Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEw_VdwLJ_GeomP1P1_c.c
Location:line 301, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: LennardJones
53 * Geometry: Particle-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwjidx0;
75 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77 real velec,felec,velecsum,facel,crf,krf,krf2;
78 real *charge;
79 int nvdwtype;
80 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
81 int *vdwtype;
82 real *vdwparam;
83 int ewitab;
84 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
85 real *ewtab;
86
87 x = xx[0];
88 f = ff[0];
89
90 nri = nlist->nri;
91 iinr = nlist->iinr;
92 jindex = nlist->jindex;
93 jjnr = nlist->jjnr;
94 shiftidx = nlist->shift;
95 gid = nlist->gid;
96 shiftvec = fr->shift_vec[0];
97 fshift = fr->fshift[0];
98 facel = fr->epsfac;
99 charge = mdatoms->chargeA;
100 nvdwtype = fr->ntype;
101 vdwparam = fr->nbfp;
102 vdwtype = mdatoms->typeA;
103
104 sh_ewald = fr->ic->sh_ewald;
105 ewtab = fr->ic->tabq_coul_FDV0;
106 ewtabscale = fr->ic->tabq_scale;
107 ewtabhalfspace = 0.5/ewtabscale;
108
109 outeriter = 0;
110 inneriter = 0;
111
112 /* Start outer loop over neighborlists */
113 for(iidx=0; iidx<nri; iidx++)
114 {
115 /* Load shift vector for this list */
116 i_shift_offset = DIM3*shiftidx[iidx];
117 shX = shiftvec[i_shift_offset+XX0];
118 shY = shiftvec[i_shift_offset+YY1];
119 shZ = shiftvec[i_shift_offset+ZZ2];
120
121 /* Load limits for loop over neighbors */
122 j_index_start = jindex[iidx];
123 j_index_end = jindex[iidx+1];
124
125 /* Get outer coordinate index */
126 inr = iinr[iidx];
127 i_coord_offset = DIM3*inr;
128
129 /* Load i particle coords and add shift vector */
130 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
131 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
132 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
133
134 fix0 = 0.0;
135 fiy0 = 0.0;
136 fiz0 = 0.0;
137
138 /* Load parameters for i particles */
139 iq0 = facel*charge[inr+0];
140 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
141
142 /* Reset potential sums */
143 velecsum = 0.0;
144 vvdwsum = 0.0;
145
146 /* Start inner kernel loop */
147 for(jidx=j_index_start; jidx<j_index_end; jidx++)
148 {
149 /* Get j neighbor index, and coordinate index */
150 jnr = jjnr[jidx];
151 j_coord_offset = DIM3*jnr;
152
153 /* load j atom coordinates */
154 jx0 = x[j_coord_offset+DIM3*0+XX0];
155 jy0 = x[j_coord_offset+DIM3*0+YY1];
156 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
157
158 /* Calculate displacement vector */
159 dx00 = ix0 - jx0;
160 dy00 = iy0 - jy0;
161 dz00 = iz0 - jz0;
162
163 /* Calculate squared distance and things based on it */
164 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
165
166 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
167
168 rinvsq00 = rinv00*rinv00;
169
170 /* Load parameters for j particles */
171 jq0 = charge[jnr+0];
172 vdwjidx0 = 2*vdwtype[jnr+0];
173
174 /**************************
175 * CALCULATE INTERACTIONS *
176 **************************/
177
178 r00 = rsq00*rinv00;
179
180 qq00 = iq0*jq0;
181 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
182 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
183
184 /* EWALD ELECTROSTATICS */
185
186 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
187 ewrt = r00*ewtabscale;
188 ewitab = ewrt;
189 eweps = ewrt-ewitab;
190 ewitab = 4*ewitab;
191 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
192 velec = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
193 felec = qq00*rinv00*(rinvsq00-felec);
194
195 /* LENNARD-JONES DISPERSION/REPULSION */
196
197 rinvsix = rinvsq00*rinvsq00*rinvsq00;
198 vvdw6 = c6_00*rinvsix;
199 vvdw12 = c12_00*rinvsix*rinvsix;
200 vvdw = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
201 fvdw = (vvdw12-vvdw6)*rinvsq00;
202
203 /* Update potential sums from outer loop */
204 velecsum += velec;
205 vvdwsum += vvdw;
206
207 fscal = felec+fvdw;
208
209 /* Calculate temporary vectorial force */
210 tx = fscal*dx00;
211 ty = fscal*dy00;
212 tz = fscal*dz00;
213
214 /* Update vectorial force */
215 fix0 += tx;
216 fiy0 += ty;
217 fiz0 += tz;
218 f[j_coord_offset+DIM3*0+XX0] -= tx;
219 f[j_coord_offset+DIM3*0+YY1] -= ty;
220 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
221
222 /* Inner loop uses 53 flops */
223 }
224 /* End of innermost loop */
225
226 tx = ty = tz = 0;
227 f[i_coord_offset+DIM3*0+XX0] += fix0;
228 f[i_coord_offset+DIM3*0+YY1] += fiy0;
229 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
230 tx += fix0;
231 ty += fiy0;
232 tz += fiz0;
233 fshift[i_shift_offset+XX0] += tx;
234 fshift[i_shift_offset+YY1] += ty;
235 fshift[i_shift_offset+ZZ2] += tz;
236
237 ggid = gid[iidx];
238 /* Update potential energies */
239 kernel_data->energygrp_elec[ggid] += velecsum;
240 kernel_data->energygrp_vdw[ggid] += vvdwsum;
241
242 /* Increment number of inner iterations */
243 inneriter += j_index_end - j_index_start;
244
245 /* Outer loop uses 15 flops */
246 }
247
248 /* Increment number of outer iterations */
249 outeriter += nri;
250
251 /* Update outer/inner flops */
252
253 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*53)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_VF] += outeriter*15 + inneriter
*53
;
254}
255/*
256 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_c
257 * Electrostatics interaction: Ewald
258 * VdW interaction: LennardJones
259 * Geometry: Particle-Particle
260 * Calculate force/pot: Force
261 */
262void
263nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_c
264 (t_nblist * gmx_restrict__restrict nlist,
265 rvec * gmx_restrict__restrict xx,
266 rvec * gmx_restrict__restrict ff,
267 t_forcerec * gmx_restrict__restrict fr,
268 t_mdatoms * gmx_restrict__restrict mdatoms,
269 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
270 t_nrnb * gmx_restrict__restrict nrnb)
271{
272 int i_shift_offset,i_coord_offset,j_coord_offset;
273 int j_index_start,j_index_end;
274 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
275 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
276 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
277 real *shiftvec,*fshift,*x,*f;
278 int vdwioffset0;
279 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
280 int vdwjidx0;
281 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
282 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
283 real velec,felec,velecsum,facel,crf,krf,krf2;
284 real *charge;
285 int nvdwtype;
286 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
287 int *vdwtype;
288 real *vdwparam;
289 int ewitab;
290 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
291 real *ewtab;
292
293 x = xx[0];
294 f = ff[0];
295
296 nri = nlist->nri;
297 iinr = nlist->iinr;
298 jindex = nlist->jindex;
299 jjnr = nlist->jjnr;
300 shiftidx = nlist->shift;
301 gid = nlist->gid;
Value stored to 'gid' is never read
302 shiftvec = fr->shift_vec[0];
303 fshift = fr->fshift[0];
304 facel = fr->epsfac;
305 charge = mdatoms->chargeA;
306 nvdwtype = fr->ntype;
307 vdwparam = fr->nbfp;
308 vdwtype = mdatoms->typeA;
309
310 sh_ewald = fr->ic->sh_ewald;
311 ewtab = fr->ic->tabq_coul_F;
312 ewtabscale = fr->ic->tabq_scale;
313 ewtabhalfspace = 0.5/ewtabscale;
314
315 outeriter = 0;
316 inneriter = 0;
317
318 /* Start outer loop over neighborlists */
319 for(iidx=0; iidx<nri; iidx++)
320 {
321 /* Load shift vector for this list */
322 i_shift_offset = DIM3*shiftidx[iidx];
323 shX = shiftvec[i_shift_offset+XX0];
324 shY = shiftvec[i_shift_offset+YY1];
325 shZ = shiftvec[i_shift_offset+ZZ2];
326
327 /* Load limits for loop over neighbors */
328 j_index_start = jindex[iidx];
329 j_index_end = jindex[iidx+1];
330
331 /* Get outer coordinate index */
332 inr = iinr[iidx];
333 i_coord_offset = DIM3*inr;
334
335 /* Load i particle coords and add shift vector */
336 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
337 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
338 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
339
340 fix0 = 0.0;
341 fiy0 = 0.0;
342 fiz0 = 0.0;
343
344 /* Load parameters for i particles */
345 iq0 = facel*charge[inr+0];
346 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
347
348 /* Start inner kernel loop */
349 for(jidx=j_index_start; jidx<j_index_end; jidx++)
350 {
351 /* Get j neighbor index, and coordinate index */
352 jnr = jjnr[jidx];
353 j_coord_offset = DIM3*jnr;
354
355 /* load j atom coordinates */
356 jx0 = x[j_coord_offset+DIM3*0+XX0];
357 jy0 = x[j_coord_offset+DIM3*0+YY1];
358 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
359
360 /* Calculate displacement vector */
361 dx00 = ix0 - jx0;
362 dy00 = iy0 - jy0;
363 dz00 = iz0 - jz0;
364
365 /* Calculate squared distance and things based on it */
366 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
367
368 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
369
370 rinvsq00 = rinv00*rinv00;
371
372 /* Load parameters for j particles */
373 jq0 = charge[jnr+0];
374 vdwjidx0 = 2*vdwtype[jnr+0];
375
376 /**************************
377 * CALCULATE INTERACTIONS *
378 **************************/
379
380 r00 = rsq00*rinv00;
381
382 qq00 = iq0*jq0;
383 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
384 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
385
386 /* EWALD ELECTROSTATICS */
387
388 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
389 ewrt = r00*ewtabscale;
390 ewitab = ewrt;
391 eweps = ewrt-ewitab;
392 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
393 felec = qq00*rinv00*(rinvsq00-felec);
394
395 /* LENNARD-JONES DISPERSION/REPULSION */
396
397 rinvsix = rinvsq00*rinvsq00*rinvsq00;
398 fvdw = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
399
400 fscal = felec+fvdw;
401
402 /* Calculate temporary vectorial force */
403 tx = fscal*dx00;
404 ty = fscal*dy00;
405 tz = fscal*dz00;
406
407 /* Update vectorial force */
408 fix0 += tx;
409 fiy0 += ty;
410 fiz0 += tz;
411 f[j_coord_offset+DIM3*0+XX0] -= tx;
412 f[j_coord_offset+DIM3*0+YY1] -= ty;
413 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
414
415 /* Inner loop uses 41 flops */
416 }
417 /* End of innermost loop */
418
419 tx = ty = tz = 0;
420 f[i_coord_offset+DIM3*0+XX0] += fix0;
421 f[i_coord_offset+DIM3*0+YY1] += fiy0;
422 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
423 tx += fix0;
424 ty += fiy0;
425 tz += fiz0;
426 fshift[i_shift_offset+XX0] += tx;
427 fshift[i_shift_offset+YY1] += ty;
428 fshift[i_shift_offset+ZZ2] += tz;
429
430 /* Increment number of inner iterations */
431 inneriter += j_index_end - j_index_start;
432
433 /* Outer loop uses 13 flops */
434 }
435
436 /* Increment number of outer iterations */
437 outeriter += nri;
438
439 /* Update outer/inner flops */
440
441 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*41)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_F] += outeriter*13 + inneriter
*41
;
442}