Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_c.c
Location:line 507, column 5
Description:Value stored to 'sh_ewald' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: LennardJones
53 * Geometry: Water4-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwioffset3;
79 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80 int vdwjidx0;
81 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
83 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
84 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
85 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
86 real velec,felec,velecsum,facel,crf,krf,krf2;
87 real *charge;
88 int nvdwtype;
89 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
90 int *vdwtype;
91 real *vdwparam;
92 int ewitab;
93 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
94 real *ewtab;
95
96 x = xx[0];
97 f = ff[0];
98
99 nri = nlist->nri;
100 iinr = nlist->iinr;
101 jindex = nlist->jindex;
102 jjnr = nlist->jjnr;
103 shiftidx = nlist->shift;
104 gid = nlist->gid;
105 shiftvec = fr->shift_vec[0];
106 fshift = fr->fshift[0];
107 facel = fr->epsfac;
108 charge = mdatoms->chargeA;
109 nvdwtype = fr->ntype;
110 vdwparam = fr->nbfp;
111 vdwtype = mdatoms->typeA;
112
113 sh_ewald = fr->ic->sh_ewald;
114 ewtab = fr->ic->tabq_coul_FDV0;
115 ewtabscale = fr->ic->tabq_scale;
116 ewtabhalfspace = 0.5/ewtabscale;
117
118 /* Setup water-specific parameters */
119 inr = nlist->iinr[0];
120 iq1 = facel*charge[inr+1];
121 iq2 = facel*charge[inr+2];
122 iq3 = facel*charge[inr+3];
123 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
124
125 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
126 rcutoff = fr->rcoulomb;
127 rcutoff2 = rcutoff*rcutoff;
128
129 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
130 rvdw = fr->rvdw;
131
132 outeriter = 0;
133 inneriter = 0;
134
135 /* Start outer loop over neighborlists */
136 for(iidx=0; iidx<nri; iidx++)
137 {
138 /* Load shift vector for this list */
139 i_shift_offset = DIM3*shiftidx[iidx];
140 shX = shiftvec[i_shift_offset+XX0];
141 shY = shiftvec[i_shift_offset+YY1];
142 shZ = shiftvec[i_shift_offset+ZZ2];
143
144 /* Load limits for loop over neighbors */
145 j_index_start = jindex[iidx];
146 j_index_end = jindex[iidx+1];
147
148 /* Get outer coordinate index */
149 inr = iinr[iidx];
150 i_coord_offset = DIM3*inr;
151
152 /* Load i particle coords and add shift vector */
153 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
154 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
155 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
156 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
157 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
158 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
159 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
160 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
161 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
162 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
163 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
164 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
165
166 fix0 = 0.0;
167 fiy0 = 0.0;
168 fiz0 = 0.0;
169 fix1 = 0.0;
170 fiy1 = 0.0;
171 fiz1 = 0.0;
172 fix2 = 0.0;
173 fiy2 = 0.0;
174 fiz2 = 0.0;
175 fix3 = 0.0;
176 fiy3 = 0.0;
177 fiz3 = 0.0;
178
179 /* Reset potential sums */
180 velecsum = 0.0;
181 vvdwsum = 0.0;
182
183 /* Start inner kernel loop */
184 for(jidx=j_index_start; jidx<j_index_end; jidx++)
185 {
186 /* Get j neighbor index, and coordinate index */
187 jnr = jjnr[jidx];
188 j_coord_offset = DIM3*jnr;
189
190 /* load j atom coordinates */
191 jx0 = x[j_coord_offset+DIM3*0+XX0];
192 jy0 = x[j_coord_offset+DIM3*0+YY1];
193 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
194
195 /* Calculate displacement vector */
196 dx00 = ix0 - jx0;
197 dy00 = iy0 - jy0;
198 dz00 = iz0 - jz0;
199 dx10 = ix1 - jx0;
200 dy10 = iy1 - jy0;
201 dz10 = iz1 - jz0;
202 dx20 = ix2 - jx0;
203 dy20 = iy2 - jy0;
204 dz20 = iz2 - jz0;
205 dx30 = ix3 - jx0;
206 dy30 = iy3 - jy0;
207 dz30 = iz3 - jz0;
208
209 /* Calculate squared distance and things based on it */
210 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
211 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
212 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
213 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
214
215 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
216 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
217 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
218
219 rinvsq00 = 1.0/rsq00;
220 rinvsq10 = rinv10*rinv10;
221 rinvsq20 = rinv20*rinv20;
222 rinvsq30 = rinv30*rinv30;
223
224 /* Load parameters for j particles */
225 jq0 = charge[jnr+0];
226 vdwjidx0 = 2*vdwtype[jnr+0];
227
228 /**************************
229 * CALCULATE INTERACTIONS *
230 **************************/
231
232 if (rsq00<rcutoff2)
233 {
234
235 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
236 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
237
238 /* LENNARD-JONES DISPERSION/REPULSION */
239
240 rinvsix = rinvsq00*rinvsq00*rinvsq00;
241 vvdw6 = c6_00*rinvsix;
242 vvdw12 = c12_00*rinvsix*rinvsix;
243 vvdw = (vvdw12 - c12_00*sh_vdw_invrcut6*sh_vdw_invrcut6)*(1.0/12.0) - (vvdw6 - c6_00*sh_vdw_invrcut6)*(1.0/6.0);
244 fvdw = (vvdw12-vvdw6)*rinvsq00;
245
246 /* Update potential sums from outer loop */
247 vvdwsum += vvdw;
248
249 fscal = fvdw;
250
251 /* Calculate temporary vectorial force */
252 tx = fscal*dx00;
253 ty = fscal*dy00;
254 tz = fscal*dz00;
255
256 /* Update vectorial force */
257 fix0 += tx;
258 fiy0 += ty;
259 fiz0 += tz;
260 f[j_coord_offset+DIM3*0+XX0] -= tx;
261 f[j_coord_offset+DIM3*0+YY1] -= ty;
262 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
263
264 }
265
266 /**************************
267 * CALCULATE INTERACTIONS *
268 **************************/
269
270 if (rsq10<rcutoff2)
271 {
272
273 r10 = rsq10*rinv10;
274
275 qq10 = iq1*jq0;
276
277 /* EWALD ELECTROSTATICS */
278
279 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
280 ewrt = r10*ewtabscale;
281 ewitab = ewrt;
282 eweps = ewrt-ewitab;
283 ewitab = 4*ewitab;
284 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
285 velec = qq10*((rinv10-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
286 felec = qq10*rinv10*(rinvsq10-felec);
287
288 /* Update potential sums from outer loop */
289 velecsum += velec;
290
291 fscal = felec;
292
293 /* Calculate temporary vectorial force */
294 tx = fscal*dx10;
295 ty = fscal*dy10;
296 tz = fscal*dz10;
297
298 /* Update vectorial force */
299 fix1 += tx;
300 fiy1 += ty;
301 fiz1 += tz;
302 f[j_coord_offset+DIM3*0+XX0] -= tx;
303 f[j_coord_offset+DIM3*0+YY1] -= ty;
304 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
305
306 }
307
308 /**************************
309 * CALCULATE INTERACTIONS *
310 **************************/
311
312 if (rsq20<rcutoff2)
313 {
314
315 r20 = rsq20*rinv20;
316
317 qq20 = iq2*jq0;
318
319 /* EWALD ELECTROSTATICS */
320
321 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
322 ewrt = r20*ewtabscale;
323 ewitab = ewrt;
324 eweps = ewrt-ewitab;
325 ewitab = 4*ewitab;
326 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
327 velec = qq20*((rinv20-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
328 felec = qq20*rinv20*(rinvsq20-felec);
329
330 /* Update potential sums from outer loop */
331 velecsum += velec;
332
333 fscal = felec;
334
335 /* Calculate temporary vectorial force */
336 tx = fscal*dx20;
337 ty = fscal*dy20;
338 tz = fscal*dz20;
339
340 /* Update vectorial force */
341 fix2 += tx;
342 fiy2 += ty;
343 fiz2 += tz;
344 f[j_coord_offset+DIM3*0+XX0] -= tx;
345 f[j_coord_offset+DIM3*0+YY1] -= ty;
346 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
347
348 }
349
350 /**************************
351 * CALCULATE INTERACTIONS *
352 **************************/
353
354 if (rsq30<rcutoff2)
355 {
356
357 r30 = rsq30*rinv30;
358
359 qq30 = iq3*jq0;
360
361 /* EWALD ELECTROSTATICS */
362
363 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
364 ewrt = r30*ewtabscale;
365 ewitab = ewrt;
366 eweps = ewrt-ewitab;
367 ewitab = 4*ewitab;
368 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
369 velec = qq30*((rinv30-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
370 felec = qq30*rinv30*(rinvsq30-felec);
371
372 /* Update potential sums from outer loop */
373 velecsum += velec;
374
375 fscal = felec;
376
377 /* Calculate temporary vectorial force */
378 tx = fscal*dx30;
379 ty = fscal*dy30;
380 tz = fscal*dz30;
381
382 /* Update vectorial force */
383 fix3 += tx;
384 fiy3 += ty;
385 fiz3 += tz;
386 f[j_coord_offset+DIM3*0+XX0] -= tx;
387 f[j_coord_offset+DIM3*0+YY1] -= ty;
388 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
389
390 }
391
392 /* Inner loop uses 163 flops */
393 }
394 /* End of innermost loop */
395
396 tx = ty = tz = 0;
397 f[i_coord_offset+DIM3*0+XX0] += fix0;
398 f[i_coord_offset+DIM3*0+YY1] += fiy0;
399 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
400 tx += fix0;
401 ty += fiy0;
402 tz += fiz0;
403 f[i_coord_offset+DIM3*1+XX0] += fix1;
404 f[i_coord_offset+DIM3*1+YY1] += fiy1;
405 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
406 tx += fix1;
407 ty += fiy1;
408 tz += fiz1;
409 f[i_coord_offset+DIM3*2+XX0] += fix2;
410 f[i_coord_offset+DIM3*2+YY1] += fiy2;
411 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
412 tx += fix2;
413 ty += fiy2;
414 tz += fiz2;
415 f[i_coord_offset+DIM3*3+XX0] += fix3;
416 f[i_coord_offset+DIM3*3+YY1] += fiy3;
417 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
418 tx += fix3;
419 ty += fiy3;
420 tz += fiz3;
421 fshift[i_shift_offset+XX0] += tx;
422 fshift[i_shift_offset+YY1] += ty;
423 fshift[i_shift_offset+ZZ2] += tz;
424
425 ggid = gid[iidx];
426 /* Update potential energies */
427 kernel_data->energygrp_elec[ggid] += velecsum;
428 kernel_data->energygrp_vdw[ggid] += vvdwsum;
429
430 /* Increment number of inner iterations */
431 inneriter += j_index_end - j_index_start;
432
433 /* Outer loop uses 41 flops */
434 }
435
436 /* Increment number of outer iterations */
437 outeriter += nri;
438
439 /* Update outer/inner flops */
440
441 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*163)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_VF] += outeriter*41 + inneriter
*163
;
442}
443/*
444 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_c
445 * Electrostatics interaction: Ewald
446 * VdW interaction: LennardJones
447 * Geometry: Water4-Particle
448 * Calculate force/pot: Force
449 */
450void
451nb_kernel_ElecEwSh_VdwLJSh_GeomW4P1_F_c
452 (t_nblist * gmx_restrict__restrict nlist,
453 rvec * gmx_restrict__restrict xx,
454 rvec * gmx_restrict__restrict ff,
455 t_forcerec * gmx_restrict__restrict fr,
456 t_mdatoms * gmx_restrict__restrict mdatoms,
457 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
458 t_nrnb * gmx_restrict__restrict nrnb)
459{
460 int i_shift_offset,i_coord_offset,j_coord_offset;
461 int j_index_start,j_index_end;
462 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
463 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
464 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
465 real *shiftvec,*fshift,*x,*f;
466 int vdwioffset0;
467 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
468 int vdwioffset1;
469 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
470 int vdwioffset2;
471 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
472 int vdwioffset3;
473 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
474 int vdwjidx0;
475 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
476 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
477 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
478 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
479 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
480 real velec,felec,velecsum,facel,crf,krf,krf2;
481 real *charge;
482 int nvdwtype;
483 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
484 int *vdwtype;
485 real *vdwparam;
486 int ewitab;
487 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
488 real *ewtab;
489
490 x = xx[0];
491 f = ff[0];
492
493 nri = nlist->nri;
494 iinr = nlist->iinr;
495 jindex = nlist->jindex;
496 jjnr = nlist->jjnr;
497 shiftidx = nlist->shift;
498 gid = nlist->gid;
499 shiftvec = fr->shift_vec[0];
500 fshift = fr->fshift[0];
501 facel = fr->epsfac;
502 charge = mdatoms->chargeA;
503 nvdwtype = fr->ntype;
504 vdwparam = fr->nbfp;
505 vdwtype = mdatoms->typeA;
506
507 sh_ewald = fr->ic->sh_ewald;
Value stored to 'sh_ewald' is never read
508 ewtab = fr->ic->tabq_coul_F;
509 ewtabscale = fr->ic->tabq_scale;
510 ewtabhalfspace = 0.5/ewtabscale;
511
512 /* Setup water-specific parameters */
513 inr = nlist->iinr[0];
514 iq1 = facel*charge[inr+1];
515 iq2 = facel*charge[inr+2];
516 iq3 = facel*charge[inr+3];
517 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
518
519 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
520 rcutoff = fr->rcoulomb;
521 rcutoff2 = rcutoff*rcutoff;
522
523 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
524 rvdw = fr->rvdw;
525
526 outeriter = 0;
527 inneriter = 0;
528
529 /* Start outer loop over neighborlists */
530 for(iidx=0; iidx<nri; iidx++)
531 {
532 /* Load shift vector for this list */
533 i_shift_offset = DIM3*shiftidx[iidx];
534 shX = shiftvec[i_shift_offset+XX0];
535 shY = shiftvec[i_shift_offset+YY1];
536 shZ = shiftvec[i_shift_offset+ZZ2];
537
538 /* Load limits for loop over neighbors */
539 j_index_start = jindex[iidx];
540 j_index_end = jindex[iidx+1];
541
542 /* Get outer coordinate index */
543 inr = iinr[iidx];
544 i_coord_offset = DIM3*inr;
545
546 /* Load i particle coords and add shift vector */
547 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
548 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
549 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
550 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
551 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
552 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
553 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
554 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
555 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
556 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
557 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
558 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
559
560 fix0 = 0.0;
561 fiy0 = 0.0;
562 fiz0 = 0.0;
563 fix1 = 0.0;
564 fiy1 = 0.0;
565 fiz1 = 0.0;
566 fix2 = 0.0;
567 fiy2 = 0.0;
568 fiz2 = 0.0;
569 fix3 = 0.0;
570 fiy3 = 0.0;
571 fiz3 = 0.0;
572
573 /* Start inner kernel loop */
574 for(jidx=j_index_start; jidx<j_index_end; jidx++)
575 {
576 /* Get j neighbor index, and coordinate index */
577 jnr = jjnr[jidx];
578 j_coord_offset = DIM3*jnr;
579
580 /* load j atom coordinates */
581 jx0 = x[j_coord_offset+DIM3*0+XX0];
582 jy0 = x[j_coord_offset+DIM3*0+YY1];
583 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
584
585 /* Calculate displacement vector */
586 dx00 = ix0 - jx0;
587 dy00 = iy0 - jy0;
588 dz00 = iz0 - jz0;
589 dx10 = ix1 - jx0;
590 dy10 = iy1 - jy0;
591 dz10 = iz1 - jz0;
592 dx20 = ix2 - jx0;
593 dy20 = iy2 - jy0;
594 dz20 = iz2 - jz0;
595 dx30 = ix3 - jx0;
596 dy30 = iy3 - jy0;
597 dz30 = iz3 - jz0;
598
599 /* Calculate squared distance and things based on it */
600 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
601 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
602 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
603 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
604
605 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
606 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
607 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
608
609 rinvsq00 = 1.0/rsq00;
610 rinvsq10 = rinv10*rinv10;
611 rinvsq20 = rinv20*rinv20;
612 rinvsq30 = rinv30*rinv30;
613
614 /* Load parameters for j particles */
615 jq0 = charge[jnr+0];
616 vdwjidx0 = 2*vdwtype[jnr+0];
617
618 /**************************
619 * CALCULATE INTERACTIONS *
620 **************************/
621
622 if (rsq00<rcutoff2)
623 {
624
625 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
626 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
627
628 /* LENNARD-JONES DISPERSION/REPULSION */
629
630 rinvsix = rinvsq00*rinvsq00*rinvsq00;
631 fvdw = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
632
633 fscal = fvdw;
634
635 /* Calculate temporary vectorial force */
636 tx = fscal*dx00;
637 ty = fscal*dy00;
638 tz = fscal*dz00;
639
640 /* Update vectorial force */
641 fix0 += tx;
642 fiy0 += ty;
643 fiz0 += tz;
644 f[j_coord_offset+DIM3*0+XX0] -= tx;
645 f[j_coord_offset+DIM3*0+YY1] -= ty;
646 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
647
648 }
649
650 /**************************
651 * CALCULATE INTERACTIONS *
652 **************************/
653
654 if (rsq10<rcutoff2)
655 {
656
657 r10 = rsq10*rinv10;
658
659 qq10 = iq1*jq0;
660
661 /* EWALD ELECTROSTATICS */
662
663 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
664 ewrt = r10*ewtabscale;
665 ewitab = ewrt;
666 eweps = ewrt-ewitab;
667 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
668 felec = qq10*rinv10*(rinvsq10-felec);
669
670 fscal = felec;
671
672 /* Calculate temporary vectorial force */
673 tx = fscal*dx10;
674 ty = fscal*dy10;
675 tz = fscal*dz10;
676
677 /* Update vectorial force */
678 fix1 += tx;
679 fiy1 += ty;
680 fiz1 += tz;
681 f[j_coord_offset+DIM3*0+XX0] -= tx;
682 f[j_coord_offset+DIM3*0+YY1] -= ty;
683 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
684
685 }
686
687 /**************************
688 * CALCULATE INTERACTIONS *
689 **************************/
690
691 if (rsq20<rcutoff2)
692 {
693
694 r20 = rsq20*rinv20;
695
696 qq20 = iq2*jq0;
697
698 /* EWALD ELECTROSTATICS */
699
700 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
701 ewrt = r20*ewtabscale;
702 ewitab = ewrt;
703 eweps = ewrt-ewitab;
704 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
705 felec = qq20*rinv20*(rinvsq20-felec);
706
707 fscal = felec;
708
709 /* Calculate temporary vectorial force */
710 tx = fscal*dx20;
711 ty = fscal*dy20;
712 tz = fscal*dz20;
713
714 /* Update vectorial force */
715 fix2 += tx;
716 fiy2 += ty;
717 fiz2 += tz;
718 f[j_coord_offset+DIM3*0+XX0] -= tx;
719 f[j_coord_offset+DIM3*0+YY1] -= ty;
720 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
721
722 }
723
724 /**************************
725 * CALCULATE INTERACTIONS *
726 **************************/
727
728 if (rsq30<rcutoff2)
729 {
730
731 r30 = rsq30*rinv30;
732
733 qq30 = iq3*jq0;
734
735 /* EWALD ELECTROSTATICS */
736
737 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
738 ewrt = r30*ewtabscale;
739 ewitab = ewrt;
740 eweps = ewrt-ewitab;
741 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
742 felec = qq30*rinv30*(rinvsq30-felec);
743
744 fscal = felec;
745
746 /* Calculate temporary vectorial force */
747 tx = fscal*dx30;
748 ty = fscal*dy30;
749 tz = fscal*dz30;
750
751 /* Update vectorial force */
752 fix3 += tx;
753 fiy3 += ty;
754 fiz3 += tz;
755 f[j_coord_offset+DIM3*0+XX0] -= tx;
756 f[j_coord_offset+DIM3*0+YY1] -= ty;
757 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
758
759 }
760
761 /* Inner loop uses 129 flops */
762 }
763 /* End of innermost loop */
764
765 tx = ty = tz = 0;
766 f[i_coord_offset+DIM3*0+XX0] += fix0;
767 f[i_coord_offset+DIM3*0+YY1] += fiy0;
768 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
769 tx += fix0;
770 ty += fiy0;
771 tz += fiz0;
772 f[i_coord_offset+DIM3*1+XX0] += fix1;
773 f[i_coord_offset+DIM3*1+YY1] += fiy1;
774 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
775 tx += fix1;
776 ty += fiy1;
777 tz += fiz1;
778 f[i_coord_offset+DIM3*2+XX0] += fix2;
779 f[i_coord_offset+DIM3*2+YY1] += fiy2;
780 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
781 tx += fix2;
782 ty += fiy2;
783 tz += fiz2;
784 f[i_coord_offset+DIM3*3+XX0] += fix3;
785 f[i_coord_offset+DIM3*3+YY1] += fiy3;
786 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
787 tx += fix3;
788 ty += fiy3;
789 tz += fiz3;
790 fshift[i_shift_offset+XX0] += tx;
791 fshift[i_shift_offset+YY1] += ty;
792 fshift[i_shift_offset+ZZ2] += tz;
793
794 /* Increment number of inner iterations */
795 inneriter += j_index_end - j_index_start;
796
797 /* Outer loop uses 39 flops */
798 }
799
800 /* Increment number of outer iterations */
801 outeriter += nri;
802
803 /* Update outer/inner flops */
804
805 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*129)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_F] += outeriter*39 + inneriter
*129
;
806}