Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEwSh_VdwBhamSh_GeomW3P1_c.c
Location:line 475, column 5
Description:Value stored to 'rvdw' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwBhamSh_GeomW3P1_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: Buckingham
53 * Geometry: Water3-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEwSh_VdwBhamSh_GeomW3P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83 real velec,felec,velecsum,facel,crf,krf,krf2;
84 real *charge;
85 int nvdwtype;
86 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
87 int *vdwtype;
88 real *vdwparam;
89 int ewitab;
90 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
91 real *ewtab;
92
93 x = xx[0];
94 f = ff[0];
95
96 nri = nlist->nri;
97 iinr = nlist->iinr;
98 jindex = nlist->jindex;
99 jjnr = nlist->jjnr;
100 shiftidx = nlist->shift;
101 gid = nlist->gid;
102 shiftvec = fr->shift_vec[0];
103 fshift = fr->fshift[0];
104 facel = fr->epsfac;
105 charge = mdatoms->chargeA;
106 nvdwtype = fr->ntype;
107 vdwparam = fr->nbfp;
108 vdwtype = mdatoms->typeA;
109
110 sh_ewald = fr->ic->sh_ewald;
111 ewtab = fr->ic->tabq_coul_FDV0;
112 ewtabscale = fr->ic->tabq_scale;
113 ewtabhalfspace = 0.5/ewtabscale;
114
115 /* Setup water-specific parameters */
116 inr = nlist->iinr[0];
117 iq0 = facel*charge[inr+0];
118 iq1 = facel*charge[inr+1];
119 iq2 = facel*charge[inr+2];
120 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
121
122 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
123 rcutoff = fr->rcoulomb;
124 rcutoff2 = rcutoff*rcutoff;
125
126 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
127 rvdw = fr->rvdw;
128
129 outeriter = 0;
130 inneriter = 0;
131
132 /* Start outer loop over neighborlists */
133 for(iidx=0; iidx<nri; iidx++)
134 {
135 /* Load shift vector for this list */
136 i_shift_offset = DIM3*shiftidx[iidx];
137 shX = shiftvec[i_shift_offset+XX0];
138 shY = shiftvec[i_shift_offset+YY1];
139 shZ = shiftvec[i_shift_offset+ZZ2];
140
141 /* Load limits for loop over neighbors */
142 j_index_start = jindex[iidx];
143 j_index_end = jindex[iidx+1];
144
145 /* Get outer coordinate index */
146 inr = iinr[iidx];
147 i_coord_offset = DIM3*inr;
148
149 /* Load i particle coords and add shift vector */
150 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
151 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
152 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
153 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
154 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
155 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
156 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
157 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
158 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
159
160 fix0 = 0.0;
161 fiy0 = 0.0;
162 fiz0 = 0.0;
163 fix1 = 0.0;
164 fiy1 = 0.0;
165 fiz1 = 0.0;
166 fix2 = 0.0;
167 fiy2 = 0.0;
168 fiz2 = 0.0;
169
170 /* Reset potential sums */
171 velecsum = 0.0;
172 vvdwsum = 0.0;
173
174 /* Start inner kernel loop */
175 for(jidx=j_index_start; jidx<j_index_end; jidx++)
176 {
177 /* Get j neighbor index, and coordinate index */
178 jnr = jjnr[jidx];
179 j_coord_offset = DIM3*jnr;
180
181 /* load j atom coordinates */
182 jx0 = x[j_coord_offset+DIM3*0+XX0];
183 jy0 = x[j_coord_offset+DIM3*0+YY1];
184 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
185
186 /* Calculate displacement vector */
187 dx00 = ix0 - jx0;
188 dy00 = iy0 - jy0;
189 dz00 = iz0 - jz0;
190 dx10 = ix1 - jx0;
191 dy10 = iy1 - jy0;
192 dz10 = iz1 - jz0;
193 dx20 = ix2 - jx0;
194 dy20 = iy2 - jy0;
195 dz20 = iz2 - jz0;
196
197 /* Calculate squared distance and things based on it */
198 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
199 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
200 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
201
202 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
203 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
204 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
205
206 rinvsq00 = rinv00*rinv00;
207 rinvsq10 = rinv10*rinv10;
208 rinvsq20 = rinv20*rinv20;
209
210 /* Load parameters for j particles */
211 jq0 = charge[jnr+0];
212 vdwjidx0 = 3*vdwtype[jnr+0];
213
214 /**************************
215 * CALCULATE INTERACTIONS *
216 **************************/
217
218 if (rsq00<rcutoff2)
219 {
220
221 r00 = rsq00*rinv00;
222
223 qq00 = iq0*jq0;
224 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
225 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
226 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
227
228 /* EWALD ELECTROSTATICS */
229
230 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
231 ewrt = r00*ewtabscale;
232 ewitab = ewrt;
233 eweps = ewrt-ewitab;
234 ewitab = 4*ewitab;
235 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
236 velec = qq00*((rinv00-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
237 felec = qq00*rinv00*(rinvsq00-felec);
238
239 /* BUCKINGHAM DISPERSION/REPULSION */
240 rinvsix = rinvsq00*rinvsq00*rinvsq00;
241 vvdw6 = c6_00*rinvsix;
242 br = cexp2_00*r00;
243 vvdwexp = cexp1_00*exp(-br);
244 vvdw = (vvdwexp-cexp1_00*exp(-cexp2_00*rvdw)) - (vvdw6 - c6_00*sh_vdw_invrcut6)*(1.0/6.0);
245 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
246
247 /* Update potential sums from outer loop */
248 velecsum += velec;
249 vvdwsum += vvdw;
250
251 fscal = felec+fvdw;
252
253 /* Calculate temporary vectorial force */
254 tx = fscal*dx00;
255 ty = fscal*dy00;
256 tz = fscal*dz00;
257
258 /* Update vectorial force */
259 fix0 += tx;
260 fiy0 += ty;
261 fiz0 += tz;
262 f[j_coord_offset+DIM3*0+XX0] -= tx;
263 f[j_coord_offset+DIM3*0+YY1] -= ty;
264 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
265
266 }
267
268 /**************************
269 * CALCULATE INTERACTIONS *
270 **************************/
271
272 if (rsq10<rcutoff2)
273 {
274
275 r10 = rsq10*rinv10;
276
277 qq10 = iq1*jq0;
278
279 /* EWALD ELECTROSTATICS */
280
281 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
282 ewrt = r10*ewtabscale;
283 ewitab = ewrt;
284 eweps = ewrt-ewitab;
285 ewitab = 4*ewitab;
286 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
287 velec = qq10*((rinv10-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
288 felec = qq10*rinv10*(rinvsq10-felec);
289
290 /* Update potential sums from outer loop */
291 velecsum += velec;
292
293 fscal = felec;
294
295 /* Calculate temporary vectorial force */
296 tx = fscal*dx10;
297 ty = fscal*dy10;
298 tz = fscal*dz10;
299
300 /* Update vectorial force */
301 fix1 += tx;
302 fiy1 += ty;
303 fiz1 += tz;
304 f[j_coord_offset+DIM3*0+XX0] -= tx;
305 f[j_coord_offset+DIM3*0+YY1] -= ty;
306 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
307
308 }
309
310 /**************************
311 * CALCULATE INTERACTIONS *
312 **************************/
313
314 if (rsq20<rcutoff2)
315 {
316
317 r20 = rsq20*rinv20;
318
319 qq20 = iq2*jq0;
320
321 /* EWALD ELECTROSTATICS */
322
323 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
324 ewrt = r20*ewtabscale;
325 ewitab = ewrt;
326 eweps = ewrt-ewitab;
327 ewitab = 4*ewitab;
328 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
329 velec = qq20*((rinv20-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
330 felec = qq20*rinv20*(rinvsq20-felec);
331
332 /* Update potential sums from outer loop */
333 velecsum += velec;
334
335 fscal = felec;
336
337 /* Calculate temporary vectorial force */
338 tx = fscal*dx20;
339 ty = fscal*dy20;
340 tz = fscal*dz20;
341
342 /* Update vectorial force */
343 fix2 += tx;
344 fiy2 += ty;
345 fiz2 += tz;
346 f[j_coord_offset+DIM3*0+XX0] -= tx;
347 f[j_coord_offset+DIM3*0+YY1] -= ty;
348 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
349
350 }
351
352 /* Inner loop uses 195 flops */
353 }
354 /* End of innermost loop */
355
356 tx = ty = tz = 0;
357 f[i_coord_offset+DIM3*0+XX0] += fix0;
358 f[i_coord_offset+DIM3*0+YY1] += fiy0;
359 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
360 tx += fix0;
361 ty += fiy0;
362 tz += fiz0;
363 f[i_coord_offset+DIM3*1+XX0] += fix1;
364 f[i_coord_offset+DIM3*1+YY1] += fiy1;
365 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
366 tx += fix1;
367 ty += fiy1;
368 tz += fiz1;
369 f[i_coord_offset+DIM3*2+XX0] += fix2;
370 f[i_coord_offset+DIM3*2+YY1] += fiy2;
371 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
372 tx += fix2;
373 ty += fiy2;
374 tz += fiz2;
375 fshift[i_shift_offset+XX0] += tx;
376 fshift[i_shift_offset+YY1] += ty;
377 fshift[i_shift_offset+ZZ2] += tz;
378
379 ggid = gid[iidx];
380 /* Update potential energies */
381 kernel_data->energygrp_elec[ggid] += velecsum;
382 kernel_data->energygrp_vdw[ggid] += vvdwsum;
383
384 /* Increment number of inner iterations */
385 inneriter += j_index_end - j_index_start;
386
387 /* Outer loop uses 32 flops */
388 }
389
390 /* Increment number of outer iterations */
391 outeriter += nri;
392
393 /* Update outer/inner flops */
394
395 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*195)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_VF] += outeriter*32 + inneriter
*195
;
396}
397/*
398 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwBhamSh_GeomW3P1_F_c
399 * Electrostatics interaction: Ewald
400 * VdW interaction: Buckingham
401 * Geometry: Water3-Particle
402 * Calculate force/pot: Force
403 */
404void
405nb_kernel_ElecEwSh_VdwBhamSh_GeomW3P1_F_c
406 (t_nblist * gmx_restrict__restrict nlist,
407 rvec * gmx_restrict__restrict xx,
408 rvec * gmx_restrict__restrict ff,
409 t_forcerec * gmx_restrict__restrict fr,
410 t_mdatoms * gmx_restrict__restrict mdatoms,
411 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
412 t_nrnb * gmx_restrict__restrict nrnb)
413{
414 int i_shift_offset,i_coord_offset,j_coord_offset;
415 int j_index_start,j_index_end;
416 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
417 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
418 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
419 real *shiftvec,*fshift,*x,*f;
420 int vdwioffset0;
421 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
422 int vdwioffset1;
423 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
424 int vdwioffset2;
425 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
426 int vdwjidx0;
427 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
428 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
429 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
430 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
431 real velec,felec,velecsum,facel,crf,krf,krf2;
432 real *charge;
433 int nvdwtype;
434 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
435 int *vdwtype;
436 real *vdwparam;
437 int ewitab;
438 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
439 real *ewtab;
440
441 x = xx[0];
442 f = ff[0];
443
444 nri = nlist->nri;
445 iinr = nlist->iinr;
446 jindex = nlist->jindex;
447 jjnr = nlist->jjnr;
448 shiftidx = nlist->shift;
449 gid = nlist->gid;
450 shiftvec = fr->shift_vec[0];
451 fshift = fr->fshift[0];
452 facel = fr->epsfac;
453 charge = mdatoms->chargeA;
454 nvdwtype = fr->ntype;
455 vdwparam = fr->nbfp;
456 vdwtype = mdatoms->typeA;
457
458 sh_ewald = fr->ic->sh_ewald;
459 ewtab = fr->ic->tabq_coul_F;
460 ewtabscale = fr->ic->tabq_scale;
461 ewtabhalfspace = 0.5/ewtabscale;
462
463 /* Setup water-specific parameters */
464 inr = nlist->iinr[0];
465 iq0 = facel*charge[inr+0];
466 iq1 = facel*charge[inr+1];
467 iq2 = facel*charge[inr+2];
468 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
469
470 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
471 rcutoff = fr->rcoulomb;
472 rcutoff2 = rcutoff*rcutoff;
473
474 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
475 rvdw = fr->rvdw;
Value stored to 'rvdw' is never read
476
477 outeriter = 0;
478 inneriter = 0;
479
480 /* Start outer loop over neighborlists */
481 for(iidx=0; iidx<nri; iidx++)
482 {
483 /* Load shift vector for this list */
484 i_shift_offset = DIM3*shiftidx[iidx];
485 shX = shiftvec[i_shift_offset+XX0];
486 shY = shiftvec[i_shift_offset+YY1];
487 shZ = shiftvec[i_shift_offset+ZZ2];
488
489 /* Load limits for loop over neighbors */
490 j_index_start = jindex[iidx];
491 j_index_end = jindex[iidx+1];
492
493 /* Get outer coordinate index */
494 inr = iinr[iidx];
495 i_coord_offset = DIM3*inr;
496
497 /* Load i particle coords and add shift vector */
498 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
499 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
500 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
501 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
502 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
503 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
504 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
505 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
506 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
507
508 fix0 = 0.0;
509 fiy0 = 0.0;
510 fiz0 = 0.0;
511 fix1 = 0.0;
512 fiy1 = 0.0;
513 fiz1 = 0.0;
514 fix2 = 0.0;
515 fiy2 = 0.0;
516 fiz2 = 0.0;
517
518 /* Start inner kernel loop */
519 for(jidx=j_index_start; jidx<j_index_end; jidx++)
520 {
521 /* Get j neighbor index, and coordinate index */
522 jnr = jjnr[jidx];
523 j_coord_offset = DIM3*jnr;
524
525 /* load j atom coordinates */
526 jx0 = x[j_coord_offset+DIM3*0+XX0];
527 jy0 = x[j_coord_offset+DIM3*0+YY1];
528 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
529
530 /* Calculate displacement vector */
531 dx00 = ix0 - jx0;
532 dy00 = iy0 - jy0;
533 dz00 = iz0 - jz0;
534 dx10 = ix1 - jx0;
535 dy10 = iy1 - jy0;
536 dz10 = iz1 - jz0;
537 dx20 = ix2 - jx0;
538 dy20 = iy2 - jy0;
539 dz20 = iz2 - jz0;
540
541 /* Calculate squared distance and things based on it */
542 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
543 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
544 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
545
546 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
547 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
548 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
549
550 rinvsq00 = rinv00*rinv00;
551 rinvsq10 = rinv10*rinv10;
552 rinvsq20 = rinv20*rinv20;
553
554 /* Load parameters for j particles */
555 jq0 = charge[jnr+0];
556 vdwjidx0 = 3*vdwtype[jnr+0];
557
558 /**************************
559 * CALCULATE INTERACTIONS *
560 **************************/
561
562 if (rsq00<rcutoff2)
563 {
564
565 r00 = rsq00*rinv00;
566
567 qq00 = iq0*jq0;
568 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
569 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
570 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
571
572 /* EWALD ELECTROSTATICS */
573
574 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
575 ewrt = r00*ewtabscale;
576 ewitab = ewrt;
577 eweps = ewrt-ewitab;
578 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
579 felec = qq00*rinv00*(rinvsq00-felec);
580
581 /* BUCKINGHAM DISPERSION/REPULSION */
582 rinvsix = rinvsq00*rinvsq00*rinvsq00;
583 vvdw6 = c6_00*rinvsix;
584 br = cexp2_00*r00;
585 vvdwexp = cexp1_00*exp(-br);
586 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
587
588 fscal = felec+fvdw;
589
590 /* Calculate temporary vectorial force */
591 tx = fscal*dx00;
592 ty = fscal*dy00;
593 tz = fscal*dz00;
594
595 /* Update vectorial force */
596 fix0 += tx;
597 fiy0 += ty;
598 fiz0 += tz;
599 f[j_coord_offset+DIM3*0+XX0] -= tx;
600 f[j_coord_offset+DIM3*0+YY1] -= ty;
601 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
602
603 }
604
605 /**************************
606 * CALCULATE INTERACTIONS *
607 **************************/
608
609 if (rsq10<rcutoff2)
610 {
611
612 r10 = rsq10*rinv10;
613
614 qq10 = iq1*jq0;
615
616 /* EWALD ELECTROSTATICS */
617
618 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
619 ewrt = r10*ewtabscale;
620 ewitab = ewrt;
621 eweps = ewrt-ewitab;
622 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
623 felec = qq10*rinv10*(rinvsq10-felec);
624
625 fscal = felec;
626
627 /* Calculate temporary vectorial force */
628 tx = fscal*dx10;
629 ty = fscal*dy10;
630 tz = fscal*dz10;
631
632 /* Update vectorial force */
633 fix1 += tx;
634 fiy1 += ty;
635 fiz1 += tz;
636 f[j_coord_offset+DIM3*0+XX0] -= tx;
637 f[j_coord_offset+DIM3*0+YY1] -= ty;
638 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
639
640 }
641
642 /**************************
643 * CALCULATE INTERACTIONS *
644 **************************/
645
646 if (rsq20<rcutoff2)
647 {
648
649 r20 = rsq20*rinv20;
650
651 qq20 = iq2*jq0;
652
653 /* EWALD ELECTROSTATICS */
654
655 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
656 ewrt = r20*ewtabscale;
657 ewitab = ewrt;
658 eweps = ewrt-ewitab;
659 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
660 felec = qq20*rinv20*(rinvsq20-felec);
661
662 fscal = felec;
663
664 /* Calculate temporary vectorial force */
665 tx = fscal*dx20;
666 ty = fscal*dy20;
667 tz = fscal*dz20;
668
669 /* Update vectorial force */
670 fix2 += tx;
671 fiy2 += ty;
672 fiz2 += tz;
673 f[j_coord_offset+DIM3*0+XX0] -= tx;
674 f[j_coord_offset+DIM3*0+YY1] -= ty;
675 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
676
677 }
678
679 /* Inner loop uses 137 flops */
680 }
681 /* End of innermost loop */
682
683 tx = ty = tz = 0;
684 f[i_coord_offset+DIM3*0+XX0] += fix0;
685 f[i_coord_offset+DIM3*0+YY1] += fiy0;
686 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
687 tx += fix0;
688 ty += fiy0;
689 tz += fiz0;
690 f[i_coord_offset+DIM3*1+XX0] += fix1;
691 f[i_coord_offset+DIM3*1+YY1] += fiy1;
692 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
693 tx += fix1;
694 ty += fiy1;
695 tz += fiz1;
696 f[i_coord_offset+DIM3*2+XX0] += fix2;
697 f[i_coord_offset+DIM3*2+YY1] += fiy2;
698 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
699 tx += fix2;
700 ty += fiy2;
701 tz += fiz2;
702 fshift[i_shift_offset+XX0] += tx;
703 fshift[i_shift_offset+YY1] += ty;
704 fshift[i_shift_offset+ZZ2] += tz;
705
706 /* Increment number of inner iterations */
707 inneriter += j_index_end - j_index_start;
708
709 /* Outer loop uses 30 flops */
710 }
711
712 /* Increment number of outer iterations */
713 outeriter += nri;
714
715 /* Update outer/inner flops */
716
717 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*137)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_F] += outeriter*30 + inneriter
*137
;
718}