Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_sse4_1_single.c
Location:line 838, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sse4_1_single
54 * Electrostatics interaction: Ewald
55 * VdW interaction: LJEwald
56 * Geometry: Water3-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwioffset1;
88 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89 int vdwioffset2;
90 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
97 real *charge;
98 int nvdwtype;
99 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100 int *vdwtype;
101 real *vdwparam;
102 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
103 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
104 __m128 c6grid_00;
105 __m128 c6grid_10;
106 __m128 c6grid_20;
107 __m128 ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
108 real *vdwgridparam;
109 __m128 one_half = _mm_set1_ps(0.5);
110 __m128 minus_one = _mm_set1_ps(-1.0);
111 __m128i ewitab;
112 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
113 real *ewtab;
114 __m128 dummy_mask,cutoff_mask;
115 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
116 __m128 one = _mm_set1_ps(1.0);
117 __m128 two = _mm_set1_ps(2.0);
118 x = xx[0];
119 f = ff[0];
120
121 nri = nlist->nri;
122 iinr = nlist->iinr;
123 jindex = nlist->jindex;
124 jjnr = nlist->jjnr;
125 shiftidx = nlist->shift;
126 gid = nlist->gid;
127 shiftvec = fr->shift_vec[0];
128 fshift = fr->fshift[0];
129 facel = _mm_set1_ps(fr->epsfac);
130 charge = mdatoms->chargeA;
131 nvdwtype = fr->ntype;
132 vdwparam = fr->nbfp;
133 vdwtype = mdatoms->typeA;
134 vdwgridparam = fr->ljpme_c6grid;
135 sh_lj_ewald = _mm_set1_ps(fr->ic->sh_lj_ewald);
136 ewclj = _mm_set1_ps(fr->ewaldcoeff_lj);
137 ewclj2 = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
138
139 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
140 ewtab = fr->ic->tabq_coul_FDV0;
141 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
142 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
143
144 /* Setup water-specific parameters */
145 inr = nlist->iinr[0];
146 iq0 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
147 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
148 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
149 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
150
151 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
152 rcutoff_scalar = fr->rcoulomb;
153 rcutoff = _mm_set1_ps(rcutoff_scalar);
154 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
155
156 sh_vdw_invrcut6 = _mm_set1_ps(fr->ic->sh_invrc6);
157 rvdw = _mm_set1_ps(fr->rvdw);
158
159 /* Avoid stupid compiler warnings */
160 jnrA = jnrB = jnrC = jnrD = 0;
161 j_coord_offsetA = 0;
162 j_coord_offsetB = 0;
163 j_coord_offsetC = 0;
164 j_coord_offsetD = 0;
165
166 outeriter = 0;
167 inneriter = 0;
168
169 for(iidx=0;iidx<4*DIM3;iidx++)
170 {
171 scratch[iidx] = 0.0;
172 }
173
174 /* Start outer loop over neighborlists */
175 for(iidx=0; iidx<nri; iidx++)
176 {
177 /* Load shift vector for this list */
178 i_shift_offset = DIM3*shiftidx[iidx];
179
180 /* Load limits for loop over neighbors */
181 j_index_start = jindex[iidx];
182 j_index_end = jindex[iidx+1];
183
184 /* Get outer coordinate index */
185 inr = iinr[iidx];
186 i_coord_offset = DIM3*inr;
187
188 /* Load i particle coords and add shift vector */
189 gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
190 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
191
192 fix0 = _mm_setzero_ps();
193 fiy0 = _mm_setzero_ps();
194 fiz0 = _mm_setzero_ps();
195 fix1 = _mm_setzero_ps();
196 fiy1 = _mm_setzero_ps();
197 fiz1 = _mm_setzero_ps();
198 fix2 = _mm_setzero_ps();
199 fiy2 = _mm_setzero_ps();
200 fiz2 = _mm_setzero_ps();
201
202 /* Reset potential sums */
203 velecsum = _mm_setzero_ps();
204 vvdwsum = _mm_setzero_ps();
205
206 /* Start inner kernel loop */
207 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
208 {
209
210 /* Get j neighbor index, and coordinate index */
211 jnrA = jjnr[jidx];
212 jnrB = jjnr[jidx+1];
213 jnrC = jjnr[jidx+2];
214 jnrD = jjnr[jidx+3];
215 j_coord_offsetA = DIM3*jnrA;
216 j_coord_offsetB = DIM3*jnrB;
217 j_coord_offsetC = DIM3*jnrC;
218 j_coord_offsetD = DIM3*jnrD;
219
220 /* load j atom coordinates */
221 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
222 x+j_coord_offsetC,x+j_coord_offsetD,
223 &jx0,&jy0,&jz0);
224
225 /* Calculate displacement vector */
226 dx00 = _mm_sub_ps(ix0,jx0);
227 dy00 = _mm_sub_ps(iy0,jy0);
228 dz00 = _mm_sub_ps(iz0,jz0);
229 dx10 = _mm_sub_ps(ix1,jx0);
230 dy10 = _mm_sub_ps(iy1,jy0);
231 dz10 = _mm_sub_ps(iz1,jz0);
232 dx20 = _mm_sub_ps(ix2,jx0);
233 dy20 = _mm_sub_ps(iy2,jy0);
234 dz20 = _mm_sub_ps(iz2,jz0);
235
236 /* Calculate squared distance and things based on it */
237 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
238 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
239 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
240
241 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
242 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
243 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
244
245 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
246 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
247 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
248
249 /* Load parameters for j particles */
250 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
251 charge+jnrC+0,charge+jnrD+0);
252 vdwjidx0A = 2*vdwtype[jnrA+0];
253 vdwjidx0B = 2*vdwtype[jnrB+0];
254 vdwjidx0C = 2*vdwtype[jnrC+0];
255 vdwjidx0D = 2*vdwtype[jnrD+0];
256
257 fjx0 = _mm_setzero_ps();
258 fjy0 = _mm_setzero_ps();
259 fjz0 = _mm_setzero_ps();
260
261 /**************************
262 * CALCULATE INTERACTIONS *
263 **************************/
264
265 if (gmx_mm_any_lt(rsq00,rcutoff2))
266 {
267
268 r00 = _mm_mul_ps(rsq00,rinv00);
269
270 /* Compute parameters for interactions between i and j atoms */
271 qq00 = _mm_mul_ps(iq0,jq0);
272 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
273 vdwparam+vdwioffset0+vdwjidx0B,
274 vdwparam+vdwioffset0+vdwjidx0C,
275 vdwparam+vdwioffset0+vdwjidx0D,
276 &c6_00,&c12_00);
277
278 c6grid_00 = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
279 vdwgridparam+vdwioffset0+vdwjidx0B,
280 vdwgridparam+vdwioffset0+vdwjidx0C,
281 vdwgridparam+vdwioffset0+vdwjidx0D);
282
283 /* EWALD ELECTROSTATICS */
284
285 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
286 ewrt = _mm_mul_ps(r00,ewtabscale);
287 ewitab = _mm_cvttps_epi32(ewrt);
288 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
289 ewitab = _mm_slli_epi32(ewitab,2);
290 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
291 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
292 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
293 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
294 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
295 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
296 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
297 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
298 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
299
300 /* Analytical LJ-PME */
301 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
302 ewcljrsq = _mm_mul_ps(ewclj2,rsq00);
303 ewclj6 = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
304 exponent = gmx_simd_exp_rgmx_simd_exp_f(ewcljrsq);
305 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
306 poly = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
307 /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
308 vvdw6 = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
309 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
310 vvdw = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
311 _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
312 /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
313 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
314
315 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
316
317 /* Update potential sum for this i atom from the interaction with this j atom. */
318 velec = _mm_and_ps(velec,cutoff_mask);
319 velecsum = _mm_add_ps(velecsum,velec);
320 vvdw = _mm_and_ps(vvdw,cutoff_mask);
321 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
322
323 fscal = _mm_add_ps(felec,fvdw);
324
325 fscal = _mm_and_ps(fscal,cutoff_mask);
326
327 /* Calculate temporary vectorial force */
328 tx = _mm_mul_ps(fscal,dx00);
329 ty = _mm_mul_ps(fscal,dy00);
330 tz = _mm_mul_ps(fscal,dz00);
331
332 /* Update vectorial force */
333 fix0 = _mm_add_ps(fix0,tx);
334 fiy0 = _mm_add_ps(fiy0,ty);
335 fiz0 = _mm_add_ps(fiz0,tz);
336
337 fjx0 = _mm_add_ps(fjx0,tx);
338 fjy0 = _mm_add_ps(fjy0,ty);
339 fjz0 = _mm_add_ps(fjz0,tz);
340
341 }
342
343 /**************************
344 * CALCULATE INTERACTIONS *
345 **************************/
346
347 if (gmx_mm_any_lt(rsq10,rcutoff2))
348 {
349
350 r10 = _mm_mul_ps(rsq10,rinv10);
351
352 /* Compute parameters for interactions between i and j atoms */
353 qq10 = _mm_mul_ps(iq1,jq0);
354
355 /* EWALD ELECTROSTATICS */
356
357 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
358 ewrt = _mm_mul_ps(r10,ewtabscale);
359 ewitab = _mm_cvttps_epi32(ewrt);
360 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
361 ewitab = _mm_slli_epi32(ewitab,2);
362 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
363 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
364 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
365 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
366 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
367 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
368 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
369 velec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
370 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
371
372 cutoff_mask = _mm_cmplt_ps(rsq10,rcutoff2);
373
374 /* Update potential sum for this i atom from the interaction with this j atom. */
375 velec = _mm_and_ps(velec,cutoff_mask);
376 velecsum = _mm_add_ps(velecsum,velec);
377
378 fscal = felec;
379
380 fscal = _mm_and_ps(fscal,cutoff_mask);
381
382 /* Calculate temporary vectorial force */
383 tx = _mm_mul_ps(fscal,dx10);
384 ty = _mm_mul_ps(fscal,dy10);
385 tz = _mm_mul_ps(fscal,dz10);
386
387 /* Update vectorial force */
388 fix1 = _mm_add_ps(fix1,tx);
389 fiy1 = _mm_add_ps(fiy1,ty);
390 fiz1 = _mm_add_ps(fiz1,tz);
391
392 fjx0 = _mm_add_ps(fjx0,tx);
393 fjy0 = _mm_add_ps(fjy0,ty);
394 fjz0 = _mm_add_ps(fjz0,tz);
395
396 }
397
398 /**************************
399 * CALCULATE INTERACTIONS *
400 **************************/
401
402 if (gmx_mm_any_lt(rsq20,rcutoff2))
403 {
404
405 r20 = _mm_mul_ps(rsq20,rinv20);
406
407 /* Compute parameters for interactions between i and j atoms */
408 qq20 = _mm_mul_ps(iq2,jq0);
409
410 /* EWALD ELECTROSTATICS */
411
412 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
413 ewrt = _mm_mul_ps(r20,ewtabscale);
414 ewitab = _mm_cvttps_epi32(ewrt);
415 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
416 ewitab = _mm_slli_epi32(ewitab,2);
417 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
418 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
419 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
420 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
421 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
422 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
423 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
424 velec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
425 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
426
427 cutoff_mask = _mm_cmplt_ps(rsq20,rcutoff2);
428
429 /* Update potential sum for this i atom from the interaction with this j atom. */
430 velec = _mm_and_ps(velec,cutoff_mask);
431 velecsum = _mm_add_ps(velecsum,velec);
432
433 fscal = felec;
434
435 fscal = _mm_and_ps(fscal,cutoff_mask);
436
437 /* Calculate temporary vectorial force */
438 tx = _mm_mul_ps(fscal,dx20);
439 ty = _mm_mul_ps(fscal,dy20);
440 tz = _mm_mul_ps(fscal,dz20);
441
442 /* Update vectorial force */
443 fix2 = _mm_add_ps(fix2,tx);
444 fiy2 = _mm_add_ps(fiy2,ty);
445 fiz2 = _mm_add_ps(fiz2,tz);
446
447 fjx0 = _mm_add_ps(fjx0,tx);
448 fjy0 = _mm_add_ps(fjy0,ty);
449 fjz0 = _mm_add_ps(fjz0,tz);
450
451 }
452
453 fjptrA = f+j_coord_offsetA;
454 fjptrB = f+j_coord_offsetB;
455 fjptrC = f+j_coord_offsetC;
456 fjptrD = f+j_coord_offsetD;
457
458 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
459
460 /* Inner loop uses 174 flops */
461 }
462
463 if(jidx<j_index_end)
464 {
465
466 /* Get j neighbor index, and coordinate index */
467 jnrlistA = jjnr[jidx];
468 jnrlistB = jjnr[jidx+1];
469 jnrlistC = jjnr[jidx+2];
470 jnrlistD = jjnr[jidx+3];
471 /* Sign of each element will be negative for non-real atoms.
472 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
473 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
474 */
475 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
476 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
477 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
478 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
479 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
480 j_coord_offsetA = DIM3*jnrA;
481 j_coord_offsetB = DIM3*jnrB;
482 j_coord_offsetC = DIM3*jnrC;
483 j_coord_offsetD = DIM3*jnrD;
484
485 /* load j atom coordinates */
486 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
487 x+j_coord_offsetC,x+j_coord_offsetD,
488 &jx0,&jy0,&jz0);
489
490 /* Calculate displacement vector */
491 dx00 = _mm_sub_ps(ix0,jx0);
492 dy00 = _mm_sub_ps(iy0,jy0);
493 dz00 = _mm_sub_ps(iz0,jz0);
494 dx10 = _mm_sub_ps(ix1,jx0);
495 dy10 = _mm_sub_ps(iy1,jy0);
496 dz10 = _mm_sub_ps(iz1,jz0);
497 dx20 = _mm_sub_ps(ix2,jx0);
498 dy20 = _mm_sub_ps(iy2,jy0);
499 dz20 = _mm_sub_ps(iz2,jz0);
500
501 /* Calculate squared distance and things based on it */
502 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
503 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
504 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
505
506 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
507 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
508 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
509
510 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
511 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
512 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
513
514 /* Load parameters for j particles */
515 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
516 charge+jnrC+0,charge+jnrD+0);
517 vdwjidx0A = 2*vdwtype[jnrA+0];
518 vdwjidx0B = 2*vdwtype[jnrB+0];
519 vdwjidx0C = 2*vdwtype[jnrC+0];
520 vdwjidx0D = 2*vdwtype[jnrD+0];
521
522 fjx0 = _mm_setzero_ps();
523 fjy0 = _mm_setzero_ps();
524 fjz0 = _mm_setzero_ps();
525
526 /**************************
527 * CALCULATE INTERACTIONS *
528 **************************/
529
530 if (gmx_mm_any_lt(rsq00,rcutoff2))
531 {
532
533 r00 = _mm_mul_ps(rsq00,rinv00);
534 r00 = _mm_andnot_ps(dummy_mask,r00);
535
536 /* Compute parameters for interactions between i and j atoms */
537 qq00 = _mm_mul_ps(iq0,jq0);
538 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
539 vdwparam+vdwioffset0+vdwjidx0B,
540 vdwparam+vdwioffset0+vdwjidx0C,
541 vdwparam+vdwioffset0+vdwjidx0D,
542 &c6_00,&c12_00);
543
544 c6grid_00 = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
545 vdwgridparam+vdwioffset0+vdwjidx0B,
546 vdwgridparam+vdwioffset0+vdwjidx0C,
547 vdwgridparam+vdwioffset0+vdwjidx0D);
548
549 /* EWALD ELECTROSTATICS */
550
551 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
552 ewrt = _mm_mul_ps(r00,ewtabscale);
553 ewitab = _mm_cvttps_epi32(ewrt);
554 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
555 ewitab = _mm_slli_epi32(ewitab,2);
556 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
557 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
558 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
559 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
560 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
561 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
562 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
563 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_sub_ps(rinv00,sh_ewald),velec));
564 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
565
566 /* Analytical LJ-PME */
567 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
568 ewcljrsq = _mm_mul_ps(ewclj2,rsq00);
569 ewclj6 = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
570 exponent = gmx_simd_exp_rgmx_simd_exp_f(ewcljrsq);
571 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
572 poly = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
573 /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
574 vvdw6 = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
575 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
576 vvdw = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))),one_twelfth),
577 _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_add_ps(_mm_mul_ps(c6_00,sh_vdw_invrcut6),_mm_mul_ps(c6grid_00,sh_lj_ewald))),one_sixth));
578 /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
579 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
580
581 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
582
583 /* Update potential sum for this i atom from the interaction with this j atom. */
584 velec = _mm_and_ps(velec,cutoff_mask);
585 velec = _mm_andnot_ps(dummy_mask,velec);
586 velecsum = _mm_add_ps(velecsum,velec);
587 vvdw = _mm_and_ps(vvdw,cutoff_mask);
588 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
589 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
590
591 fscal = _mm_add_ps(felec,fvdw);
592
593 fscal = _mm_and_ps(fscal,cutoff_mask);
594
595 fscal = _mm_andnot_ps(dummy_mask,fscal);
596
597 /* Calculate temporary vectorial force */
598 tx = _mm_mul_ps(fscal,dx00);
599 ty = _mm_mul_ps(fscal,dy00);
600 tz = _mm_mul_ps(fscal,dz00);
601
602 /* Update vectorial force */
603 fix0 = _mm_add_ps(fix0,tx);
604 fiy0 = _mm_add_ps(fiy0,ty);
605 fiz0 = _mm_add_ps(fiz0,tz);
606
607 fjx0 = _mm_add_ps(fjx0,tx);
608 fjy0 = _mm_add_ps(fjy0,ty);
609 fjz0 = _mm_add_ps(fjz0,tz);
610
611 }
612
613 /**************************
614 * CALCULATE INTERACTIONS *
615 **************************/
616
617 if (gmx_mm_any_lt(rsq10,rcutoff2))
618 {
619
620 r10 = _mm_mul_ps(rsq10,rinv10);
621 r10 = _mm_andnot_ps(dummy_mask,r10);
622
623 /* Compute parameters for interactions between i and j atoms */
624 qq10 = _mm_mul_ps(iq1,jq0);
625
626 /* EWALD ELECTROSTATICS */
627
628 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
629 ewrt = _mm_mul_ps(r10,ewtabscale);
630 ewitab = _mm_cvttps_epi32(ewrt);
631 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
632 ewitab = _mm_slli_epi32(ewitab,2);
633 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
634 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
635 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
636 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
637 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
638 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
639 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
640 velec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
641 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
642
643 cutoff_mask = _mm_cmplt_ps(rsq10,rcutoff2);
644
645 /* Update potential sum for this i atom from the interaction with this j atom. */
646 velec = _mm_and_ps(velec,cutoff_mask);
647 velec = _mm_andnot_ps(dummy_mask,velec);
648 velecsum = _mm_add_ps(velecsum,velec);
649
650 fscal = felec;
651
652 fscal = _mm_and_ps(fscal,cutoff_mask);
653
654 fscal = _mm_andnot_ps(dummy_mask,fscal);
655
656 /* Calculate temporary vectorial force */
657 tx = _mm_mul_ps(fscal,dx10);
658 ty = _mm_mul_ps(fscal,dy10);
659 tz = _mm_mul_ps(fscal,dz10);
660
661 /* Update vectorial force */
662 fix1 = _mm_add_ps(fix1,tx);
663 fiy1 = _mm_add_ps(fiy1,ty);
664 fiz1 = _mm_add_ps(fiz1,tz);
665
666 fjx0 = _mm_add_ps(fjx0,tx);
667 fjy0 = _mm_add_ps(fjy0,ty);
668 fjz0 = _mm_add_ps(fjz0,tz);
669
670 }
671
672 /**************************
673 * CALCULATE INTERACTIONS *
674 **************************/
675
676 if (gmx_mm_any_lt(rsq20,rcutoff2))
677 {
678
679 r20 = _mm_mul_ps(rsq20,rinv20);
680 r20 = _mm_andnot_ps(dummy_mask,r20);
681
682 /* Compute parameters for interactions between i and j atoms */
683 qq20 = _mm_mul_ps(iq2,jq0);
684
685 /* EWALD ELECTROSTATICS */
686
687 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
688 ewrt = _mm_mul_ps(r20,ewtabscale);
689 ewitab = _mm_cvttps_epi32(ewrt);
690 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
691 ewitab = _mm_slli_epi32(ewitab,2);
692 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
693 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
694 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
695 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
696 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
697 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
698 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
699 velec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
700 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
701
702 cutoff_mask = _mm_cmplt_ps(rsq20,rcutoff2);
703
704 /* Update potential sum for this i atom from the interaction with this j atom. */
705 velec = _mm_and_ps(velec,cutoff_mask);
706 velec = _mm_andnot_ps(dummy_mask,velec);
707 velecsum = _mm_add_ps(velecsum,velec);
708
709 fscal = felec;
710
711 fscal = _mm_and_ps(fscal,cutoff_mask);
712
713 fscal = _mm_andnot_ps(dummy_mask,fscal);
714
715 /* Calculate temporary vectorial force */
716 tx = _mm_mul_ps(fscal,dx20);
717 ty = _mm_mul_ps(fscal,dy20);
718 tz = _mm_mul_ps(fscal,dz20);
719
720 /* Update vectorial force */
721 fix2 = _mm_add_ps(fix2,tx);
722 fiy2 = _mm_add_ps(fiy2,ty);
723 fiz2 = _mm_add_ps(fiz2,tz);
724
725 fjx0 = _mm_add_ps(fjx0,tx);
726 fjy0 = _mm_add_ps(fjy0,ty);
727 fjz0 = _mm_add_ps(fjz0,tz);
728
729 }
730
731 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
732 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
733 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
734 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
735
736 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
737
738 /* Inner loop uses 177 flops */
739 }
740
741 /* End of innermost loop */
742
743 gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
744 f+i_coord_offset,fshift+i_shift_offset);
745
746 ggid = gid[iidx];
747 /* Update potential energies */
748 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
749 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
750
751 /* Increment number of inner iterations */
752 inneriter += j_index_end - j_index_start;
753
754 /* Outer loop uses 20 flops */
755 }
756
757 /* Increment number of outer iterations */
758 outeriter += nri;
759
760 /* Update outer/inner flops */
761
762 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*177)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_VF] += outeriter*20 + inneriter
*177
;
763}
764/*
765 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sse4_1_single
766 * Electrostatics interaction: Ewald
767 * VdW interaction: LJEwald
768 * Geometry: Water3-Particle
769 * Calculate force/pot: Force
770 */
771void
772nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_sse4_1_single
773 (t_nblist * gmx_restrict nlist,
774 rvec * gmx_restrict xx,
775 rvec * gmx_restrict ff,
776 t_forcerec * gmx_restrict fr,
777 t_mdatoms * gmx_restrict mdatoms,
778 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
779 t_nrnb * gmx_restrict nrnb)
780{
781 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
782 * just 0 for non-waters.
783 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
784 * jnr indices corresponding to data put in the four positions in the SIMD register.
785 */
786 int i_shift_offset,i_coord_offset,outeriter,inneriter;
787 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
788 int jnrA,jnrB,jnrC,jnrD;
789 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
790 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
791 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
792 real rcutoff_scalar;
793 real *shiftvec,*fshift,*x,*f;
794 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
795 real scratch[4*DIM3];
796 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
797 int vdwioffset0;
798 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
799 int vdwioffset1;
800 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
801 int vdwioffset2;
802 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
803 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
804 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
805 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
806 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
807 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
808 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
809 real *charge;
810 int nvdwtype;
811 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
812 int *vdwtype;
813 real *vdwparam;
814 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
815 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
816 __m128 c6grid_00;
817 __m128 c6grid_10;
818 __m128 c6grid_20;
819 __m128 ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
820 real *vdwgridparam;
821 __m128 one_half = _mm_set1_ps(0.5);
822 __m128 minus_one = _mm_set1_ps(-1.0);
823 __m128i ewitab;
824 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
825 real *ewtab;
826 __m128 dummy_mask,cutoff_mask;
827 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
828 __m128 one = _mm_set1_ps(1.0);
829 __m128 two = _mm_set1_ps(2.0);
830 x = xx[0];
831 f = ff[0];
832
833 nri = nlist->nri;
834 iinr = nlist->iinr;
835 jindex = nlist->jindex;
836 jjnr = nlist->jjnr;
837 shiftidx = nlist->shift;
838 gid = nlist->gid;
Value stored to 'gid' is never read
839 shiftvec = fr->shift_vec[0];
840 fshift = fr->fshift[0];
841 facel = _mm_set1_ps(fr->epsfac);
842 charge = mdatoms->chargeA;
843 nvdwtype = fr->ntype;
844 vdwparam = fr->nbfp;
845 vdwtype = mdatoms->typeA;
846 vdwgridparam = fr->ljpme_c6grid;
847 sh_lj_ewald = _mm_set1_ps(fr->ic->sh_lj_ewald);
848 ewclj = _mm_set1_ps(fr->ewaldcoeff_lj);
849 ewclj2 = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
850
851 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
852 ewtab = fr->ic->tabq_coul_F;
853 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
854 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
855
856 /* Setup water-specific parameters */
857 inr = nlist->iinr[0];
858 iq0 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
859 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
860 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
861 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
862
863 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
864 rcutoff_scalar = fr->rcoulomb;
865 rcutoff = _mm_set1_ps(rcutoff_scalar);
866 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
867
868 sh_vdw_invrcut6 = _mm_set1_ps(fr->ic->sh_invrc6);
869 rvdw = _mm_set1_ps(fr->rvdw);
870
871 /* Avoid stupid compiler warnings */
872 jnrA = jnrB = jnrC = jnrD = 0;
873 j_coord_offsetA = 0;
874 j_coord_offsetB = 0;
875 j_coord_offsetC = 0;
876 j_coord_offsetD = 0;
877
878 outeriter = 0;
879 inneriter = 0;
880
881 for(iidx=0;iidx<4*DIM3;iidx++)
882 {
883 scratch[iidx] = 0.0;
884 }
885
886 /* Start outer loop over neighborlists */
887 for(iidx=0; iidx<nri; iidx++)
888 {
889 /* Load shift vector for this list */
890 i_shift_offset = DIM3*shiftidx[iidx];
891
892 /* Load limits for loop over neighbors */
893 j_index_start = jindex[iidx];
894 j_index_end = jindex[iidx+1];
895
896 /* Get outer coordinate index */
897 inr = iinr[iidx];
898 i_coord_offset = DIM3*inr;
899
900 /* Load i particle coords and add shift vector */
901 gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
902 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
903
904 fix0 = _mm_setzero_ps();
905 fiy0 = _mm_setzero_ps();
906 fiz0 = _mm_setzero_ps();
907 fix1 = _mm_setzero_ps();
908 fiy1 = _mm_setzero_ps();
909 fiz1 = _mm_setzero_ps();
910 fix2 = _mm_setzero_ps();
911 fiy2 = _mm_setzero_ps();
912 fiz2 = _mm_setzero_ps();
913
914 /* Start inner kernel loop */
915 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
916 {
917
918 /* Get j neighbor index, and coordinate index */
919 jnrA = jjnr[jidx];
920 jnrB = jjnr[jidx+1];
921 jnrC = jjnr[jidx+2];
922 jnrD = jjnr[jidx+3];
923 j_coord_offsetA = DIM3*jnrA;
924 j_coord_offsetB = DIM3*jnrB;
925 j_coord_offsetC = DIM3*jnrC;
926 j_coord_offsetD = DIM3*jnrD;
927
928 /* load j atom coordinates */
929 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
930 x+j_coord_offsetC,x+j_coord_offsetD,
931 &jx0,&jy0,&jz0);
932
933 /* Calculate displacement vector */
934 dx00 = _mm_sub_ps(ix0,jx0);
935 dy00 = _mm_sub_ps(iy0,jy0);
936 dz00 = _mm_sub_ps(iz0,jz0);
937 dx10 = _mm_sub_ps(ix1,jx0);
938 dy10 = _mm_sub_ps(iy1,jy0);
939 dz10 = _mm_sub_ps(iz1,jz0);
940 dx20 = _mm_sub_ps(ix2,jx0);
941 dy20 = _mm_sub_ps(iy2,jy0);
942 dz20 = _mm_sub_ps(iz2,jz0);
943
944 /* Calculate squared distance and things based on it */
945 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
946 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
947 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
948
949 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
950 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
951 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
952
953 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
954 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
955 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
956
957 /* Load parameters for j particles */
958 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
959 charge+jnrC+0,charge+jnrD+0);
960 vdwjidx0A = 2*vdwtype[jnrA+0];
961 vdwjidx0B = 2*vdwtype[jnrB+0];
962 vdwjidx0C = 2*vdwtype[jnrC+0];
963 vdwjidx0D = 2*vdwtype[jnrD+0];
964
965 fjx0 = _mm_setzero_ps();
966 fjy0 = _mm_setzero_ps();
967 fjz0 = _mm_setzero_ps();
968
969 /**************************
970 * CALCULATE INTERACTIONS *
971 **************************/
972
973 if (gmx_mm_any_lt(rsq00,rcutoff2))
974 {
975
976 r00 = _mm_mul_ps(rsq00,rinv00);
977
978 /* Compute parameters for interactions between i and j atoms */
979 qq00 = _mm_mul_ps(iq0,jq0);
980 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
981 vdwparam+vdwioffset0+vdwjidx0B,
982 vdwparam+vdwioffset0+vdwjidx0C,
983 vdwparam+vdwioffset0+vdwjidx0D,
984 &c6_00,&c12_00);
985
986 c6grid_00 = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
987 vdwgridparam+vdwioffset0+vdwjidx0B,
988 vdwgridparam+vdwioffset0+vdwjidx0C,
989 vdwgridparam+vdwioffset0+vdwjidx0D);
990
991 /* EWALD ELECTROSTATICS */
992
993 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
994 ewrt = _mm_mul_ps(r00,ewtabscale);
995 ewitab = _mm_cvttps_epi32(ewrt);
996 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
997 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
998 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
999 &ewtabF,&ewtabFn);
1000 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1001 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1002
1003 /* Analytical LJ-PME */
1004 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1005 ewcljrsq = _mm_mul_ps(ewclj2,rsq00);
1006 ewclj6 = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1007 exponent = gmx_simd_exp_rgmx_simd_exp_f(ewcljrsq);
1008 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1009 poly = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1010 /* f6A = 6 * C6grid * (1 - poly) */
1011 f6A = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1012 /* f6B = C6grid * exponent * beta^6 */
1013 f6B = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1014 /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1015 fvdw = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1016
1017 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
1018
1019 fscal = _mm_add_ps(felec,fvdw);
1020
1021 fscal = _mm_and_ps(fscal,cutoff_mask);
1022
1023 /* Calculate temporary vectorial force */
1024 tx = _mm_mul_ps(fscal,dx00);
1025 ty = _mm_mul_ps(fscal,dy00);
1026 tz = _mm_mul_ps(fscal,dz00);
1027
1028 /* Update vectorial force */
1029 fix0 = _mm_add_ps(fix0,tx);
1030 fiy0 = _mm_add_ps(fiy0,ty);
1031 fiz0 = _mm_add_ps(fiz0,tz);
1032
1033 fjx0 = _mm_add_ps(fjx0,tx);
1034 fjy0 = _mm_add_ps(fjy0,ty);
1035 fjz0 = _mm_add_ps(fjz0,tz);
1036
1037 }
1038
1039 /**************************
1040 * CALCULATE INTERACTIONS *
1041 **************************/
1042
1043 if (gmx_mm_any_lt(rsq10,rcutoff2))
1044 {
1045
1046 r10 = _mm_mul_ps(rsq10,rinv10);
1047
1048 /* Compute parameters for interactions between i and j atoms */
1049 qq10 = _mm_mul_ps(iq1,jq0);
1050
1051 /* EWALD ELECTROSTATICS */
1052
1053 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1054 ewrt = _mm_mul_ps(r10,ewtabscale);
1055 ewitab = _mm_cvttps_epi32(ewrt);
1056 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1057 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1058 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1059 &ewtabF,&ewtabFn);
1060 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1061 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1062
1063 cutoff_mask = _mm_cmplt_ps(rsq10,rcutoff2);
1064
1065 fscal = felec;
1066
1067 fscal = _mm_and_ps(fscal,cutoff_mask);
1068
1069 /* Calculate temporary vectorial force */
1070 tx = _mm_mul_ps(fscal,dx10);
1071 ty = _mm_mul_ps(fscal,dy10);
1072 tz = _mm_mul_ps(fscal,dz10);
1073
1074 /* Update vectorial force */
1075 fix1 = _mm_add_ps(fix1,tx);
1076 fiy1 = _mm_add_ps(fiy1,ty);
1077 fiz1 = _mm_add_ps(fiz1,tz);
1078
1079 fjx0 = _mm_add_ps(fjx0,tx);
1080 fjy0 = _mm_add_ps(fjy0,ty);
1081 fjz0 = _mm_add_ps(fjz0,tz);
1082
1083 }
1084
1085 /**************************
1086 * CALCULATE INTERACTIONS *
1087 **************************/
1088
1089 if (gmx_mm_any_lt(rsq20,rcutoff2))
1090 {
1091
1092 r20 = _mm_mul_ps(rsq20,rinv20);
1093
1094 /* Compute parameters for interactions between i and j atoms */
1095 qq20 = _mm_mul_ps(iq2,jq0);
1096
1097 /* EWALD ELECTROSTATICS */
1098
1099 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1100 ewrt = _mm_mul_ps(r20,ewtabscale);
1101 ewitab = _mm_cvttps_epi32(ewrt);
1102 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1103 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1104 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1105 &ewtabF,&ewtabFn);
1106 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1107 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1108
1109 cutoff_mask = _mm_cmplt_ps(rsq20,rcutoff2);
1110
1111 fscal = felec;
1112
1113 fscal = _mm_and_ps(fscal,cutoff_mask);
1114
1115 /* Calculate temporary vectorial force */
1116 tx = _mm_mul_ps(fscal,dx20);
1117 ty = _mm_mul_ps(fscal,dy20);
1118 tz = _mm_mul_ps(fscal,dz20);
1119
1120 /* Update vectorial force */
1121 fix2 = _mm_add_ps(fix2,tx);
1122 fiy2 = _mm_add_ps(fiy2,ty);
1123 fiz2 = _mm_add_ps(fiz2,tz);
1124
1125 fjx0 = _mm_add_ps(fjx0,tx);
1126 fjy0 = _mm_add_ps(fjy0,ty);
1127 fjz0 = _mm_add_ps(fjz0,tz);
1128
1129 }
1130
1131 fjptrA = f+j_coord_offsetA;
1132 fjptrB = f+j_coord_offsetB;
1133 fjptrC = f+j_coord_offsetC;
1134 fjptrD = f+j_coord_offsetD;
1135
1136 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1137
1138 /* Inner loop uses 140 flops */
1139 }
1140
1141 if(jidx<j_index_end)
1142 {
1143
1144 /* Get j neighbor index, and coordinate index */
1145 jnrlistA = jjnr[jidx];
1146 jnrlistB = jjnr[jidx+1];
1147 jnrlistC = jjnr[jidx+2];
1148 jnrlistD = jjnr[jidx+3];
1149 /* Sign of each element will be negative for non-real atoms.
1150 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1151 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1152 */
1153 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1154 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
1155 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
1156 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
1157 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
1158 j_coord_offsetA = DIM3*jnrA;
1159 j_coord_offsetB = DIM3*jnrB;
1160 j_coord_offsetC = DIM3*jnrC;
1161 j_coord_offsetD = DIM3*jnrD;
1162
1163 /* load j atom coordinates */
1164 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1165 x+j_coord_offsetC,x+j_coord_offsetD,
1166 &jx0,&jy0,&jz0);
1167
1168 /* Calculate displacement vector */
1169 dx00 = _mm_sub_ps(ix0,jx0);
1170 dy00 = _mm_sub_ps(iy0,jy0);
1171 dz00 = _mm_sub_ps(iz0,jz0);
1172 dx10 = _mm_sub_ps(ix1,jx0);
1173 dy10 = _mm_sub_ps(iy1,jy0);
1174 dz10 = _mm_sub_ps(iz1,jz0);
1175 dx20 = _mm_sub_ps(ix2,jx0);
1176 dy20 = _mm_sub_ps(iy2,jy0);
1177 dz20 = _mm_sub_ps(iz2,jz0);
1178
1179 /* Calculate squared distance and things based on it */
1180 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1181 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1182 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1183
1184 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
1185 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
1186 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
1187
1188 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
1189 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
1190 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
1191
1192 /* Load parameters for j particles */
1193 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1194 charge+jnrC+0,charge+jnrD+0);
1195 vdwjidx0A = 2*vdwtype[jnrA+0];
1196 vdwjidx0B = 2*vdwtype[jnrB+0];
1197 vdwjidx0C = 2*vdwtype[jnrC+0];
1198 vdwjidx0D = 2*vdwtype[jnrD+0];
1199
1200 fjx0 = _mm_setzero_ps();
1201 fjy0 = _mm_setzero_ps();
1202 fjz0 = _mm_setzero_ps();
1203
1204 /**************************
1205 * CALCULATE INTERACTIONS *
1206 **************************/
1207
1208 if (gmx_mm_any_lt(rsq00,rcutoff2))
1209 {
1210
1211 r00 = _mm_mul_ps(rsq00,rinv00);
1212 r00 = _mm_andnot_ps(dummy_mask,r00);
1213
1214 /* Compute parameters for interactions between i and j atoms */
1215 qq00 = _mm_mul_ps(iq0,jq0);
1216 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1217 vdwparam+vdwioffset0+vdwjidx0B,
1218 vdwparam+vdwioffset0+vdwjidx0C,
1219 vdwparam+vdwioffset0+vdwjidx0D,
1220 &c6_00,&c12_00);
1221
1222 c6grid_00 = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
1223 vdwgridparam+vdwioffset0+vdwjidx0B,
1224 vdwgridparam+vdwioffset0+vdwjidx0C,
1225 vdwgridparam+vdwioffset0+vdwjidx0D);
1226
1227 /* EWALD ELECTROSTATICS */
1228
1229 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1230 ewrt = _mm_mul_ps(r00,ewtabscale);
1231 ewitab = _mm_cvttps_epi32(ewrt);
1232 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1233 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1234 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1235 &ewtabF,&ewtabFn);
1236 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1237 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
1238
1239 /* Analytical LJ-PME */
1240 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1241 ewcljrsq = _mm_mul_ps(ewclj2,rsq00);
1242 ewclj6 = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
1243 exponent = gmx_simd_exp_rgmx_simd_exp_f(ewcljrsq);
1244 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
1245 poly = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
1246 /* f6A = 6 * C6grid * (1 - poly) */
1247 f6A = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
1248 /* f6B = C6grid * exponent * beta^6 */
1249 f6B = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
1250 /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
1251 fvdw = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
1252
1253 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
1254
1255 fscal = _mm_add_ps(felec,fvdw);
1256
1257 fscal = _mm_and_ps(fscal,cutoff_mask);
1258
1259 fscal = _mm_andnot_ps(dummy_mask,fscal);
1260
1261 /* Calculate temporary vectorial force */
1262 tx = _mm_mul_ps(fscal,dx00);
1263 ty = _mm_mul_ps(fscal,dy00);
1264 tz = _mm_mul_ps(fscal,dz00);
1265
1266 /* Update vectorial force */
1267 fix0 = _mm_add_ps(fix0,tx);
1268 fiy0 = _mm_add_ps(fiy0,ty);
1269 fiz0 = _mm_add_ps(fiz0,tz);
1270
1271 fjx0 = _mm_add_ps(fjx0,tx);
1272 fjy0 = _mm_add_ps(fjy0,ty);
1273 fjz0 = _mm_add_ps(fjz0,tz);
1274
1275 }
1276
1277 /**************************
1278 * CALCULATE INTERACTIONS *
1279 **************************/
1280
1281 if (gmx_mm_any_lt(rsq10,rcutoff2))
1282 {
1283
1284 r10 = _mm_mul_ps(rsq10,rinv10);
1285 r10 = _mm_andnot_ps(dummy_mask,r10);
1286
1287 /* Compute parameters for interactions between i and j atoms */
1288 qq10 = _mm_mul_ps(iq1,jq0);
1289
1290 /* EWALD ELECTROSTATICS */
1291
1292 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1293 ewrt = _mm_mul_ps(r10,ewtabscale);
1294 ewitab = _mm_cvttps_epi32(ewrt);
1295 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1296 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1297 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1298 &ewtabF,&ewtabFn);
1299 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1300 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1301
1302 cutoff_mask = _mm_cmplt_ps(rsq10,rcutoff2);
1303
1304 fscal = felec;
1305
1306 fscal = _mm_and_ps(fscal,cutoff_mask);
1307
1308 fscal = _mm_andnot_ps(dummy_mask,fscal);
1309
1310 /* Calculate temporary vectorial force */
1311 tx = _mm_mul_ps(fscal,dx10);
1312 ty = _mm_mul_ps(fscal,dy10);
1313 tz = _mm_mul_ps(fscal,dz10);
1314
1315 /* Update vectorial force */
1316 fix1 = _mm_add_ps(fix1,tx);
1317 fiy1 = _mm_add_ps(fiy1,ty);
1318 fiz1 = _mm_add_ps(fiz1,tz);
1319
1320 fjx0 = _mm_add_ps(fjx0,tx);
1321 fjy0 = _mm_add_ps(fjy0,ty);
1322 fjz0 = _mm_add_ps(fjz0,tz);
1323
1324 }
1325
1326 /**************************
1327 * CALCULATE INTERACTIONS *
1328 **************************/
1329
1330 if (gmx_mm_any_lt(rsq20,rcutoff2))
1331 {
1332
1333 r20 = _mm_mul_ps(rsq20,rinv20);
1334 r20 = _mm_andnot_ps(dummy_mask,r20);
1335
1336 /* Compute parameters for interactions between i and j atoms */
1337 qq20 = _mm_mul_ps(iq2,jq0);
1338
1339 /* EWALD ELECTROSTATICS */
1340
1341 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1342 ewrt = _mm_mul_ps(r20,ewtabscale);
1343 ewitab = _mm_cvttps_epi32(ewrt);
1344 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1345 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1346 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1347 &ewtabF,&ewtabFn);
1348 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1349 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1350
1351 cutoff_mask = _mm_cmplt_ps(rsq20,rcutoff2);
1352
1353 fscal = felec;
1354
1355 fscal = _mm_and_ps(fscal,cutoff_mask);
1356
1357 fscal = _mm_andnot_ps(dummy_mask,fscal);
1358
1359 /* Calculate temporary vectorial force */
1360 tx = _mm_mul_ps(fscal,dx20);
1361 ty = _mm_mul_ps(fscal,dy20);
1362 tz = _mm_mul_ps(fscal,dz20);
1363
1364 /* Update vectorial force */
1365 fix2 = _mm_add_ps(fix2,tx);
1366 fiy2 = _mm_add_ps(fiy2,ty);
1367 fiz2 = _mm_add_ps(fiz2,tz);
1368
1369 fjx0 = _mm_add_ps(fjx0,tx);
1370 fjy0 = _mm_add_ps(fjy0,ty);
1371 fjz0 = _mm_add_ps(fjz0,tz);
1372
1373 }
1374
1375 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1376 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1377 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1378 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1379
1380 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1381
1382 /* Inner loop uses 143 flops */
1383 }
1384
1385 /* End of innermost loop */
1386
1387 gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1388 f+i_coord_offset,fshift+i_shift_offset);
1389
1390 /* Increment number of inner iterations */
1391 inneriter += j_index_end - j_index_start;
1392
1393 /* Outer loop uses 18 flops */
1394 }
1395
1396 /* Increment number of outer iterations */
1397 outeriter += nri;
1398
1399 /* Update outer/inner flops */
1400
1401 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*143)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_F] += outeriter*18 + inneriter
*143
;
1402}