Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecCSTab_VdwBham_GeomW3P1_c.c
Location:line 441, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwBham_GeomW3P1_VF_c
51 * Electrostatics interaction: CubicSplineTable
52 * VdW interaction: Buckingham
53 * Geometry: Water3-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecCSTab_VdwBham_GeomW3P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83 real velec,felec,velecsum,facel,crf,krf,krf2;
84 real *charge;
85 int nvdwtype;
86 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
87 int *vdwtype;
88 real *vdwparam;
89 int vfitab;
90 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
91 real *vftab;
92
93 x = xx[0];
94 f = ff[0];
95
96 nri = nlist->nri;
97 iinr = nlist->iinr;
98 jindex = nlist->jindex;
99 jjnr = nlist->jjnr;
100 shiftidx = nlist->shift;
101 gid = nlist->gid;
102 shiftvec = fr->shift_vec[0];
103 fshift = fr->fshift[0];
104 facel = fr->epsfac;
105 charge = mdatoms->chargeA;
106 nvdwtype = fr->ntype;
107 vdwparam = fr->nbfp;
108 vdwtype = mdatoms->typeA;
109
110 vftab = kernel_data->table_elec->data;
111 vftabscale = kernel_data->table_elec->scale;
112
113 /* Setup water-specific parameters */
114 inr = nlist->iinr[0];
115 iq0 = facel*charge[inr+0];
116 iq1 = facel*charge[inr+1];
117 iq2 = facel*charge[inr+2];
118 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
119
120 outeriter = 0;
121 inneriter = 0;
122
123 /* Start outer loop over neighborlists */
124 for(iidx=0; iidx<nri; iidx++)
125 {
126 /* Load shift vector for this list */
127 i_shift_offset = DIM3*shiftidx[iidx];
128 shX = shiftvec[i_shift_offset+XX0];
129 shY = shiftvec[i_shift_offset+YY1];
130 shZ = shiftvec[i_shift_offset+ZZ2];
131
132 /* Load limits for loop over neighbors */
133 j_index_start = jindex[iidx];
134 j_index_end = jindex[iidx+1];
135
136 /* Get outer coordinate index */
137 inr = iinr[iidx];
138 i_coord_offset = DIM3*inr;
139
140 /* Load i particle coords and add shift vector */
141 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
142 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
143 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
144 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
145 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
146 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
147 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
148 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
149 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
150
151 fix0 = 0.0;
152 fiy0 = 0.0;
153 fiz0 = 0.0;
154 fix1 = 0.0;
155 fiy1 = 0.0;
156 fiz1 = 0.0;
157 fix2 = 0.0;
158 fiy2 = 0.0;
159 fiz2 = 0.0;
160
161 /* Reset potential sums */
162 velecsum = 0.0;
163 vvdwsum = 0.0;
164
165 /* Start inner kernel loop */
166 for(jidx=j_index_start; jidx<j_index_end; jidx++)
167 {
168 /* Get j neighbor index, and coordinate index */
169 jnr = jjnr[jidx];
170 j_coord_offset = DIM3*jnr;
171
172 /* load j atom coordinates */
173 jx0 = x[j_coord_offset+DIM3*0+XX0];
174 jy0 = x[j_coord_offset+DIM3*0+YY1];
175 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
176
177 /* Calculate displacement vector */
178 dx00 = ix0 - jx0;
179 dy00 = iy0 - jy0;
180 dz00 = iz0 - jz0;
181 dx10 = ix1 - jx0;
182 dy10 = iy1 - jy0;
183 dz10 = iz1 - jz0;
184 dx20 = ix2 - jx0;
185 dy20 = iy2 - jy0;
186 dz20 = iz2 - jz0;
187
188 /* Calculate squared distance and things based on it */
189 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
190 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
191 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
192
193 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
194 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
195 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
196
197 rinvsq00 = rinv00*rinv00;
198
199 /* Load parameters for j particles */
200 jq0 = charge[jnr+0];
201 vdwjidx0 = 3*vdwtype[jnr+0];
202
203 /**************************
204 * CALCULATE INTERACTIONS *
205 **************************/
206
207 r00 = rsq00*rinv00;
208
209 qq00 = iq0*jq0;
210 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
211 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
212 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
213
214 /* Calculate table index by multiplying r with table scale and truncate to integer */
215 rt = r00*vftabscale;
216 vfitab = rt;
217 vfeps = rt-vfitab;
218 vfitab = 1*4*vfitab;
219
220 /* CUBIC SPLINE TABLE ELECTROSTATICS */
221 Y = vftab[vfitab];
222 F = vftab[vfitab+1];
223 Geps = vfeps*vftab[vfitab+2];
224 Heps2 = vfeps*vfeps*vftab[vfitab+3];
225 Fp = F+Geps+Heps2;
226 VV = Y+vfeps*Fp;
227 velec = qq00*VV;
228 FF = Fp+Geps+2.0*Heps2;
229 felec = -qq00*FF*vftabscale*rinv00;
230
231 /* BUCKINGHAM DISPERSION/REPULSION */
232 rinvsix = rinvsq00*rinvsq00*rinvsq00;
233 vvdw6 = c6_00*rinvsix;
234 br = cexp2_00*r00;
235 vvdwexp = cexp1_00*exp(-br);
236 vvdw = vvdwexp - vvdw6*(1.0/6.0);
237 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
238
239 /* Update potential sums from outer loop */
240 velecsum += velec;
241 vvdwsum += vvdw;
242
243 fscal = felec+fvdw;
244
245 /* Calculate temporary vectorial force */
246 tx = fscal*dx00;
247 ty = fscal*dy00;
248 tz = fscal*dz00;
249
250 /* Update vectorial force */
251 fix0 += tx;
252 fiy0 += ty;
253 fiz0 += tz;
254 f[j_coord_offset+DIM3*0+XX0] -= tx;
255 f[j_coord_offset+DIM3*0+YY1] -= ty;
256 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
257
258 /**************************
259 * CALCULATE INTERACTIONS *
260 **************************/
261
262 r10 = rsq10*rinv10;
263
264 qq10 = iq1*jq0;
265
266 /* Calculate table index by multiplying r with table scale and truncate to integer */
267 rt = r10*vftabscale;
268 vfitab = rt;
269 vfeps = rt-vfitab;
270 vfitab = 1*4*vfitab;
271
272 /* CUBIC SPLINE TABLE ELECTROSTATICS */
273 Y = vftab[vfitab];
274 F = vftab[vfitab+1];
275 Geps = vfeps*vftab[vfitab+2];
276 Heps2 = vfeps*vfeps*vftab[vfitab+3];
277 Fp = F+Geps+Heps2;
278 VV = Y+vfeps*Fp;
279 velec = qq10*VV;
280 FF = Fp+Geps+2.0*Heps2;
281 felec = -qq10*FF*vftabscale*rinv10;
282
283 /* Update potential sums from outer loop */
284 velecsum += velec;
285
286 fscal = felec;
287
288 /* Calculate temporary vectorial force */
289 tx = fscal*dx10;
290 ty = fscal*dy10;
291 tz = fscal*dz10;
292
293 /* Update vectorial force */
294 fix1 += tx;
295 fiy1 += ty;
296 fiz1 += tz;
297 f[j_coord_offset+DIM3*0+XX0] -= tx;
298 f[j_coord_offset+DIM3*0+YY1] -= ty;
299 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
300
301 /**************************
302 * CALCULATE INTERACTIONS *
303 **************************/
304
305 r20 = rsq20*rinv20;
306
307 qq20 = iq2*jq0;
308
309 /* Calculate table index by multiplying r with table scale and truncate to integer */
310 rt = r20*vftabscale;
311 vfitab = rt;
312 vfeps = rt-vfitab;
313 vfitab = 1*4*vfitab;
314
315 /* CUBIC SPLINE TABLE ELECTROSTATICS */
316 Y = vftab[vfitab];
317 F = vftab[vfitab+1];
318 Geps = vfeps*vftab[vfitab+2];
319 Heps2 = vfeps*vfeps*vftab[vfitab+3];
320 Fp = F+Geps+Heps2;
321 VV = Y+vfeps*Fp;
322 velec = qq20*VV;
323 FF = Fp+Geps+2.0*Heps2;
324 felec = -qq20*FF*vftabscale*rinv20;
325
326 /* Update potential sums from outer loop */
327 velecsum += velec;
328
329 fscal = felec;
330
331 /* Calculate temporary vectorial force */
332 tx = fscal*dx20;
333 ty = fscal*dy20;
334 tz = fscal*dz20;
335
336 /* Update vectorial force */
337 fix2 += tx;
338 fiy2 += ty;
339 fiz2 += tz;
340 f[j_coord_offset+DIM3*0+XX0] -= tx;
341 f[j_coord_offset+DIM3*0+YY1] -= ty;
342 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
343
344 /* Inner loop uses 165 flops */
345 }
346 /* End of innermost loop */
347
348 tx = ty = tz = 0;
349 f[i_coord_offset+DIM3*0+XX0] += fix0;
350 f[i_coord_offset+DIM3*0+YY1] += fiy0;
351 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
352 tx += fix0;
353 ty += fiy0;
354 tz += fiz0;
355 f[i_coord_offset+DIM3*1+XX0] += fix1;
356 f[i_coord_offset+DIM3*1+YY1] += fiy1;
357 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
358 tx += fix1;
359 ty += fiy1;
360 tz += fiz1;
361 f[i_coord_offset+DIM3*2+XX0] += fix2;
362 f[i_coord_offset+DIM3*2+YY1] += fiy2;
363 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
364 tx += fix2;
365 ty += fiy2;
366 tz += fiz2;
367 fshift[i_shift_offset+XX0] += tx;
368 fshift[i_shift_offset+YY1] += ty;
369 fshift[i_shift_offset+ZZ2] += tz;
370
371 ggid = gid[iidx];
372 /* Update potential energies */
373 kernel_data->energygrp_elec[ggid] += velecsum;
374 kernel_data->energygrp_vdw[ggid] += vvdwsum;
375
376 /* Increment number of inner iterations */
377 inneriter += j_index_end - j_index_start;
378
379 /* Outer loop uses 32 flops */
380 }
381
382 /* Increment number of outer iterations */
383 outeriter += nri;
384
385 /* Update outer/inner flops */
386
387 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*165)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_VF] += outeriter*32 + inneriter
*165
;
388}
389/*
390 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwBham_GeomW3P1_F_c
391 * Electrostatics interaction: CubicSplineTable
392 * VdW interaction: Buckingham
393 * Geometry: Water3-Particle
394 * Calculate force/pot: Force
395 */
396void
397nb_kernel_ElecCSTab_VdwBham_GeomW3P1_F_c
398 (t_nblist * gmx_restrict__restrict nlist,
399 rvec * gmx_restrict__restrict xx,
400 rvec * gmx_restrict__restrict ff,
401 t_forcerec * gmx_restrict__restrict fr,
402 t_mdatoms * gmx_restrict__restrict mdatoms,
403 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
404 t_nrnb * gmx_restrict__restrict nrnb)
405{
406 int i_shift_offset,i_coord_offset,j_coord_offset;
407 int j_index_start,j_index_end;
408 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
409 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
410 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
411 real *shiftvec,*fshift,*x,*f;
412 int vdwioffset0;
413 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
414 int vdwioffset1;
415 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
416 int vdwioffset2;
417 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
418 int vdwjidx0;
419 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
420 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
421 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
422 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
423 real velec,felec,velecsum,facel,crf,krf,krf2;
424 real *charge;
425 int nvdwtype;
426 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
427 int *vdwtype;
428 real *vdwparam;
429 int vfitab;
430 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
431 real *vftab;
432
433 x = xx[0];
434 f = ff[0];
435
436 nri = nlist->nri;
437 iinr = nlist->iinr;
438 jindex = nlist->jindex;
439 jjnr = nlist->jjnr;
440 shiftidx = nlist->shift;
441 gid = nlist->gid;
Value stored to 'gid' is never read
442 shiftvec = fr->shift_vec[0];
443 fshift = fr->fshift[0];
444 facel = fr->epsfac;
445 charge = mdatoms->chargeA;
446 nvdwtype = fr->ntype;
447 vdwparam = fr->nbfp;
448 vdwtype = mdatoms->typeA;
449
450 vftab = kernel_data->table_elec->data;
451 vftabscale = kernel_data->table_elec->scale;
452
453 /* Setup water-specific parameters */
454 inr = nlist->iinr[0];
455 iq0 = facel*charge[inr+0];
456 iq1 = facel*charge[inr+1];
457 iq2 = facel*charge[inr+2];
458 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
459
460 outeriter = 0;
461 inneriter = 0;
462
463 /* Start outer loop over neighborlists */
464 for(iidx=0; iidx<nri; iidx++)
465 {
466 /* Load shift vector for this list */
467 i_shift_offset = DIM3*shiftidx[iidx];
468 shX = shiftvec[i_shift_offset+XX0];
469 shY = shiftvec[i_shift_offset+YY1];
470 shZ = shiftvec[i_shift_offset+ZZ2];
471
472 /* Load limits for loop over neighbors */
473 j_index_start = jindex[iidx];
474 j_index_end = jindex[iidx+1];
475
476 /* Get outer coordinate index */
477 inr = iinr[iidx];
478 i_coord_offset = DIM3*inr;
479
480 /* Load i particle coords and add shift vector */
481 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
482 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
483 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
484 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
485 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
486 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
487 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
488 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
489 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
490
491 fix0 = 0.0;
492 fiy0 = 0.0;
493 fiz0 = 0.0;
494 fix1 = 0.0;
495 fiy1 = 0.0;
496 fiz1 = 0.0;
497 fix2 = 0.0;
498 fiy2 = 0.0;
499 fiz2 = 0.0;
500
501 /* Start inner kernel loop */
502 for(jidx=j_index_start; jidx<j_index_end; jidx++)
503 {
504 /* Get j neighbor index, and coordinate index */
505 jnr = jjnr[jidx];
506 j_coord_offset = DIM3*jnr;
507
508 /* load j atom coordinates */
509 jx0 = x[j_coord_offset+DIM3*0+XX0];
510 jy0 = x[j_coord_offset+DIM3*0+YY1];
511 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
512
513 /* Calculate displacement vector */
514 dx00 = ix0 - jx0;
515 dy00 = iy0 - jy0;
516 dz00 = iz0 - jz0;
517 dx10 = ix1 - jx0;
518 dy10 = iy1 - jy0;
519 dz10 = iz1 - jz0;
520 dx20 = ix2 - jx0;
521 dy20 = iy2 - jy0;
522 dz20 = iz2 - jz0;
523
524 /* Calculate squared distance and things based on it */
525 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
526 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
527 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
528
529 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
530 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
531 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
532
533 rinvsq00 = rinv00*rinv00;
534
535 /* Load parameters for j particles */
536 jq0 = charge[jnr+0];
537 vdwjidx0 = 3*vdwtype[jnr+0];
538
539 /**************************
540 * CALCULATE INTERACTIONS *
541 **************************/
542
543 r00 = rsq00*rinv00;
544
545 qq00 = iq0*jq0;
546 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
547 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
548 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
549
550 /* Calculate table index by multiplying r with table scale and truncate to integer */
551 rt = r00*vftabscale;
552 vfitab = rt;
553 vfeps = rt-vfitab;
554 vfitab = 1*4*vfitab;
555
556 /* CUBIC SPLINE TABLE ELECTROSTATICS */
557 F = vftab[vfitab+1];
558 Geps = vfeps*vftab[vfitab+2];
559 Heps2 = vfeps*vfeps*vftab[vfitab+3];
560 Fp = F+Geps+Heps2;
561 FF = Fp+Geps+2.0*Heps2;
562 felec = -qq00*FF*vftabscale*rinv00;
563
564 /* BUCKINGHAM DISPERSION/REPULSION */
565 rinvsix = rinvsq00*rinvsq00*rinvsq00;
566 vvdw6 = c6_00*rinvsix;
567 br = cexp2_00*r00;
568 vvdwexp = cexp1_00*exp(-br);
569 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
570
571 fscal = felec+fvdw;
572
573 /* Calculate temporary vectorial force */
574 tx = fscal*dx00;
575 ty = fscal*dy00;
576 tz = fscal*dz00;
577
578 /* Update vectorial force */
579 fix0 += tx;
580 fiy0 += ty;
581 fiz0 += tz;
582 f[j_coord_offset+DIM3*0+XX0] -= tx;
583 f[j_coord_offset+DIM3*0+YY1] -= ty;
584 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
585
586 /**************************
587 * CALCULATE INTERACTIONS *
588 **************************/
589
590 r10 = rsq10*rinv10;
591
592 qq10 = iq1*jq0;
593
594 /* Calculate table index by multiplying r with table scale and truncate to integer */
595 rt = r10*vftabscale;
596 vfitab = rt;
597 vfeps = rt-vfitab;
598 vfitab = 1*4*vfitab;
599
600 /* CUBIC SPLINE TABLE ELECTROSTATICS */
601 F = vftab[vfitab+1];
602 Geps = vfeps*vftab[vfitab+2];
603 Heps2 = vfeps*vfeps*vftab[vfitab+3];
604 Fp = F+Geps+Heps2;
605 FF = Fp+Geps+2.0*Heps2;
606 felec = -qq10*FF*vftabscale*rinv10;
607
608 fscal = felec;
609
610 /* Calculate temporary vectorial force */
611 tx = fscal*dx10;
612 ty = fscal*dy10;
613 tz = fscal*dz10;
614
615 /* Update vectorial force */
616 fix1 += tx;
617 fiy1 += ty;
618 fiz1 += tz;
619 f[j_coord_offset+DIM3*0+XX0] -= tx;
620 f[j_coord_offset+DIM3*0+YY1] -= ty;
621 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
622
623 /**************************
624 * CALCULATE INTERACTIONS *
625 **************************/
626
627 r20 = rsq20*rinv20;
628
629 qq20 = iq2*jq0;
630
631 /* Calculate table index by multiplying r with table scale and truncate to integer */
632 rt = r20*vftabscale;
633 vfitab = rt;
634 vfeps = rt-vfitab;
635 vfitab = 1*4*vfitab;
636
637 /* CUBIC SPLINE TABLE ELECTROSTATICS */
638 F = vftab[vfitab+1];
639 Geps = vfeps*vftab[vfitab+2];
640 Heps2 = vfeps*vfeps*vftab[vfitab+3];
641 Fp = F+Geps+Heps2;
642 FF = Fp+Geps+2.0*Heps2;
643 felec = -qq20*FF*vftabscale*rinv20;
644
645 fscal = felec;
646
647 /* Calculate temporary vectorial force */
648 tx = fscal*dx20;
649 ty = fscal*dy20;
650 tz = fscal*dz20;
651
652 /* Update vectorial force */
653 fix2 += tx;
654 fiy2 += ty;
655 fiz2 += tz;
656 f[j_coord_offset+DIM3*0+XX0] -= tx;
657 f[j_coord_offset+DIM3*0+YY1] -= ty;
658 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
659
660 /* Inner loop uses 150 flops */
661 }
662 /* End of innermost loop */
663
664 tx = ty = tz = 0;
665 f[i_coord_offset+DIM3*0+XX0] += fix0;
666 f[i_coord_offset+DIM3*0+YY1] += fiy0;
667 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
668 tx += fix0;
669 ty += fiy0;
670 tz += fiz0;
671 f[i_coord_offset+DIM3*1+XX0] += fix1;
672 f[i_coord_offset+DIM3*1+YY1] += fiy1;
673 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
674 tx += fix1;
675 ty += fiy1;
676 tz += fiz1;
677 f[i_coord_offset+DIM3*2+XX0] += fix2;
678 f[i_coord_offset+DIM3*2+YY1] += fiy2;
679 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
680 tx += fix2;
681 ty += fiy2;
682 tz += fiz2;
683 fshift[i_shift_offset+XX0] += tx;
684 fshift[i_shift_offset+YY1] += ty;
685 fshift[i_shift_offset+ZZ2] += tz;
686
687 /* Increment number of inner iterations */
688 inneriter += j_index_end - j_index_start;
689
690 /* Outer loop uses 30 flops */
691 }
692
693 /* Increment number of outer iterations */
694 outeriter += nri;
695
696 /* Update outer/inner flops */
697
698 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*150)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_F] += outeriter*30 + inneriter
*150
;
699}