486 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
487 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
488
489 rinvsq00 = gmx_mm_inv_psgmx_simd_inv_f(rsq00);
490
491 /* Load parameters for j particles */
492 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
493 charge+jnrC+0,charge+jnrD+0);
494 vdwjidx0A = 2*vdwtype[jnrA+0];
495 vdwjidx0B = 2*vdwtype[jnrB+0];
496 vdwjidx0C = 2*vdwtype[jnrC+0];
497 vdwjidx0D = 2*vdwtype[jnrD+0];
498
499 fjx0 = _mm_setzero_ps();
500 fjy0 = _mm_setzero_ps();
501 fjz0 = _mm_setzero_ps();
502
503 /**************************
504 * CALCULATE INTERACTIONS *
505 **************************/
506
507 /* Compute parameters for interactions between i and j atoms */
508 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
509 vdwparam+vdwioffset0+vdwjidx0B,
510 vdwparam+vdwioffset0+vdwjidx0C,
511 vdwparam+vdwioffset0+vdwjidx0D,
512 &c6_00,&c12_00);
513
514 /* LENNARD-JONES DISPERSION/REPULSION */
515
516 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
517 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
518 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
519 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
520 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
521
522 /* Update potential sum for this i atom from the interaction with this j atom. */
523 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
524 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
525
526 fscal = fvdw;
527
528 fscal = _mm_andnot_ps(dummy_mask,fscal);
529
530 /* Calculate temporary vectorial force */
531 tx = _mm_mul_ps(fscal,dx00);
532 ty = _mm_mul_ps(fscal,dy00);
533 tz = _mm_mul_ps(fscal,dz00);
534
535 /* Update vectorial force */
536 fix0 = _mm_add_ps(fix0,tx);
537 fiy0 = _mm_add_ps(fiy0,ty);
538 fiz0 = _mm_add_ps(fiz0,tz);
539
540 fjx0 = _mm_add_ps(fjx0,tx);
541 fjy0 = _mm_add_ps(fjy0,ty);
542 fjz0 = _mm_add_ps(fjz0,tz);
543
544 /**************************
545 * CALCULATE INTERACTIONS *
546 **************************/
547
548 r10 = _mm_mul_ps(rsq10,rinv10);
549 r10 = _mm_andnot_ps(dummy_mask,r10);
550
551 /* Compute parameters for interactions between i and j atoms */
552 qq10 = _mm_mul_ps(iq1,jq0);
553
554 /* Calculate table index by multiplying r with table scale and truncate to integer */
555 rt = _mm_mul_ps(r10,vftabscale);
556 vfitab = _mm_cvttps_epi32(rt);
557 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
558 vfitab = _mm_slli_epi32(vfitab,2);
559
560 /* CUBIC SPLINE TABLE ELECTROSTATICS */
561 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
562 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
563 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
564 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
565 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
566 Heps = _mm_mul_ps(vfeps,H);
567 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
568 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
569 velec = _mm_mul_ps(qq10,VV);
570 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
571 felec = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
572
573 /* Update potential sum for this i atom from the interaction with this j atom. */
574 velec = _mm_andnot_ps(dummy_mask,velec);
575 velecsum = _mm_add_ps(velecsum,velec);
576
577 fscal = felec;
578
579 fscal = _mm_andnot_ps(dummy_mask,fscal);
580
581 /* Calculate temporary vectorial force */
582 tx = _mm_mul_ps(fscal,dx10);
583 ty = _mm_mul_ps(fscal,dy10);
584 tz = _mm_mul_ps(fscal,dz10);
585
586 /* Update vectorial force */
587 fix1 = _mm_add_ps(fix1,tx);
588 fiy1 = _mm_add_ps(fiy1,ty);
589 fiz1 = _mm_add_ps(fiz1,tz);
590
591 fjx0 = _mm_add_ps(fjx0,tx);
592 fjy0 = _mm_add_ps(fjy0,ty);
593 fjz0 = _mm_add_ps(fjz0,tz);
594
595 /**************************
596 * CALCULATE INTERACTIONS *
597 **************************/
598
599 r20 = _mm_mul_ps(rsq20,rinv20);
600 r20 = _mm_andnot_ps(dummy_mask,r20);
601
602 /* Compute parameters for interactions between i and j atoms */
603 qq20 = _mm_mul_ps(iq2,jq0);
604
605 /* Calculate table index by multiplying r with table scale and truncate to integer */
606 rt = _mm_mul_ps(r20,vftabscale);
607 vfitab = _mm_cvttps_epi32(rt);
608 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
609 vfitab = _mm_slli_epi32(vfitab,2);
610
611 /* CUBIC SPLINE TABLE ELECTROSTATICS */
612 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
613 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
614 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
615 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
616 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
617 Heps = _mm_mul_ps(vfeps,H);
618 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
619 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
620 velec = _mm_mul_ps(qq20,VV);
621 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
622 felec = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
623
624 /* Update potential sum for this i atom from the interaction with this j atom. */
625 velec = _mm_andnot_ps(dummy_mask,velec);
626 velecsum = _mm_add_ps(velecsum,velec);
627
628 fscal = felec;
629
630 fscal = _mm_andnot_ps(dummy_mask,fscal);
631
632 /* Calculate temporary vectorial force */
633 tx = _mm_mul_ps(fscal,dx20);
634 ty = _mm_mul_ps(fscal,dy20);
635 tz = _mm_mul_ps(fscal,dz20);
636
637 /* Update vectorial force */
638 fix2 = _mm_add_ps(fix2,tx);
639 fiy2 = _mm_add_ps(fiy2,ty);
640 fiz2 = _mm_add_ps(fiz2,tz);
641
642 fjx0 = _mm_add_ps(fjx0,tx);
643 fjy0 = _mm_add_ps(fjy0,ty);
644 fjz0 = _mm_add_ps(fjz0,tz);
645
646 /**************************
647 * CALCULATE INTERACTIONS *
648 **************************/
649
650 r30 = _mm_mul_ps(rsq30,rinv30);
651 r30 = _mm_andnot_ps(dummy_mask,r30);
652
653 /* Compute parameters for interactions between i and j atoms */
654 qq30 = _mm_mul_ps(iq3,jq0);
655
656 /* Calculate table index by multiplying r with table scale and truncate to integer */
657 rt = _mm_mul_ps(r30,vftabscale);
658 vfitab = _mm_cvttps_epi32(rt);
659 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
660 vfitab = _mm_slli_epi32(vfitab,2);
661
662 /* CUBIC SPLINE TABLE ELECTROSTATICS */
663 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
664 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
665 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
666 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
667 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
668 Heps = _mm_mul_ps(vfeps,H);
669 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
670 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
671 velec = _mm_mul_ps(qq30,VV);
672 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
673 felec = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
674
675 /* Update potential sum for this i atom from the interaction with this j atom. */
676 velec = _mm_andnot_ps(dummy_mask,velec);
677 velecsum = _mm_add_ps(velecsum,velec);
678
679 fscal = felec;
680
681 fscal = _mm_andnot_ps(dummy_mask,fscal);
682
683 /* Calculate temporary vectorial force */
684 tx = _mm_mul_ps(fscal,dx30);
685 ty = _mm_mul_ps(fscal,dy30);
686 tz = _mm_mul_ps(fscal,dz30);
687
688 /* Update vectorial force */
689 fix3 = _mm_add_ps(fix3,tx);
690 fiy3 = _mm_add_ps(fiy3,ty);
691 fiz3 = _mm_add_ps(fiz3,tz);
692
693 fjx0 = _mm_add_ps(fjx0,tx);
694 fjy0 = _mm_add_ps(fjy0,ty);
695 fjz0 = _mm_add_ps(fjz0,tz);
696
697 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
698 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
699 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
700 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
701
702 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
703
704 /* Inner loop uses 164 flops */
705 }
706
707 /* End of innermost loop */
708
709 gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
710 f+i_coord_offset,fshift+i_shift_offset);
711
712 ggid = gid[iidx];
713 /* Update potential energies */
714 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
715 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
716
717 /* Increment number of inner iterations */
718 inneriter += j_index_end - j_index_start;
719
720 /* Outer loop uses 26 flops */
721 }
722
723 /* Increment number of outer iterations */
724 outeriter += nri;
725
726 /* Update outer/inner flops */
727
728 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*164)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_VF] += outeriter*26 + inneriter
*164
;
729}
730/*
731 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_sse4_1_single
732 * Electrostatics interaction: CubicSplineTable
733 * VdW interaction: LennardJones
734 * Geometry: Water4-Particle
735 * Calculate force/pot: Force
736 */
737void
738nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_sse4_1_single
739 (t_nblist * gmx_restrict nlist,
740 rvec * gmx_restrict xx,
741 rvec * gmx_restrict ff,
742 t_forcerec * gmx_restrict fr,
743 t_mdatoms * gmx_restrict mdatoms,
744 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
745 t_nrnb * gmx_restrict nrnb)
746{
747 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
748 * just 0 for non-waters.
749 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
750 * jnr indices corresponding to data put in the four positions in the SIMD register.
751 */
752 int i_shift_offset,i_coord_offset,outeriter,inneriter;
753 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
754 int jnrA,jnrB,jnrC,jnrD;
755 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
756 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
757 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
758 real rcutoff_scalar;
759 real *shiftvec,*fshift,*x,*f;
760 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
761 real scratch[4*DIM3];
762 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
763 int vdwioffset0;
764 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
765 int vdwioffset1;
766 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
767 int vdwioffset2;
768 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
769 int vdwioffset3;
770 __m128 ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
771 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
772 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
773 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
774 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
775 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
776 __m128 dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
777 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
778 real *charge;
779 int nvdwtype;
780 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
781 int *vdwtype;
782 real *vdwparam;
783 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
784 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
785 __m128i vfitab;
786 __m128i ifour = _mm_set1_epi32(4);
787 __m128 rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
788 real *vftab;
789 __m128 dummy_mask,cutoff_mask;
790 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
791 __m128 one = _mm_set1_ps(1.0);
792 __m128 two = _mm_set1_ps(2.0);
793 x = xx[0];
794 f = ff[0];
795
796 nri = nlist->nri;
797 iinr = nlist->iinr;
798 jindex = nlist->jindex;
799 jjnr = nlist->jjnr;
800 shiftidx = nlist->shift;
801 gid = nlist->gid;
802 shiftvec = fr->shift_vec[0];
803 fshift = fr->fshift[0];
804 facel = _mm_set1_ps(fr->epsfac);
805 charge = mdatoms->chargeA;
806 nvdwtype = fr->ntype;
807 vdwparam = fr->nbfp;
808 vdwtype = mdatoms->typeA;
809
810 vftab = kernel_data->table_elec->data;
811 vftabscale = _mm_set1_ps(kernel_data->table_elec->scale);
812
813 /* Setup water-specific parameters */
814 inr = nlist->iinr[0];
815 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
816 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
817 iq3 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
818 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
819
820 /* Avoid stupid compiler warnings */
821 jnrA = jnrB = jnrC = jnrD = 0;
822 j_coord_offsetA = 0;
Value stored to 'j_coord_offsetA' is never read
823 j_coord_offsetB = 0;
824 j_coord_offsetC = 0;
825 j_coord_offsetD = 0;
826
827 outeriter = 0;
828 inneriter = 0;
829
830 for(iidx=0;iidx<4*DIM3;iidx++)
831 {
832 scratch[iidx] = 0.0;
833 }
834
835 /* Start outer loop over neighborlists */
836 for(iidx=0; iidx<nri; iidx++)
837 {
838 /* Load shift vector for this list */
839 i_shift_offset = DIM3*shiftidx[iidx];
840
841 /* Load limits for loop over neighbors */
842 j_index_start = jindex[iidx];
843 j_index_end = jindex[iidx+1];
844
845 /* Get outer coordinate index */
846 inr = iinr[iidx];
847 i_coord_offset = DIM3*inr;
848
849 /* Load i particle coords and add shift vector */
850 gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
851 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
852
853 fix0 = _mm_setzero_ps();
854 fiy0 = _mm_setzero_ps();
855 fiz0 = _mm_setzero_ps();
856 fix1 = _mm_setzero_ps();
857 fiy1 = _mm_setzero_ps();
858 fiz1 = _mm_setzero_ps();
859 fix2 = _mm_setzero_ps();
860 fiy2 = _mm_setzero_ps();
861 fiz2 = _mm_setzero_ps();
862 fix3 = _mm_setzero_ps();
863 fiy3 = _mm_setzero_ps();
864 fiz3 = _mm_setzero_ps();
865
866 /* Start inner kernel loop */
867 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
868 {
869
870 /* Get j neighbor index, and coordinate index */
871 jnrA = jjnr[jidx];
872 jnrB = jjnr[jidx+1];
873 jnrC = jjnr[jidx+2];
874 jnrD = jjnr[jidx+3];
875 j_coord_offsetA = DIM3*jnrA;
876 j_coord_offsetB = DIM3*jnrB;
877 j_coord_offsetC = DIM3*jnrC;
878 j_coord_offsetD = DIM3*jnrD;
879
880 /* load j atom coordinates */
881 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
882 x+j_coord_offsetC,x+j_coord_offsetD,
883 &jx0,&jy0,&jz0);
884
885 /* Calculate displacement vector */
886 dx00 = _mm_sub_ps(ix0,jx0);
887 dy00 = _mm_sub_ps(iy0,jy0);
888 dz00 = _mm_sub_ps(iz0,jz0);
889 dx10 = _mm_sub_ps(ix1,jx0);
890 dy10 = _mm_sub_ps(iy1,jy0);
891 dz10 = _mm_sub_ps(iz1,jz0);
892 dx20 = _mm_sub_ps(ix2,jx0);
893 dy20 = _mm_sub_ps(iy2,jy0);
894 dz20 = _mm_sub_ps(iz2,jz0);
895 dx30 = _mm_sub_ps(ix3,jx0);
896 dy30 = _mm_sub_ps(iy3,jy0);
897 dz30 = _mm_sub_ps(iz3,jz0);
898
899 /* Calculate squared distance and things based on it */
900 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
901 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
902 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
903 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
904
905 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
906 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
907 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
908
909 rinvsq00 = gmx_mm_inv_psgmx_simd_inv_f(rsq00);
910
911 /* Load parameters for j particles */
912 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
913 charge+jnrC+0,charge+jnrD+0);
914 vdwjidx0A = 2*vdwtype[jnrA+0];
915 vdwjidx0B = 2*vdwtype[jnrB+0];
916 vdwjidx0C = 2*vdwtype[jnrC+0];
917 vdwjidx0D = 2*vdwtype[jnrD+0];
918
919 fjx0 = _mm_setzero_ps();
920 fjy0 = _mm_setzero_ps();
921 fjz0 = _mm_setzero_ps();
922
923 /**************************
924 * CALCULATE INTERACTIONS *
925 **************************/
926
927 /* Compute parameters for interactions between i and j atoms */
928 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
929 vdwparam+vdwioffset0+vdwjidx0B,
930 vdwparam+vdwioffset0+vdwjidx0C,
931 vdwparam+vdwioffset0+vdwjidx0D,
932 &c6_00,&c12_00);
933
934 /* LENNARD-JONES DISPERSION/REPULSION */
935
936 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
937 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
938
939 fscal = fvdw;
940
941 /* Calculate temporary vectorial force */
942 tx = _mm_mul_ps(fscal,dx00);
943 ty = _mm_mul_ps(fscal,dy00);
944 tz = _mm_mul_ps(fscal,dz00);
945
946 /* Update vectorial force */
947 fix0 = _mm_add_ps(fix0,tx);
948 fiy0 = _mm_add_ps(fiy0,ty);
949 fiz0 = _mm_add_ps(fiz0,tz);
950
951 fjx0 = _mm_add_ps(fjx0,tx);
952 fjy0 = _mm_add_ps(fjy0,ty);
953 fjz0 = _mm_add_ps(fjz0,tz);
954
955 /**************************
956 * CALCULATE INTERACTIONS *
957 **************************/
958
959 r10 = _mm_mul_ps(rsq10,rinv10);
960
961 /* Compute parameters for interactions between i and j atoms */
962 qq10 = _mm_mul_ps(iq1,jq0);
963
964 /* Calculate table index by multiplying r with table scale and truncate to integer */
965 rt = _mm_mul_ps(r10,vftabscale);
966 vfitab = _mm_cvttps_epi32(rt);
967 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
968 vfitab = _mm_slli_epi32(vfitab,2);
969
970 /* CUBIC SPLINE TABLE ELECTROSTATICS */
971 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
972 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
973 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
974 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
975 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
976 Heps = _mm_mul_ps(vfeps,H);
977 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
978 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
979 felec = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
980
981 fscal = felec;
982
983 /* Calculate temporary vectorial force */
984 tx = _mm_mul_ps(fscal,dx10);
985 ty = _mm_mul_ps(fscal,dy10);
986 tz = _mm_mul_ps(fscal,dz10);
987
988 /* Update vectorial force */
989 fix1 = _mm_add_ps(fix1,tx);
990 fiy1 = _mm_add_ps(fiy1,ty);
991 fiz1 = _mm_add_ps(fiz1,tz);
992
993 fjx0 = _mm_add_ps(fjx0,tx);
994 fjy0 = _mm_add_ps(fjy0,ty);
995 fjz0 = _mm_add_ps(fjz0,tz);
996
997 /**************************
998 * CALCULATE INTERACTIONS *
999 **************************/
1000
1001 r20 = _mm_mul_ps(rsq20,rinv20);
1002
1003 /* Compute parameters for interactions between i and j atoms */
1004 qq20 = _mm_mul_ps(iq2,jq0);
1005
1006 /* Calculate table index by multiplying r with table scale and truncate to integer */
1007 rt = _mm_mul_ps(r20,vftabscale);
1008 vfitab = _mm_cvttps_epi32(rt);
1009 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1010 vfitab = _mm_slli_epi32(vfitab,2);
1011
1012 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1013 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
1014 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
1015 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
1016 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
1017 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
1018 Heps = _mm_mul_ps(vfeps,H);
1019 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1020 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1021 felec = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1022
1023 fscal = felec;
1024
1025 /* Calculate temporary vectorial force */
1026 tx = _mm_mul_ps(fscal,dx20);
1027 ty = _mm_mul_ps(fscal,dy20);
1028 tz = _mm_mul_ps(fscal,dz20);
1029
1030 /* Update vectorial force */
1031 fix2 = _mm_add_ps(fix2,tx);
1032 fiy2 = _mm_add_ps(fiy2,ty);
1033 fiz2 = _mm_add_ps(fiz2,tz);
1034
1035 fjx0 = _mm_add_ps(fjx0,tx);
1036 fjy0 = _mm_add_ps(fjy0,ty);
1037 fjz0 = _mm_add_ps(fjz0,tz);
1038
1039 /**************************
1040 * CALCULATE INTERACTIONS *
1041 **************************/
1042
1043 r30 = _mm_mul_ps(rsq30,rinv30);
1044
1045 /* Compute parameters for interactions between i and j atoms */
1046 qq30 = _mm_mul_ps(iq3,jq0);
1047
1048 /* Calculate table index by multiplying r with table scale and truncate to integer */
1049 rt = _mm_mul_ps(r30,vftabscale);
1050 vfitab = _mm_cvttps_epi32(rt);
1051 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1052 vfitab = _mm_slli_epi32(vfitab,2);
1053
1054 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1055 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
1056 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
1057 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
1058 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
1059 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
1060 Heps = _mm_mul_ps(vfeps,H);
1061 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1062 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1063 felec = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
1064
1065 fscal = felec;
1066
1067 /* Calculate temporary vectorial force */
1068 tx = _mm_mul_ps(fscal,dx30);
1069 ty = _mm_mul_ps(fscal,dy30);
1070 tz = _mm_mul_ps(fscal,dz30);
1071
1072 /* Update vectorial force */
1073 fix3 = _mm_add_ps(fix3,tx);
1074 fiy3 = _mm_add_ps(fiy3,ty);
1075 fiz3 = _mm_add_ps(fiz3,tz);
1076
1077 fjx0 = _mm_add_ps(fjx0,tx);
1078 fjy0 = _mm_add_ps(fjy0,ty);
1079 fjz0 = _mm_add_ps(fjz0,tz);
1080
1081 fjptrA = f+j_coord_offsetA;
1082 fjptrB = f+j_coord_offsetB;
1083 fjptrC = f+j_coord_offsetC;
1084 fjptrD = f+j_coord_offsetD;
1085
1086 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1087
1088 /* Inner loop uses 144 flops */
1089 }
1090
1091 if(jidx<j_index_end)
1092 {
1093
1094 /* Get j neighbor index, and coordinate index */
1095 jnrlistA = jjnr[jidx];
1096 jnrlistB = jjnr[jidx+1];
1097 jnrlistC = jjnr[jidx+2];
1098 jnrlistD = jjnr[jidx+3];
1099 /* Sign of each element will be negative for non-real atoms.
1100 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1101 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1102 */
1103 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1104 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
1105 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
1106 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
1107 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
1108 j_coord_offsetA = DIM3*jnrA;
1109 j_coord_offsetB = DIM3*jnrB;
1110 j_coord_offsetC = DIM3*jnrC;
1111 j_coord_offsetD = DIM3*jnrD;
1112
1113 /* load j atom coordinates */
1114 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1115 x+j_coord_offsetC,x+j_coord_offsetD,
1116 &jx0,&jy0,&jz0);
1117
1118 /* Calculate displacement vector */
1119 dx00 = _mm_sub_ps(ix0,jx0);
1120 dy00 = _mm_sub_ps(iy0,jy0);
1121 dz00 = _mm_sub_ps(iz0,jz0);
1122 dx10 = _mm_sub_ps(ix1,jx0);
1123 dy10 = _mm_sub_ps(iy1,jy0);
1124 dz10 = _mm_sub_ps(iz1,jz0);
1125 dx20 = _mm_sub_ps(ix2,jx0);
1126 dy20 = _mm_sub_ps(iy2,jy0);
1127 dz20 = _mm_sub_ps(iz2,jz0);
1128 dx30 = _mm_sub_ps(ix3,jx0);
1129 dy30 = _mm_sub_ps(iy3,jy0);
1130 dz30 = _mm_sub_ps(iz3,jz0);
1131
1132 /* Calculate squared distance and things based on it */
1133 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1134 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1135 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1136 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1137
1138 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
1139 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
1140 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
1141
1142 rinvsq00 = gmx_mm_inv_psgmx_simd_inv_f(rsq00);
1143
1144 /* Load parameters for j particles */
1145 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1146 charge+jnrC+0,charge+jnrD+0);
1147 vdwjidx0A = 2*vdwtype[jnrA+0];
1148 vdwjidx0B = 2*vdwtype[jnrB+0];
1149 vdwjidx0C = 2*vdwtype[jnrC+0];
1150 vdwjidx0D = 2*vdwtype[jnrD+0];
1151
1152 fjx0 = _mm_setzero_ps();
1153 fjy0 = _mm_setzero_ps();
1154 fjz0 = _mm_setzero_ps();
1155
1156 /**************************
1157 * CALCULATE INTERACTIONS *
1158 **************************/
1159
1160 /* Compute parameters for interactions between i and j atoms */
1161 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1162 vdwparam+vdwioffset0+vdwjidx0B,
1163 vdwparam+vdwioffset0+vdwjidx0C,
1164 vdwparam+vdwioffset0+vdwjidx0D,
1165 &c6_00,&c12_00);
1166
1167 /* LENNARD-JONES DISPERSION/REPULSION */
1168
1169 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1170 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1171
1172 fscal = fvdw;
1173
1174 fscal = _mm_andnot_ps(dummy_mask,fscal);
1175
1176 /* Calculate temporary vectorial force */
1177 tx = _mm_mul_ps(fscal,dx00);
1178 ty = _mm_mul_ps(fscal,dy00);
1179 tz = _mm_mul_ps(fscal,dz00);
1180
1181 /* Update vectorial force */
1182 fix0 = _mm_add_ps(fix0,tx);
1183 fiy0 = _mm_add_ps(fiy0,ty);
1184 fiz0 = _mm_add_ps(fiz0,tz);
1185
1186 fjx0 = _mm_add_ps(fjx0,tx);
1187 fjy0 = _mm_add_ps(fjy0,ty);
1188 fjz0 = _mm_add_ps(fjz0,tz);
1189
1190 /**************************
1191 * CALCULATE INTERACTIONS *
1192 **************************/
1193
1194 r10 = _mm_mul_ps(rsq10,rinv10);
1195 r10 = _mm_andnot_ps(dummy_mask,r10);
1196
1197 /* Compute parameters for interactions between i and j atoms */
1198 qq10 = _mm_mul_ps(iq1,jq0);
1199
1200 /* Calculate table index by multiplying r with table scale and truncate to integer */
1201 rt = _mm_mul_ps(r10,vftabscale);
1202 vfitab = _mm_cvttps_epi32(rt);
1203 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1204 vfitab = _mm_slli_epi32(vfitab,2);
1205
1206 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1207 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
1208 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
1209 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
1210 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
1211 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
1212 Heps = _mm_mul_ps(vfeps,H);
1213 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1214 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1215 felec = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq10,FF),_mm_mul_ps(vftabscale,rinv10)));
1216
1217 fscal = felec;
1218
1219 fscal = _mm_andnot_ps(dummy_mask,fscal);
1220
1221 /* Calculate temporary vectorial force */
1222 tx = _mm_mul_ps(fscal,dx10);
1223 ty = _mm_mul_ps(fscal,dy10);
1224 tz = _mm_mul_ps(fscal,dz10);
1225
1226 /* Update vectorial force */
1227 fix1 = _mm_add_ps(fix1,tx);
1228 fiy1 = _mm_add_ps(fiy1,ty);
1229 fiz1 = _mm_add_ps(fiz1,tz);
1230
1231 fjx0 = _mm_add_ps(fjx0,tx);
1232 fjy0 = _mm_add_ps(fjy0,ty);
1233 fjz0 = _mm_add_ps(fjz0,tz);
1234
1235 /**************************
1236 * CALCULATE INTERACTIONS *
1237 **************************/
1238
1239 r20 = _mm_mul_ps(rsq20,rinv20);
1240 r20 = _mm_andnot_ps(dummy_mask,r20);
1241
1242 /* Compute parameters for interactions between i and j atoms */
1243 qq20 = _mm_mul_ps(iq2,jq0);
1244
1245 /* Calculate table index by multiplying r with table scale and truncate to integer */
1246 rt = _mm_mul_ps(r20,vftabscale);
1247 vfitab = _mm_cvttps_epi32(rt);
1248 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1249 vfitab = _mm_slli_epi32(vfitab,2);
1250
1251 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1252 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
1253 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
1254 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
1255 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
1256 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
1257 Heps = _mm_mul_ps(vfeps,H);
1258 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1259 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1260 felec = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq20,FF),_mm_mul_ps(vftabscale,rinv20)));
1261
1262 fscal = felec;
1263
1264 fscal = _mm_andnot_ps(dummy_mask,fscal);
1265
1266 /* Calculate temporary vectorial force */
1267 tx = _mm_mul_ps(fscal,dx20);
1268 ty = _mm_mul_ps(fscal,dy20);
1269 tz = _mm_mul_ps(fscal,dz20);
1270
1271 /* Update vectorial force */
1272 fix2 = _mm_add_ps(fix2,tx);
1273 fiy2 = _mm_add_ps(fiy2,ty);
1274 fiz2 = _mm_add_ps(fiz2,tz);
1275
1276 fjx0 = _mm_add_ps(fjx0,tx);
1277 fjy0 = _mm_add_ps(fjy0,ty);
1278 fjz0 = _mm_add_ps(fjz0,tz);
1279
1280 /**************************
1281 * CALCULATE INTERACTIONS *
1282 **************************/
1283
1284 r30 = _mm_mul_ps(rsq30,rinv30);
1285 r30 = _mm_andnot_ps(dummy_mask,r30);
1286
1287 /* Compute parameters for interactions between i and j atoms */
1288 qq30 = _mm_mul_ps(iq3,jq0);
1289
1290 /* Calculate table index by multiplying r with table scale and truncate to integer */
1291 rt = _mm_mul_ps(r30,vftabscale);
1292 vfitab = _mm_cvttps_epi32(rt);
1293 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1294 vfitab = _mm_slli_epi32(vfitab,2);
1295
1296 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1297 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
1298 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
1299 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
1300 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
1301 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
1302 Heps = _mm_mul_ps(vfeps,H);
1303 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1304 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1305 felec = _mm_xor_ps(signbit,_mm_mul_ps(_mm_mul_ps(qq30,FF),_mm_mul_ps(vftabscale,rinv30)));
1306
1307 fscal = felec;
1308
1309 fscal = _mm_andnot_ps(dummy_mask,fscal);
1310
1311 /* Calculate temporary vectorial force */
1312 tx = _mm_mul_ps(fscal,dx30);
1313 ty = _mm_mul_ps(fscal,dy30);
1314 tz = _mm_mul_ps(fscal,dz30);
1315
1316 /* Update vectorial force */
1317 fix3 = _mm_add_ps(fix3,tx);
1318 fiy3 = _mm_add_ps(fiy3,ty);
1319 fiz3 = _mm_add_ps(fiz3,tz);
1320
1321 fjx0 = _mm_add_ps(fjx0,tx);
1322 fjy0 = _mm_add_ps(fjy0,ty);
1323 fjz0 = _mm_add_ps(fjz0,tz);
1324
1325 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1326 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1327 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1328 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1329
1330 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1331
1332 /* Inner loop uses 147 flops */
1333 }
1334
1335 /* End of innermost loop */
1336
1337 gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1338 f+i_coord_offset,fshift+i_shift_offset);
1339
1340 /* Increment number of inner iterations */
1341 inneriter += j_index_end - j_index_start;
1342
1343 /* Outer loop uses 24 flops */
1344 }
1345
1346 /* Increment number of outer iterations */
1347 outeriter += nri;
1348
1349 /* Update outer/inner flops */
1350
1351 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*147)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_F] += outeriter*24 + inneriter
*147
;
1352}