Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_c.c
Location:line 125, column 5
Description:Value stored to 'rvdw' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_c
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: LennardJones
53 * Geometry: Water4-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwioffset3;
79 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80 int vdwjidx0;
81 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
83 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
84 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
85 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
86 real velec,felec,velecsum,facel,crf,krf,krf2;
87 real *charge;
88 int nvdwtype;
89 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
90 int *vdwtype;
91 real *vdwparam;
92
93 x = xx[0];
94 f = ff[0];
95
96 nri = nlist->nri;
97 iinr = nlist->iinr;
98 jindex = nlist->jindex;
99 jjnr = nlist->jjnr;
100 shiftidx = nlist->shift;
101 gid = nlist->gid;
102 shiftvec = fr->shift_vec[0];
103 fshift = fr->fshift[0];
104 facel = fr->epsfac;
105 charge = mdatoms->chargeA;
106 krf = fr->ic->k_rf;
107 krf2 = krf*2.0;
108 crf = fr->ic->c_rf;
109 nvdwtype = fr->ntype;
110 vdwparam = fr->nbfp;
111 vdwtype = mdatoms->typeA;
112
113 /* Setup water-specific parameters */
114 inr = nlist->iinr[0];
115 iq1 = facel*charge[inr+1];
116 iq2 = facel*charge[inr+2];
117 iq3 = facel*charge[inr+3];
118 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
119
120 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
121 rcutoff = fr->rcoulomb;
122 rcutoff2 = rcutoff*rcutoff;
123
124 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
125 rvdw = fr->rvdw;
Value stored to 'rvdw' is never read
126
127 outeriter = 0;
128 inneriter = 0;
129
130 /* Start outer loop over neighborlists */
131 for(iidx=0; iidx<nri; iidx++)
132 {
133 /* Load shift vector for this list */
134 i_shift_offset = DIM3*shiftidx[iidx];
135 shX = shiftvec[i_shift_offset+XX0];
136 shY = shiftvec[i_shift_offset+YY1];
137 shZ = shiftvec[i_shift_offset+ZZ2];
138
139 /* Load limits for loop over neighbors */
140 j_index_start = jindex[iidx];
141 j_index_end = jindex[iidx+1];
142
143 /* Get outer coordinate index */
144 inr = iinr[iidx];
145 i_coord_offset = DIM3*inr;
146
147 /* Load i particle coords and add shift vector */
148 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
149 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
150 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
151 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
152 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
153 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
154 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
155 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
156 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
157 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
158 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
159 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
160
161 fix0 = 0.0;
162 fiy0 = 0.0;
163 fiz0 = 0.0;
164 fix1 = 0.0;
165 fiy1 = 0.0;
166 fiz1 = 0.0;
167 fix2 = 0.0;
168 fiy2 = 0.0;
169 fiz2 = 0.0;
170 fix3 = 0.0;
171 fiy3 = 0.0;
172 fiz3 = 0.0;
173
174 /* Reset potential sums */
175 velecsum = 0.0;
176 vvdwsum = 0.0;
177
178 /* Start inner kernel loop */
179 for(jidx=j_index_start; jidx<j_index_end; jidx++)
180 {
181 /* Get j neighbor index, and coordinate index */
182 jnr = jjnr[jidx];
183 j_coord_offset = DIM3*jnr;
184
185 /* load j atom coordinates */
186 jx0 = x[j_coord_offset+DIM3*0+XX0];
187 jy0 = x[j_coord_offset+DIM3*0+YY1];
188 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
189
190 /* Calculate displacement vector */
191 dx00 = ix0 - jx0;
192 dy00 = iy0 - jy0;
193 dz00 = iz0 - jz0;
194 dx10 = ix1 - jx0;
195 dy10 = iy1 - jy0;
196 dz10 = iz1 - jz0;
197 dx20 = ix2 - jx0;
198 dy20 = iy2 - jy0;
199 dz20 = iz2 - jz0;
200 dx30 = ix3 - jx0;
201 dy30 = iy3 - jy0;
202 dz30 = iz3 - jz0;
203
204 /* Calculate squared distance and things based on it */
205 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
206 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
207 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
208 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
209
210 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
211 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
212 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
213
214 rinvsq00 = 1.0/rsq00;
215 rinvsq10 = rinv10*rinv10;
216 rinvsq20 = rinv20*rinv20;
217 rinvsq30 = rinv30*rinv30;
218
219 /* Load parameters for j particles */
220 jq0 = charge[jnr+0];
221 vdwjidx0 = 2*vdwtype[jnr+0];
222
223 /**************************
224 * CALCULATE INTERACTIONS *
225 **************************/
226
227 if (rsq00<rcutoff2)
228 {
229
230 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
231 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
232
233 /* LENNARD-JONES DISPERSION/REPULSION */
234
235 rinvsix = rinvsq00*rinvsq00*rinvsq00;
236 vvdw6 = c6_00*rinvsix;
237 vvdw12 = c12_00*rinvsix*rinvsix;
238 vvdw = (vvdw12 - c12_00*sh_vdw_invrcut6*sh_vdw_invrcut6)*(1.0/12.0) - (vvdw6 - c6_00*sh_vdw_invrcut6)*(1.0/6.0);
239 fvdw = (vvdw12-vvdw6)*rinvsq00;
240
241 /* Update potential sums from outer loop */
242 vvdwsum += vvdw;
243
244 fscal = fvdw;
245
246 /* Calculate temporary vectorial force */
247 tx = fscal*dx00;
248 ty = fscal*dy00;
249 tz = fscal*dz00;
250
251 /* Update vectorial force */
252 fix0 += tx;
253 fiy0 += ty;
254 fiz0 += tz;
255 f[j_coord_offset+DIM3*0+XX0] -= tx;
256 f[j_coord_offset+DIM3*0+YY1] -= ty;
257 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
258
259 }
260
261 /**************************
262 * CALCULATE INTERACTIONS *
263 **************************/
264
265 if (rsq10<rcutoff2)
266 {
267
268 qq10 = iq1*jq0;
269
270 /* REACTION-FIELD ELECTROSTATICS */
271 velec = qq10*(rinv10+krf*rsq10-crf);
272 felec = qq10*(rinv10*rinvsq10-krf2);
273
274 /* Update potential sums from outer loop */
275 velecsum += velec;
276
277 fscal = felec;
278
279 /* Calculate temporary vectorial force */
280 tx = fscal*dx10;
281 ty = fscal*dy10;
282 tz = fscal*dz10;
283
284 /* Update vectorial force */
285 fix1 += tx;
286 fiy1 += ty;
287 fiz1 += tz;
288 f[j_coord_offset+DIM3*0+XX0] -= tx;
289 f[j_coord_offset+DIM3*0+YY1] -= ty;
290 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
291
292 }
293
294 /**************************
295 * CALCULATE INTERACTIONS *
296 **************************/
297
298 if (rsq20<rcutoff2)
299 {
300
301 qq20 = iq2*jq0;
302
303 /* REACTION-FIELD ELECTROSTATICS */
304 velec = qq20*(rinv20+krf*rsq20-crf);
305 felec = qq20*(rinv20*rinvsq20-krf2);
306
307 /* Update potential sums from outer loop */
308 velecsum += velec;
309
310 fscal = felec;
311
312 /* Calculate temporary vectorial force */
313 tx = fscal*dx20;
314 ty = fscal*dy20;
315 tz = fscal*dz20;
316
317 /* Update vectorial force */
318 fix2 += tx;
319 fiy2 += ty;
320 fiz2 += tz;
321 f[j_coord_offset+DIM3*0+XX0] -= tx;
322 f[j_coord_offset+DIM3*0+YY1] -= ty;
323 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
324
325 }
326
327 /**************************
328 * CALCULATE INTERACTIONS *
329 **************************/
330
331 if (rsq30<rcutoff2)
332 {
333
334 qq30 = iq3*jq0;
335
336 /* REACTION-FIELD ELECTROSTATICS */
337 velec = qq30*(rinv30+krf*rsq30-crf);
338 felec = qq30*(rinv30*rinvsq30-krf2);
339
340 /* Update potential sums from outer loop */
341 velecsum += velec;
342
343 fscal = felec;
344
345 /* Calculate temporary vectorial force */
346 tx = fscal*dx30;
347 ty = fscal*dy30;
348 tz = fscal*dz30;
349
350 /* Update vectorial force */
351 fix3 += tx;
352 fiy3 += ty;
353 fiz3 += tz;
354 f[j_coord_offset+DIM3*0+XX0] -= tx;
355 f[j_coord_offset+DIM3*0+YY1] -= ty;
356 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
357
358 }
359
360 /* Inner loop uses 133 flops */
361 }
362 /* End of innermost loop */
363
364 tx = ty = tz = 0;
365 f[i_coord_offset+DIM3*0+XX0] += fix0;
366 f[i_coord_offset+DIM3*0+YY1] += fiy0;
367 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
368 tx += fix0;
369 ty += fiy0;
370 tz += fiz0;
371 f[i_coord_offset+DIM3*1+XX0] += fix1;
372 f[i_coord_offset+DIM3*1+YY1] += fiy1;
373 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
374 tx += fix1;
375 ty += fiy1;
376 tz += fiz1;
377 f[i_coord_offset+DIM3*2+XX0] += fix2;
378 f[i_coord_offset+DIM3*2+YY1] += fiy2;
379 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
380 tx += fix2;
381 ty += fiy2;
382 tz += fiz2;
383 f[i_coord_offset+DIM3*3+XX0] += fix3;
384 f[i_coord_offset+DIM3*3+YY1] += fiy3;
385 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
386 tx += fix3;
387 ty += fiy3;
388 tz += fiz3;
389 fshift[i_shift_offset+XX0] += tx;
390 fshift[i_shift_offset+YY1] += ty;
391 fshift[i_shift_offset+ZZ2] += tz;
392
393 ggid = gid[iidx];
394 /* Update potential energies */
395 kernel_data->energygrp_elec[ggid] += velecsum;
396 kernel_data->energygrp_vdw[ggid] += vvdwsum;
397
398 /* Increment number of inner iterations */
399 inneriter += j_index_end - j_index_start;
400
401 /* Outer loop uses 41 flops */
402 }
403
404 /* Increment number of outer iterations */
405 outeriter += nri;
406
407 /* Update outer/inner flops */
408
409 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*133)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_VF] += outeriter*41 + inneriter
*133
;
410}
411/*
412 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_c
413 * Electrostatics interaction: ReactionField
414 * VdW interaction: LennardJones
415 * Geometry: Water4-Particle
416 * Calculate force/pot: Force
417 */
418void
419nb_kernel_ElecRFCut_VdwLJSh_GeomW4P1_F_c
420 (t_nblist * gmx_restrict__restrict nlist,
421 rvec * gmx_restrict__restrict xx,
422 rvec * gmx_restrict__restrict ff,
423 t_forcerec * gmx_restrict__restrict fr,
424 t_mdatoms * gmx_restrict__restrict mdatoms,
425 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
426 t_nrnb * gmx_restrict__restrict nrnb)
427{
428 int i_shift_offset,i_coord_offset,j_coord_offset;
429 int j_index_start,j_index_end;
430 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
431 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
432 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
433 real *shiftvec,*fshift,*x,*f;
434 int vdwioffset0;
435 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
436 int vdwioffset1;
437 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
438 int vdwioffset2;
439 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
440 int vdwioffset3;
441 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
442 int vdwjidx0;
443 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
444 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
445 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
446 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
447 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
448 real velec,felec,velecsum,facel,crf,krf,krf2;
449 real *charge;
450 int nvdwtype;
451 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
452 int *vdwtype;
453 real *vdwparam;
454
455 x = xx[0];
456 f = ff[0];
457
458 nri = nlist->nri;
459 iinr = nlist->iinr;
460 jindex = nlist->jindex;
461 jjnr = nlist->jjnr;
462 shiftidx = nlist->shift;
463 gid = nlist->gid;
464 shiftvec = fr->shift_vec[0];
465 fshift = fr->fshift[0];
466 facel = fr->epsfac;
467 charge = mdatoms->chargeA;
468 krf = fr->ic->k_rf;
469 krf2 = krf*2.0;
470 crf = fr->ic->c_rf;
471 nvdwtype = fr->ntype;
472 vdwparam = fr->nbfp;
473 vdwtype = mdatoms->typeA;
474
475 /* Setup water-specific parameters */
476 inr = nlist->iinr[0];
477 iq1 = facel*charge[inr+1];
478 iq2 = facel*charge[inr+2];
479 iq3 = facel*charge[inr+3];
480 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
481
482 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
483 rcutoff = fr->rcoulomb;
484 rcutoff2 = rcutoff*rcutoff;
485
486 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
487 rvdw = fr->rvdw;
488
489 outeriter = 0;
490 inneriter = 0;
491
492 /* Start outer loop over neighborlists */
493 for(iidx=0; iidx<nri; iidx++)
494 {
495 /* Load shift vector for this list */
496 i_shift_offset = DIM3*shiftidx[iidx];
497 shX = shiftvec[i_shift_offset+XX0];
498 shY = shiftvec[i_shift_offset+YY1];
499 shZ = shiftvec[i_shift_offset+ZZ2];
500
501 /* Load limits for loop over neighbors */
502 j_index_start = jindex[iidx];
503 j_index_end = jindex[iidx+1];
504
505 /* Get outer coordinate index */
506 inr = iinr[iidx];
507 i_coord_offset = DIM3*inr;
508
509 /* Load i particle coords and add shift vector */
510 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
511 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
512 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
513 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
514 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
515 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
516 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
517 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
518 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
519 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
520 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
521 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
522
523 fix0 = 0.0;
524 fiy0 = 0.0;
525 fiz0 = 0.0;
526 fix1 = 0.0;
527 fiy1 = 0.0;
528 fiz1 = 0.0;
529 fix2 = 0.0;
530 fiy2 = 0.0;
531 fiz2 = 0.0;
532 fix3 = 0.0;
533 fiy3 = 0.0;
534 fiz3 = 0.0;
535
536 /* Start inner kernel loop */
537 for(jidx=j_index_start; jidx<j_index_end; jidx++)
538 {
539 /* Get j neighbor index, and coordinate index */
540 jnr = jjnr[jidx];
541 j_coord_offset = DIM3*jnr;
542
543 /* load j atom coordinates */
544 jx0 = x[j_coord_offset+DIM3*0+XX0];
545 jy0 = x[j_coord_offset+DIM3*0+YY1];
546 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
547
548 /* Calculate displacement vector */
549 dx00 = ix0 - jx0;
550 dy00 = iy0 - jy0;
551 dz00 = iz0 - jz0;
552 dx10 = ix1 - jx0;
553 dy10 = iy1 - jy0;
554 dz10 = iz1 - jz0;
555 dx20 = ix2 - jx0;
556 dy20 = iy2 - jy0;
557 dz20 = iz2 - jz0;
558 dx30 = ix3 - jx0;
559 dy30 = iy3 - jy0;
560 dz30 = iz3 - jz0;
561
562 /* Calculate squared distance and things based on it */
563 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
564 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
565 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
566 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
567
568 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
569 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
570 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
571
572 rinvsq00 = 1.0/rsq00;
573 rinvsq10 = rinv10*rinv10;
574 rinvsq20 = rinv20*rinv20;
575 rinvsq30 = rinv30*rinv30;
576
577 /* Load parameters for j particles */
578 jq0 = charge[jnr+0];
579 vdwjidx0 = 2*vdwtype[jnr+0];
580
581 /**************************
582 * CALCULATE INTERACTIONS *
583 **************************/
584
585 if (rsq00<rcutoff2)
586 {
587
588 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
589 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
590
591 /* LENNARD-JONES DISPERSION/REPULSION */
592
593 rinvsix = rinvsq00*rinvsq00*rinvsq00;
594 fvdw = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
595
596 fscal = fvdw;
597
598 /* Calculate temporary vectorial force */
599 tx = fscal*dx00;
600 ty = fscal*dy00;
601 tz = fscal*dz00;
602
603 /* Update vectorial force */
604 fix0 += tx;
605 fiy0 += ty;
606 fiz0 += tz;
607 f[j_coord_offset+DIM3*0+XX0] -= tx;
608 f[j_coord_offset+DIM3*0+YY1] -= ty;
609 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
610
611 }
612
613 /**************************
614 * CALCULATE INTERACTIONS *
615 **************************/
616
617 if (rsq10<rcutoff2)
618 {
619
620 qq10 = iq1*jq0;
621
622 /* REACTION-FIELD ELECTROSTATICS */
623 felec = qq10*(rinv10*rinvsq10-krf2);
624
625 fscal = felec;
626
627 /* Calculate temporary vectorial force */
628 tx = fscal*dx10;
629 ty = fscal*dy10;
630 tz = fscal*dz10;
631
632 /* Update vectorial force */
633 fix1 += tx;
634 fiy1 += ty;
635 fiz1 += tz;
636 f[j_coord_offset+DIM3*0+XX0] -= tx;
637 f[j_coord_offset+DIM3*0+YY1] -= ty;
638 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
639
640 }
641
642 /**************************
643 * CALCULATE INTERACTIONS *
644 **************************/
645
646 if (rsq20<rcutoff2)
647 {
648
649 qq20 = iq2*jq0;
650
651 /* REACTION-FIELD ELECTROSTATICS */
652 felec = qq20*(rinv20*rinvsq20-krf2);
653
654 fscal = felec;
655
656 /* Calculate temporary vectorial force */
657 tx = fscal*dx20;
658 ty = fscal*dy20;
659 tz = fscal*dz20;
660
661 /* Update vectorial force */
662 fix2 += tx;
663 fiy2 += ty;
664 fiz2 += tz;
665 f[j_coord_offset+DIM3*0+XX0] -= tx;
666 f[j_coord_offset+DIM3*0+YY1] -= ty;
667 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
668
669 }
670
671 /**************************
672 * CALCULATE INTERACTIONS *
673 **************************/
674
675 if (rsq30<rcutoff2)
676 {
677
678 qq30 = iq3*jq0;
679
680 /* REACTION-FIELD ELECTROSTATICS */
681 felec = qq30*(rinv30*rinvsq30-krf2);
682
683 fscal = felec;
684
685 /* Calculate temporary vectorial force */
686 tx = fscal*dx30;
687 ty = fscal*dy30;
688 tz = fscal*dz30;
689
690 /* Update vectorial force */
691 fix3 += tx;
692 fiy3 += ty;
693 fiz3 += tz;
694 f[j_coord_offset+DIM3*0+XX0] -= tx;
695 f[j_coord_offset+DIM3*0+YY1] -= ty;
696 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
697
698 }
699
700 /* Inner loop uses 108 flops */
701 }
702 /* End of innermost loop */
703
704 tx = ty = tz = 0;
705 f[i_coord_offset+DIM3*0+XX0] += fix0;
706 f[i_coord_offset+DIM3*0+YY1] += fiy0;
707 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
708 tx += fix0;
709 ty += fiy0;
710 tz += fiz0;
711 f[i_coord_offset+DIM3*1+XX0] += fix1;
712 f[i_coord_offset+DIM3*1+YY1] += fiy1;
713 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
714 tx += fix1;
715 ty += fiy1;
716 tz += fiz1;
717 f[i_coord_offset+DIM3*2+XX0] += fix2;
718 f[i_coord_offset+DIM3*2+YY1] += fiy2;
719 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
720 tx += fix2;
721 ty += fiy2;
722 tz += fiz2;
723 f[i_coord_offset+DIM3*3+XX0] += fix3;
724 f[i_coord_offset+DIM3*3+YY1] += fiy3;
725 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
726 tx += fix3;
727 ty += fiy3;
728 tz += fiz3;
729 fshift[i_shift_offset+XX0] += tx;
730 fshift[i_shift_offset+YY1] += ty;
731 fshift[i_shift_offset+ZZ2] += tz;
732
733 /* Increment number of inner iterations */
734 inneriter += j_index_end - j_index_start;
735
736 /* Outer loop uses 39 flops */
737 }
738
739 /* Increment number of outer iterations */
740 outeriter += nri;
741
742 /* Update outer/inner flops */
743
744 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*108)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_F] += outeriter*39 + inneriter
*108
;
745}