Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecEw_VdwNone_GeomW4P1_sse4_1_single.c
Location:line 671, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_sse4_1_single
54 * Electrostatics interaction: Ewald
55 * VdW interaction: None
56 * Geometry: Water4-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset1;
86 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87 int vdwioffset2;
88 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89 int vdwioffset3;
90 __m128 ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95 __m128 dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
97 real *charge;
98 __m128i ewitab;
99 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
100 real *ewtab;
101 __m128 dummy_mask,cutoff_mask;
102 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
103 __m128 one = _mm_set1_ps(1.0);
104 __m128 two = _mm_set1_ps(2.0);
105 x = xx[0];
106 f = ff[0];
107
108 nri = nlist->nri;
109 iinr = nlist->iinr;
110 jindex = nlist->jindex;
111 jjnr = nlist->jjnr;
112 shiftidx = nlist->shift;
113 gid = nlist->gid;
114 shiftvec = fr->shift_vec[0];
115 fshift = fr->fshift[0];
116 facel = _mm_set1_ps(fr->epsfac);
117 charge = mdatoms->chargeA;
118
119 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
120 ewtab = fr->ic->tabq_coul_FDV0;
121 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
122 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
123
124 /* Setup water-specific parameters */
125 inr = nlist->iinr[0];
126 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
127 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
128 iq3 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
129
130 /* Avoid stupid compiler warnings */
131 jnrA = jnrB = jnrC = jnrD = 0;
132 j_coord_offsetA = 0;
133 j_coord_offsetB = 0;
134 j_coord_offsetC = 0;
135 j_coord_offsetD = 0;
136
137 outeriter = 0;
138 inneriter = 0;
139
140 for(iidx=0;iidx<4*DIM3;iidx++)
141 {
142 scratch[iidx] = 0.0;
143 }
144
145 /* Start outer loop over neighborlists */
146 for(iidx=0; iidx<nri; iidx++)
147 {
148 /* Load shift vector for this list */
149 i_shift_offset = DIM3*shiftidx[iidx];
150
151 /* Load limits for loop over neighbors */
152 j_index_start = jindex[iidx];
153 j_index_end = jindex[iidx+1];
154
155 /* Get outer coordinate index */
156 inr = iinr[iidx];
157 i_coord_offset = DIM3*inr;
158
159 /* Load i particle coords and add shift vector */
160 gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM3,
161 &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
162
163 fix1 = _mm_setzero_ps();
164 fiy1 = _mm_setzero_ps();
165 fiz1 = _mm_setzero_ps();
166 fix2 = _mm_setzero_ps();
167 fiy2 = _mm_setzero_ps();
168 fiz2 = _mm_setzero_ps();
169 fix3 = _mm_setzero_ps();
170 fiy3 = _mm_setzero_ps();
171 fiz3 = _mm_setzero_ps();
172
173 /* Reset potential sums */
174 velecsum = _mm_setzero_ps();
175
176 /* Start inner kernel loop */
177 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
178 {
179
180 /* Get j neighbor index, and coordinate index */
181 jnrA = jjnr[jidx];
182 jnrB = jjnr[jidx+1];
183 jnrC = jjnr[jidx+2];
184 jnrD = jjnr[jidx+3];
185 j_coord_offsetA = DIM3*jnrA;
186 j_coord_offsetB = DIM3*jnrB;
187 j_coord_offsetC = DIM3*jnrC;
188 j_coord_offsetD = DIM3*jnrD;
189
190 /* load j atom coordinates */
191 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
192 x+j_coord_offsetC,x+j_coord_offsetD,
193 &jx0,&jy0,&jz0);
194
195 /* Calculate displacement vector */
196 dx10 = _mm_sub_ps(ix1,jx0);
197 dy10 = _mm_sub_ps(iy1,jy0);
198 dz10 = _mm_sub_ps(iz1,jz0);
199 dx20 = _mm_sub_ps(ix2,jx0);
200 dy20 = _mm_sub_ps(iy2,jy0);
201 dz20 = _mm_sub_ps(iz2,jz0);
202 dx30 = _mm_sub_ps(ix3,jx0);
203 dy30 = _mm_sub_ps(iy3,jy0);
204 dz30 = _mm_sub_ps(iz3,jz0);
205
206 /* Calculate squared distance and things based on it */
207 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
208 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
209 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
210
211 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
212 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
213 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
214
215 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
216 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
217 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
218
219 /* Load parameters for j particles */
220 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
221 charge+jnrC+0,charge+jnrD+0);
222
223 fjx0 = _mm_setzero_ps();
224 fjy0 = _mm_setzero_ps();
225 fjz0 = _mm_setzero_ps();
226
227 /**************************
228 * CALCULATE INTERACTIONS *
229 **************************/
230
231 r10 = _mm_mul_ps(rsq10,rinv10);
232
233 /* Compute parameters for interactions between i and j atoms */
234 qq10 = _mm_mul_ps(iq1,jq0);
235
236 /* EWALD ELECTROSTATICS */
237
238 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
239 ewrt = _mm_mul_ps(r10,ewtabscale);
240 ewitab = _mm_cvttps_epi32(ewrt);
241 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
242 ewitab = _mm_slli_epi32(ewitab,2);
243 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
244 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
245 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
246 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
247 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
248 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
249 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
250 velec = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
251 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
252
253 /* Update potential sum for this i atom from the interaction with this j atom. */
254 velecsum = _mm_add_ps(velecsum,velec);
255
256 fscal = felec;
257
258 /* Calculate temporary vectorial force */
259 tx = _mm_mul_ps(fscal,dx10);
260 ty = _mm_mul_ps(fscal,dy10);
261 tz = _mm_mul_ps(fscal,dz10);
262
263 /* Update vectorial force */
264 fix1 = _mm_add_ps(fix1,tx);
265 fiy1 = _mm_add_ps(fiy1,ty);
266 fiz1 = _mm_add_ps(fiz1,tz);
267
268 fjx0 = _mm_add_ps(fjx0,tx);
269 fjy0 = _mm_add_ps(fjy0,ty);
270 fjz0 = _mm_add_ps(fjz0,tz);
271
272 /**************************
273 * CALCULATE INTERACTIONS *
274 **************************/
275
276 r20 = _mm_mul_ps(rsq20,rinv20);
277
278 /* Compute parameters for interactions between i and j atoms */
279 qq20 = _mm_mul_ps(iq2,jq0);
280
281 /* EWALD ELECTROSTATICS */
282
283 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
284 ewrt = _mm_mul_ps(r20,ewtabscale);
285 ewitab = _mm_cvttps_epi32(ewrt);
286 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
287 ewitab = _mm_slli_epi32(ewitab,2);
288 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
289 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
290 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
291 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
292 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
293 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
294 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
295 velec = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
296 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
297
298 /* Update potential sum for this i atom from the interaction with this j atom. */
299 velecsum = _mm_add_ps(velecsum,velec);
300
301 fscal = felec;
302
303 /* Calculate temporary vectorial force */
304 tx = _mm_mul_ps(fscal,dx20);
305 ty = _mm_mul_ps(fscal,dy20);
306 tz = _mm_mul_ps(fscal,dz20);
307
308 /* Update vectorial force */
309 fix2 = _mm_add_ps(fix2,tx);
310 fiy2 = _mm_add_ps(fiy2,ty);
311 fiz2 = _mm_add_ps(fiz2,tz);
312
313 fjx0 = _mm_add_ps(fjx0,tx);
314 fjy0 = _mm_add_ps(fjy0,ty);
315 fjz0 = _mm_add_ps(fjz0,tz);
316
317 /**************************
318 * CALCULATE INTERACTIONS *
319 **************************/
320
321 r30 = _mm_mul_ps(rsq30,rinv30);
322
323 /* Compute parameters for interactions between i and j atoms */
324 qq30 = _mm_mul_ps(iq3,jq0);
325
326 /* EWALD ELECTROSTATICS */
327
328 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
329 ewrt = _mm_mul_ps(r30,ewtabscale);
330 ewitab = _mm_cvttps_epi32(ewrt);
331 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
332 ewitab = _mm_slli_epi32(ewitab,2);
333 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
334 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
335 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
336 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
337 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
338 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
339 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
340 velec = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
341 felec = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
342
343 /* Update potential sum for this i atom from the interaction with this j atom. */
344 velecsum = _mm_add_ps(velecsum,velec);
345
346 fscal = felec;
347
348 /* Calculate temporary vectorial force */
349 tx = _mm_mul_ps(fscal,dx30);
350 ty = _mm_mul_ps(fscal,dy30);
351 tz = _mm_mul_ps(fscal,dz30);
352
353 /* Update vectorial force */
354 fix3 = _mm_add_ps(fix3,tx);
355 fiy3 = _mm_add_ps(fiy3,ty);
356 fiz3 = _mm_add_ps(fiz3,tz);
357
358 fjx0 = _mm_add_ps(fjx0,tx);
359 fjy0 = _mm_add_ps(fjy0,ty);
360 fjz0 = _mm_add_ps(fjz0,tz);
361
362 fjptrA = f+j_coord_offsetA;
363 fjptrB = f+j_coord_offsetB;
364 fjptrC = f+j_coord_offsetC;
365 fjptrD = f+j_coord_offsetD;
366
367 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
368
369 /* Inner loop uses 123 flops */
370 }
371
372 if(jidx<j_index_end)
373 {
374
375 /* Get j neighbor index, and coordinate index */
376 jnrlistA = jjnr[jidx];
377 jnrlistB = jjnr[jidx+1];
378 jnrlistC = jjnr[jidx+2];
379 jnrlistD = jjnr[jidx+3];
380 /* Sign of each element will be negative for non-real atoms.
381 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
382 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
383 */
384 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
385 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
386 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
387 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
388 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
389 j_coord_offsetA = DIM3*jnrA;
390 j_coord_offsetB = DIM3*jnrB;
391 j_coord_offsetC = DIM3*jnrC;
392 j_coord_offsetD = DIM3*jnrD;
393
394 /* load j atom coordinates */
395 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
396 x+j_coord_offsetC,x+j_coord_offsetD,
397 &jx0,&jy0,&jz0);
398
399 /* Calculate displacement vector */
400 dx10 = _mm_sub_ps(ix1,jx0);
401 dy10 = _mm_sub_ps(iy1,jy0);
402 dz10 = _mm_sub_ps(iz1,jz0);
403 dx20 = _mm_sub_ps(ix2,jx0);
404 dy20 = _mm_sub_ps(iy2,jy0);
405 dz20 = _mm_sub_ps(iz2,jz0);
406 dx30 = _mm_sub_ps(ix3,jx0);
407 dy30 = _mm_sub_ps(iy3,jy0);
408 dz30 = _mm_sub_ps(iz3,jz0);
409
410 /* Calculate squared distance and things based on it */
411 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
412 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
413 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
414
415 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
416 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
417 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
418
419 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
420 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
421 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
422
423 /* Load parameters for j particles */
424 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
425 charge+jnrC+0,charge+jnrD+0);
426
427 fjx0 = _mm_setzero_ps();
428 fjy0 = _mm_setzero_ps();
429 fjz0 = _mm_setzero_ps();
430
431 /**************************
432 * CALCULATE INTERACTIONS *
433 **************************/
434
435 r10 = _mm_mul_ps(rsq10,rinv10);
436 r10 = _mm_andnot_ps(dummy_mask,r10);
437
438 /* Compute parameters for interactions between i and j atoms */
439 qq10 = _mm_mul_ps(iq1,jq0);
440
441 /* EWALD ELECTROSTATICS */
442
443 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
444 ewrt = _mm_mul_ps(r10,ewtabscale);
445 ewitab = _mm_cvttps_epi32(ewrt);
446 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
447 ewitab = _mm_slli_epi32(ewitab,2);
448 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
449 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
450 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
451 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
452 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
453 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
454 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
455 velec = _mm_mul_ps(qq10,_mm_sub_ps(rinv10,velec));
456 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
457
458 /* Update potential sum for this i atom from the interaction with this j atom. */
459 velec = _mm_andnot_ps(dummy_mask,velec);
460 velecsum = _mm_add_ps(velecsum,velec);
461
462 fscal = felec;
463
464 fscal = _mm_andnot_ps(dummy_mask,fscal);
465
466 /* Calculate temporary vectorial force */
467 tx = _mm_mul_ps(fscal,dx10);
468 ty = _mm_mul_ps(fscal,dy10);
469 tz = _mm_mul_ps(fscal,dz10);
470
471 /* Update vectorial force */
472 fix1 = _mm_add_ps(fix1,tx);
473 fiy1 = _mm_add_ps(fiy1,ty);
474 fiz1 = _mm_add_ps(fiz1,tz);
475
476 fjx0 = _mm_add_ps(fjx0,tx);
477 fjy0 = _mm_add_ps(fjy0,ty);
478 fjz0 = _mm_add_ps(fjz0,tz);
479
480 /**************************
481 * CALCULATE INTERACTIONS *
482 **************************/
483
484 r20 = _mm_mul_ps(rsq20,rinv20);
485 r20 = _mm_andnot_ps(dummy_mask,r20);
486
487 /* Compute parameters for interactions between i and j atoms */
488 qq20 = _mm_mul_ps(iq2,jq0);
489
490 /* EWALD ELECTROSTATICS */
491
492 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
493 ewrt = _mm_mul_ps(r20,ewtabscale);
494 ewitab = _mm_cvttps_epi32(ewrt);
495 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
496 ewitab = _mm_slli_epi32(ewitab,2);
497 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
498 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
499 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
500 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
501 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
502 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
503 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
504 velec = _mm_mul_ps(qq20,_mm_sub_ps(rinv20,velec));
505 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
506
507 /* Update potential sum for this i atom from the interaction with this j atom. */
508 velec = _mm_andnot_ps(dummy_mask,velec);
509 velecsum = _mm_add_ps(velecsum,velec);
510
511 fscal = felec;
512
513 fscal = _mm_andnot_ps(dummy_mask,fscal);
514
515 /* Calculate temporary vectorial force */
516 tx = _mm_mul_ps(fscal,dx20);
517 ty = _mm_mul_ps(fscal,dy20);
518 tz = _mm_mul_ps(fscal,dz20);
519
520 /* Update vectorial force */
521 fix2 = _mm_add_ps(fix2,tx);
522 fiy2 = _mm_add_ps(fiy2,ty);
523 fiz2 = _mm_add_ps(fiz2,tz);
524
525 fjx0 = _mm_add_ps(fjx0,tx);
526 fjy0 = _mm_add_ps(fjy0,ty);
527 fjz0 = _mm_add_ps(fjz0,tz);
528
529 /**************************
530 * CALCULATE INTERACTIONS *
531 **************************/
532
533 r30 = _mm_mul_ps(rsq30,rinv30);
534 r30 = _mm_andnot_ps(dummy_mask,r30);
535
536 /* Compute parameters for interactions between i and j atoms */
537 qq30 = _mm_mul_ps(iq3,jq0);
538
539 /* EWALD ELECTROSTATICS */
540
541 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
542 ewrt = _mm_mul_ps(r30,ewtabscale);
543 ewitab = _mm_cvttps_epi32(ewrt);
544 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
545 ewitab = _mm_slli_epi32(ewitab,2);
546 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
547 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
548 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
549 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
550 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
551 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
552 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
553 velec = _mm_mul_ps(qq30,_mm_sub_ps(rinv30,velec));
554 felec = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
555
556 /* Update potential sum for this i atom from the interaction with this j atom. */
557 velec = _mm_andnot_ps(dummy_mask,velec);
558 velecsum = _mm_add_ps(velecsum,velec);
559
560 fscal = felec;
561
562 fscal = _mm_andnot_ps(dummy_mask,fscal);
563
564 /* Calculate temporary vectorial force */
565 tx = _mm_mul_ps(fscal,dx30);
566 ty = _mm_mul_ps(fscal,dy30);
567 tz = _mm_mul_ps(fscal,dz30);
568
569 /* Update vectorial force */
570 fix3 = _mm_add_ps(fix3,tx);
571 fiy3 = _mm_add_ps(fiy3,ty);
572 fiz3 = _mm_add_ps(fiz3,tz);
573
574 fjx0 = _mm_add_ps(fjx0,tx);
575 fjy0 = _mm_add_ps(fjy0,ty);
576 fjz0 = _mm_add_ps(fjz0,tz);
577
578 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
579 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
580 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
581 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
582
583 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
584
585 /* Inner loop uses 126 flops */
586 }
587
588 /* End of innermost loop */
589
590 gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
591 f+i_coord_offset+DIM3,fshift+i_shift_offset);
592
593 ggid = gid[iidx];
594 /* Update potential energies */
595 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
596
597 /* Increment number of inner iterations */
598 inneriter += j_index_end - j_index_start;
599
600 /* Outer loop uses 19 flops */
601 }
602
603 /* Increment number of outer iterations */
604 outeriter += nri;
605
606 /* Update outer/inner flops */
607
608 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*126)(nrnb)->n[eNR_NBKERNEL_ELEC_W4_VF] += outeriter*19 + inneriter
*126
;
609}
610/*
611 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwNone_GeomW4P1_F_sse4_1_single
612 * Electrostatics interaction: Ewald
613 * VdW interaction: None
614 * Geometry: Water4-Particle
615 * Calculate force/pot: Force
616 */
617void
618nb_kernel_ElecEw_VdwNone_GeomW4P1_F_sse4_1_single
619 (t_nblist * gmx_restrict nlist,
620 rvec * gmx_restrict xx,
621 rvec * gmx_restrict ff,
622 t_forcerec * gmx_restrict fr,
623 t_mdatoms * gmx_restrict mdatoms,
624 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
625 t_nrnb * gmx_restrict nrnb)
626{
627 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
628 * just 0 for non-waters.
629 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
630 * jnr indices corresponding to data put in the four positions in the SIMD register.
631 */
632 int i_shift_offset,i_coord_offset,outeriter,inneriter;
633 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
634 int jnrA,jnrB,jnrC,jnrD;
635 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
636 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
637 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
638 real rcutoff_scalar;
639 real *shiftvec,*fshift,*x,*f;
640 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
641 real scratch[4*DIM3];
642 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
643 int vdwioffset1;
644 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
645 int vdwioffset2;
646 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
647 int vdwioffset3;
648 __m128 ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
649 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
650 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
651 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
652 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
653 __m128 dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
654 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
655 real *charge;
656 __m128i ewitab;
657 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
658 real *ewtab;
659 __m128 dummy_mask,cutoff_mask;
660 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
661 __m128 one = _mm_set1_ps(1.0);
662 __m128 two = _mm_set1_ps(2.0);
663 x = xx[0];
664 f = ff[0];
665
666 nri = nlist->nri;
667 iinr = nlist->iinr;
668 jindex = nlist->jindex;
669 jjnr = nlist->jjnr;
670 shiftidx = nlist->shift;
671 gid = nlist->gid;
Value stored to 'gid' is never read
672 shiftvec = fr->shift_vec[0];
673 fshift = fr->fshift[0];
674 facel = _mm_set1_ps(fr->epsfac);
675 charge = mdatoms->chargeA;
676
677 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
678 ewtab = fr->ic->tabq_coul_F;
679 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
680 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
681
682 /* Setup water-specific parameters */
683 inr = nlist->iinr[0];
684 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
685 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
686 iq3 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
687
688 /* Avoid stupid compiler warnings */
689 jnrA = jnrB = jnrC = jnrD = 0;
690 j_coord_offsetA = 0;
691 j_coord_offsetB = 0;
692 j_coord_offsetC = 0;
693 j_coord_offsetD = 0;
694
695 outeriter = 0;
696 inneriter = 0;
697
698 for(iidx=0;iidx<4*DIM3;iidx++)
699 {
700 scratch[iidx] = 0.0;
701 }
702
703 /* Start outer loop over neighborlists */
704 for(iidx=0; iidx<nri; iidx++)
705 {
706 /* Load shift vector for this list */
707 i_shift_offset = DIM3*shiftidx[iidx];
708
709 /* Load limits for loop over neighbors */
710 j_index_start = jindex[iidx];
711 j_index_end = jindex[iidx+1];
712
713 /* Get outer coordinate index */
714 inr = iinr[iidx];
715 i_coord_offset = DIM3*inr;
716
717 /* Load i particle coords and add shift vector */
718 gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM3,
719 &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
720
721 fix1 = _mm_setzero_ps();
722 fiy1 = _mm_setzero_ps();
723 fiz1 = _mm_setzero_ps();
724 fix2 = _mm_setzero_ps();
725 fiy2 = _mm_setzero_ps();
726 fiz2 = _mm_setzero_ps();
727 fix3 = _mm_setzero_ps();
728 fiy3 = _mm_setzero_ps();
729 fiz3 = _mm_setzero_ps();
730
731 /* Start inner kernel loop */
732 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
733 {
734
735 /* Get j neighbor index, and coordinate index */
736 jnrA = jjnr[jidx];
737 jnrB = jjnr[jidx+1];
738 jnrC = jjnr[jidx+2];
739 jnrD = jjnr[jidx+3];
740 j_coord_offsetA = DIM3*jnrA;
741 j_coord_offsetB = DIM3*jnrB;
742 j_coord_offsetC = DIM3*jnrC;
743 j_coord_offsetD = DIM3*jnrD;
744
745 /* load j atom coordinates */
746 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
747 x+j_coord_offsetC,x+j_coord_offsetD,
748 &jx0,&jy0,&jz0);
749
750 /* Calculate displacement vector */
751 dx10 = _mm_sub_ps(ix1,jx0);
752 dy10 = _mm_sub_ps(iy1,jy0);
753 dz10 = _mm_sub_ps(iz1,jz0);
754 dx20 = _mm_sub_ps(ix2,jx0);
755 dy20 = _mm_sub_ps(iy2,jy0);
756 dz20 = _mm_sub_ps(iz2,jz0);
757 dx30 = _mm_sub_ps(ix3,jx0);
758 dy30 = _mm_sub_ps(iy3,jy0);
759 dz30 = _mm_sub_ps(iz3,jz0);
760
761 /* Calculate squared distance and things based on it */
762 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
763 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
764 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
765
766 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
767 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
768 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
769
770 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
771 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
772 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
773
774 /* Load parameters for j particles */
775 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
776 charge+jnrC+0,charge+jnrD+0);
777
778 fjx0 = _mm_setzero_ps();
779 fjy0 = _mm_setzero_ps();
780 fjz0 = _mm_setzero_ps();
781
782 /**************************
783 * CALCULATE INTERACTIONS *
784 **************************/
785
786 r10 = _mm_mul_ps(rsq10,rinv10);
787
788 /* Compute parameters for interactions between i and j atoms */
789 qq10 = _mm_mul_ps(iq1,jq0);
790
791 /* EWALD ELECTROSTATICS */
792
793 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
794 ewrt = _mm_mul_ps(r10,ewtabscale);
795 ewitab = _mm_cvttps_epi32(ewrt);
796 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
797 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
798 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
799 &ewtabF,&ewtabFn);
800 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
801 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
802
803 fscal = felec;
804
805 /* Calculate temporary vectorial force */
806 tx = _mm_mul_ps(fscal,dx10);
807 ty = _mm_mul_ps(fscal,dy10);
808 tz = _mm_mul_ps(fscal,dz10);
809
810 /* Update vectorial force */
811 fix1 = _mm_add_ps(fix1,tx);
812 fiy1 = _mm_add_ps(fiy1,ty);
813 fiz1 = _mm_add_ps(fiz1,tz);
814
815 fjx0 = _mm_add_ps(fjx0,tx);
816 fjy0 = _mm_add_ps(fjy0,ty);
817 fjz0 = _mm_add_ps(fjz0,tz);
818
819 /**************************
820 * CALCULATE INTERACTIONS *
821 **************************/
822
823 r20 = _mm_mul_ps(rsq20,rinv20);
824
825 /* Compute parameters for interactions between i and j atoms */
826 qq20 = _mm_mul_ps(iq2,jq0);
827
828 /* EWALD ELECTROSTATICS */
829
830 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
831 ewrt = _mm_mul_ps(r20,ewtabscale);
832 ewitab = _mm_cvttps_epi32(ewrt);
833 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
834 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
835 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
836 &ewtabF,&ewtabFn);
837 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
838 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
839
840 fscal = felec;
841
842 /* Calculate temporary vectorial force */
843 tx = _mm_mul_ps(fscal,dx20);
844 ty = _mm_mul_ps(fscal,dy20);
845 tz = _mm_mul_ps(fscal,dz20);
846
847 /* Update vectorial force */
848 fix2 = _mm_add_ps(fix2,tx);
849 fiy2 = _mm_add_ps(fiy2,ty);
850 fiz2 = _mm_add_ps(fiz2,tz);
851
852 fjx0 = _mm_add_ps(fjx0,tx);
853 fjy0 = _mm_add_ps(fjy0,ty);
854 fjz0 = _mm_add_ps(fjz0,tz);
855
856 /**************************
857 * CALCULATE INTERACTIONS *
858 **************************/
859
860 r30 = _mm_mul_ps(rsq30,rinv30);
861
862 /* Compute parameters for interactions between i and j atoms */
863 qq30 = _mm_mul_ps(iq3,jq0);
864
865 /* EWALD ELECTROSTATICS */
866
867 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
868 ewrt = _mm_mul_ps(r30,ewtabscale);
869 ewitab = _mm_cvttps_epi32(ewrt);
870 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
871 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
872 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
873 &ewtabF,&ewtabFn);
874 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
875 felec = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
876
877 fscal = felec;
878
879 /* Calculate temporary vectorial force */
880 tx = _mm_mul_ps(fscal,dx30);
881 ty = _mm_mul_ps(fscal,dy30);
882 tz = _mm_mul_ps(fscal,dz30);
883
884 /* Update vectorial force */
885 fix3 = _mm_add_ps(fix3,tx);
886 fiy3 = _mm_add_ps(fiy3,ty);
887 fiz3 = _mm_add_ps(fiz3,tz);
888
889 fjx0 = _mm_add_ps(fjx0,tx);
890 fjy0 = _mm_add_ps(fjy0,ty);
891 fjz0 = _mm_add_ps(fjz0,tz);
892
893 fjptrA = f+j_coord_offsetA;
894 fjptrB = f+j_coord_offsetB;
895 fjptrC = f+j_coord_offsetC;
896 fjptrD = f+j_coord_offsetD;
897
898 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
899
900 /* Inner loop uses 108 flops */
901 }
902
903 if(jidx<j_index_end)
904 {
905
906 /* Get j neighbor index, and coordinate index */
907 jnrlistA = jjnr[jidx];
908 jnrlistB = jjnr[jidx+1];
909 jnrlistC = jjnr[jidx+2];
910 jnrlistD = jjnr[jidx+3];
911 /* Sign of each element will be negative for non-real atoms.
912 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
913 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
914 */
915 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
916 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
917 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
918 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
919 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
920 j_coord_offsetA = DIM3*jnrA;
921 j_coord_offsetB = DIM3*jnrB;
922 j_coord_offsetC = DIM3*jnrC;
923 j_coord_offsetD = DIM3*jnrD;
924
925 /* load j atom coordinates */
926 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
927 x+j_coord_offsetC,x+j_coord_offsetD,
928 &jx0,&jy0,&jz0);
929
930 /* Calculate displacement vector */
931 dx10 = _mm_sub_ps(ix1,jx0);
932 dy10 = _mm_sub_ps(iy1,jy0);
933 dz10 = _mm_sub_ps(iz1,jz0);
934 dx20 = _mm_sub_ps(ix2,jx0);
935 dy20 = _mm_sub_ps(iy2,jy0);
936 dz20 = _mm_sub_ps(iz2,jz0);
937 dx30 = _mm_sub_ps(ix3,jx0);
938 dy30 = _mm_sub_ps(iy3,jy0);
939 dz30 = _mm_sub_ps(iz3,jz0);
940
941 /* Calculate squared distance and things based on it */
942 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
943 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
944 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
945
946 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
947 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
948 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
949
950 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
951 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
952 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
953
954 /* Load parameters for j particles */
955 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
956 charge+jnrC+0,charge+jnrD+0);
957
958 fjx0 = _mm_setzero_ps();
959 fjy0 = _mm_setzero_ps();
960 fjz0 = _mm_setzero_ps();
961
962 /**************************
963 * CALCULATE INTERACTIONS *
964 **************************/
965
966 r10 = _mm_mul_ps(rsq10,rinv10);
967 r10 = _mm_andnot_ps(dummy_mask,r10);
968
969 /* Compute parameters for interactions between i and j atoms */
970 qq10 = _mm_mul_ps(iq1,jq0);
971
972 /* EWALD ELECTROSTATICS */
973
974 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
975 ewrt = _mm_mul_ps(r10,ewtabscale);
976 ewitab = _mm_cvttps_epi32(ewrt);
977 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
978 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
979 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
980 &ewtabF,&ewtabFn);
981 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
982 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
983
984 fscal = felec;
985
986 fscal = _mm_andnot_ps(dummy_mask,fscal);
987
988 /* Calculate temporary vectorial force */
989 tx = _mm_mul_ps(fscal,dx10);
990 ty = _mm_mul_ps(fscal,dy10);
991 tz = _mm_mul_ps(fscal,dz10);
992
993 /* Update vectorial force */
994 fix1 = _mm_add_ps(fix1,tx);
995 fiy1 = _mm_add_ps(fiy1,ty);
996 fiz1 = _mm_add_ps(fiz1,tz);
997
998 fjx0 = _mm_add_ps(fjx0,tx);
999 fjy0 = _mm_add_ps(fjy0,ty);
1000 fjz0 = _mm_add_ps(fjz0,tz);
1001
1002 /**************************
1003 * CALCULATE INTERACTIONS *
1004 **************************/
1005
1006 r20 = _mm_mul_ps(rsq20,rinv20);
1007 r20 = _mm_andnot_ps(dummy_mask,r20);
1008
1009 /* Compute parameters for interactions between i and j atoms */
1010 qq20 = _mm_mul_ps(iq2,jq0);
1011
1012 /* EWALD ELECTROSTATICS */
1013
1014 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1015 ewrt = _mm_mul_ps(r20,ewtabscale);
1016 ewitab = _mm_cvttps_epi32(ewrt);
1017 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1018 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1019 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1020 &ewtabF,&ewtabFn);
1021 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1022 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1023
1024 fscal = felec;
1025
1026 fscal = _mm_andnot_ps(dummy_mask,fscal);
1027
1028 /* Calculate temporary vectorial force */
1029 tx = _mm_mul_ps(fscal,dx20);
1030 ty = _mm_mul_ps(fscal,dy20);
1031 tz = _mm_mul_ps(fscal,dz20);
1032
1033 /* Update vectorial force */
1034 fix2 = _mm_add_ps(fix2,tx);
1035 fiy2 = _mm_add_ps(fiy2,ty);
1036 fiz2 = _mm_add_ps(fiz2,tz);
1037
1038 fjx0 = _mm_add_ps(fjx0,tx);
1039 fjy0 = _mm_add_ps(fjy0,ty);
1040 fjz0 = _mm_add_ps(fjz0,tz);
1041
1042 /**************************
1043 * CALCULATE INTERACTIONS *
1044 **************************/
1045
1046 r30 = _mm_mul_ps(rsq30,rinv30);
1047 r30 = _mm_andnot_ps(dummy_mask,r30);
1048
1049 /* Compute parameters for interactions between i and j atoms */
1050 qq30 = _mm_mul_ps(iq3,jq0);
1051
1052 /* EWALD ELECTROSTATICS */
1053
1054 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1055 ewrt = _mm_mul_ps(r30,ewtabscale);
1056 ewitab = _mm_cvttps_epi32(ewrt);
1057 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1058 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1059 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1060 &ewtabF,&ewtabFn);
1061 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1062 felec = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1063
1064 fscal = felec;
1065
1066 fscal = _mm_andnot_ps(dummy_mask,fscal);
1067
1068 /* Calculate temporary vectorial force */
1069 tx = _mm_mul_ps(fscal,dx30);
1070 ty = _mm_mul_ps(fscal,dy30);
1071 tz = _mm_mul_ps(fscal,dz30);
1072
1073 /* Update vectorial force */
1074 fix3 = _mm_add_ps(fix3,tx);
1075 fiy3 = _mm_add_ps(fiy3,ty);
1076 fiz3 = _mm_add_ps(fiz3,tz);
1077
1078 fjx0 = _mm_add_ps(fjx0,tx);
1079 fjy0 = _mm_add_ps(fjy0,ty);
1080 fjz0 = _mm_add_ps(fjz0,tz);
1081
1082 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1083 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1084 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1085 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1086
1087 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1088
1089 /* Inner loop uses 111 flops */
1090 }
1091
1092 /* End of innermost loop */
1093
1094 gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1095 f+i_coord_offset+DIM3,fshift+i_shift_offset);
1096
1097 /* Increment number of inner iterations */
1098 inneriter += j_index_end - j_index_start;
1099
1100 /* Outer loop uses 18 flops */
1101 }
1102
1103 /* Increment number of outer iterations */
1104 outeriter += nri;
1105
1106 /* Update outer/inner flops */
1107
1108 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*111)(nrnb)->n[eNR_NBKERNEL_ELEC_W4_F] += outeriter*18 + inneriter
*111
;
1109}