Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecNone_VdwLJEw_GeomP1P1_sse4_1_single.c
Location:line 120, column 5
Description:Value stored to 'sh_lj_ewald' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_sse4_1_single
54 * Electrostatics interaction: None
55 * VdW interaction: LJEwald
56 * Geometry: Particle-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecNone_VdwLJEw_GeomP1P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90 int nvdwtype;
91 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92 int *vdwtype;
93 real *vdwparam;
94 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
95 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
96 __m128 c6grid_00;
97 __m128 ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
98 real *vdwgridparam;
99 __m128 one_half = _mm_set1_ps(0.5);
100 __m128 minus_one = _mm_set1_ps(-1.0);
101 __m128 dummy_mask,cutoff_mask;
102 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
103 __m128 one = _mm_set1_ps(1.0);
104 __m128 two = _mm_set1_ps(2.0);
105 x = xx[0];
106 f = ff[0];
107
108 nri = nlist->nri;
109 iinr = nlist->iinr;
110 jindex = nlist->jindex;
111 jjnr = nlist->jjnr;
112 shiftidx = nlist->shift;
113 gid = nlist->gid;
114 shiftvec = fr->shift_vec[0];
115 fshift = fr->fshift[0];
116 nvdwtype = fr->ntype;
117 vdwparam = fr->nbfp;
118 vdwtype = mdatoms->typeA;
119 vdwgridparam = fr->ljpme_c6grid;
120 sh_lj_ewald = _mm_set1_ps(fr->ic->sh_lj_ewald);
Value stored to 'sh_lj_ewald' is never read
121 ewclj = _mm_set1_ps(fr->ewaldcoeff_lj);
122 ewclj2 = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
123
124 /* Avoid stupid compiler warnings */
125 jnrA = jnrB = jnrC = jnrD = 0;
126 j_coord_offsetA = 0;
127 j_coord_offsetB = 0;
128 j_coord_offsetC = 0;
129 j_coord_offsetD = 0;
130
131 outeriter = 0;
132 inneriter = 0;
133
134 for(iidx=0;iidx<4*DIM3;iidx++)
135 {
136 scratch[iidx] = 0.0;
137 }
138
139 /* Start outer loop over neighborlists */
140 for(iidx=0; iidx<nri; iidx++)
141 {
142 /* Load shift vector for this list */
143 i_shift_offset = DIM3*shiftidx[iidx];
144
145 /* Load limits for loop over neighbors */
146 j_index_start = jindex[iidx];
147 j_index_end = jindex[iidx+1];
148
149 /* Get outer coordinate index */
150 inr = iinr[iidx];
151 i_coord_offset = DIM3*inr;
152
153 /* Load i particle coords and add shift vector */
154 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
155
156 fix0 = _mm_setzero_ps();
157 fiy0 = _mm_setzero_ps();
158 fiz0 = _mm_setzero_ps();
159
160 /* Load parameters for i particles */
161 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
162
163 /* Reset potential sums */
164 vvdwsum = _mm_setzero_ps();
165
166 /* Start inner kernel loop */
167 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
168 {
169
170 /* Get j neighbor index, and coordinate index */
171 jnrA = jjnr[jidx];
172 jnrB = jjnr[jidx+1];
173 jnrC = jjnr[jidx+2];
174 jnrD = jjnr[jidx+3];
175 j_coord_offsetA = DIM3*jnrA;
176 j_coord_offsetB = DIM3*jnrB;
177 j_coord_offsetC = DIM3*jnrC;
178 j_coord_offsetD = DIM3*jnrD;
179
180 /* load j atom coordinates */
181 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
182 x+j_coord_offsetC,x+j_coord_offsetD,
183 &jx0,&jy0,&jz0);
184
185 /* Calculate displacement vector */
186 dx00 = _mm_sub_ps(ix0,jx0);
187 dy00 = _mm_sub_ps(iy0,jy0);
188 dz00 = _mm_sub_ps(iz0,jz0);
189
190 /* Calculate squared distance and things based on it */
191 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
192
193 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
194
195 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
196
197 /* Load parameters for j particles */
198 vdwjidx0A = 2*vdwtype[jnrA+0];
199 vdwjidx0B = 2*vdwtype[jnrB+0];
200 vdwjidx0C = 2*vdwtype[jnrC+0];
201 vdwjidx0D = 2*vdwtype[jnrD+0];
202
203 /**************************
204 * CALCULATE INTERACTIONS *
205 **************************/
206
207 r00 = _mm_mul_ps(rsq00,rinv00);
208
209 /* Compute parameters for interactions between i and j atoms */
210 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
211 vdwparam+vdwioffset0+vdwjidx0B,
212 vdwparam+vdwioffset0+vdwjidx0C,
213 vdwparam+vdwioffset0+vdwjidx0D,
214 &c6_00,&c12_00);
215
216 c6grid_00 = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
217 vdwgridparam+vdwioffset0+vdwjidx0B,
218 vdwgridparam+vdwioffset0+vdwjidx0C,
219 vdwgridparam+vdwioffset0+vdwjidx0D);
220
221 /* Analytical LJ-PME */
222 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
223 ewcljrsq = _mm_mul_ps(ewclj2,rsq00);
224 ewclj6 = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
225 exponent = gmx_simd_exp_rgmx_simd_exp_f(ewcljrsq);
226 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
227 poly = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
228 /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
229 vvdw6 = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
230 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
231 vvdw = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
232 /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
233 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
234
235 /* Update potential sum for this i atom from the interaction with this j atom. */
236 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
237
238 fscal = fvdw;
239
240 /* Calculate temporary vectorial force */
241 tx = _mm_mul_ps(fscal,dx00);
242 ty = _mm_mul_ps(fscal,dy00);
243 tz = _mm_mul_ps(fscal,dz00);
244
245 /* Update vectorial force */
246 fix0 = _mm_add_ps(fix0,tx);
247 fiy0 = _mm_add_ps(fiy0,ty);
248 fiz0 = _mm_add_ps(fiz0,tz);
249
250 fjptrA = f+j_coord_offsetA;
251 fjptrB = f+j_coord_offsetB;
252 fjptrC = f+j_coord_offsetC;
253 fjptrD = f+j_coord_offsetD;
254 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
255
256 /* Inner loop uses 51 flops */
257 }
258
259 if(jidx<j_index_end)
260 {
261
262 /* Get j neighbor index, and coordinate index */
263 jnrlistA = jjnr[jidx];
264 jnrlistB = jjnr[jidx+1];
265 jnrlistC = jjnr[jidx+2];
266 jnrlistD = jjnr[jidx+3];
267 /* Sign of each element will be negative for non-real atoms.
268 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
269 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
270 */
271 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
272 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
273 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
274 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
275 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
276 j_coord_offsetA = DIM3*jnrA;
277 j_coord_offsetB = DIM3*jnrB;
278 j_coord_offsetC = DIM3*jnrC;
279 j_coord_offsetD = DIM3*jnrD;
280
281 /* load j atom coordinates */
282 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
283 x+j_coord_offsetC,x+j_coord_offsetD,
284 &jx0,&jy0,&jz0);
285
286 /* Calculate displacement vector */
287 dx00 = _mm_sub_ps(ix0,jx0);
288 dy00 = _mm_sub_ps(iy0,jy0);
289 dz00 = _mm_sub_ps(iz0,jz0);
290
291 /* Calculate squared distance and things based on it */
292 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
293
294 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
295
296 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
297
298 /* Load parameters for j particles */
299 vdwjidx0A = 2*vdwtype[jnrA+0];
300 vdwjidx0B = 2*vdwtype[jnrB+0];
301 vdwjidx0C = 2*vdwtype[jnrC+0];
302 vdwjidx0D = 2*vdwtype[jnrD+0];
303
304 /**************************
305 * CALCULATE INTERACTIONS *
306 **************************/
307
308 r00 = _mm_mul_ps(rsq00,rinv00);
309 r00 = _mm_andnot_ps(dummy_mask,r00);
310
311 /* Compute parameters for interactions between i and j atoms */
312 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
313 vdwparam+vdwioffset0+vdwjidx0B,
314 vdwparam+vdwioffset0+vdwjidx0C,
315 vdwparam+vdwioffset0+vdwjidx0D,
316 &c6_00,&c12_00);
317
318 c6grid_00 = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
319 vdwgridparam+vdwioffset0+vdwjidx0B,
320 vdwgridparam+vdwioffset0+vdwjidx0C,
321 vdwgridparam+vdwioffset0+vdwjidx0D);
322
323 /* Analytical LJ-PME */
324 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
325 ewcljrsq = _mm_mul_ps(ewclj2,rsq00);
326 ewclj6 = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
327 exponent = gmx_simd_exp_rgmx_simd_exp_f(ewcljrsq);
328 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
329 poly = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
330 /* vvdw6 = [C6 - C6grid * (1-poly)]/r6 */
331 vvdw6 = _mm_mul_ps(_mm_sub_ps(c6_00,_mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly))),rinvsix);
332 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
333 vvdw = _mm_sub_ps(_mm_mul_ps(vvdw12,one_twelfth),_mm_mul_ps(vvdw6,one_sixth));
334 /* fvdw = vvdw12/r - (vvdw6/r + (C6grid * exponent * beta^6)/r) */
335 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,_mm_sub_ps(vvdw6,_mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6)))),rinvsq00);
336
337 /* Update potential sum for this i atom from the interaction with this j atom. */
338 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
339 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
340
341 fscal = fvdw;
342
343 fscal = _mm_andnot_ps(dummy_mask,fscal);
344
345 /* Calculate temporary vectorial force */
346 tx = _mm_mul_ps(fscal,dx00);
347 ty = _mm_mul_ps(fscal,dy00);
348 tz = _mm_mul_ps(fscal,dz00);
349
350 /* Update vectorial force */
351 fix0 = _mm_add_ps(fix0,tx);
352 fiy0 = _mm_add_ps(fiy0,ty);
353 fiz0 = _mm_add_ps(fiz0,tz);
354
355 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
356 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
357 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
358 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
359 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
360
361 /* Inner loop uses 52 flops */
362 }
363
364 /* End of innermost loop */
365
366 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
367 f+i_coord_offset,fshift+i_shift_offset);
368
369 ggid = gid[iidx];
370 /* Update potential energies */
371 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
372
373 /* Increment number of inner iterations */
374 inneriter += j_index_end - j_index_start;
375
376 /* Outer loop uses 7 flops */
377 }
378
379 /* Increment number of outer iterations */
380 outeriter += nri;
381
382 /* Update outer/inner flops */
383
384 inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*52)(nrnb)->n[eNR_NBKERNEL_VDW_VF] += outeriter*7 + inneriter*
52
;
385}
386/*
387 * Gromacs nonbonded kernel: nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_sse4_1_single
388 * Electrostatics interaction: None
389 * VdW interaction: LJEwald
390 * Geometry: Particle-Particle
391 * Calculate force/pot: Force
392 */
393void
394nb_kernel_ElecNone_VdwLJEw_GeomP1P1_F_sse4_1_single
395 (t_nblist * gmx_restrict nlist,
396 rvec * gmx_restrict xx,
397 rvec * gmx_restrict ff,
398 t_forcerec * gmx_restrict fr,
399 t_mdatoms * gmx_restrict mdatoms,
400 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
401 t_nrnb * gmx_restrict nrnb)
402{
403 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
404 * just 0 for non-waters.
405 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
406 * jnr indices corresponding to data put in the four positions in the SIMD register.
407 */
408 int i_shift_offset,i_coord_offset,outeriter,inneriter;
409 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
410 int jnrA,jnrB,jnrC,jnrD;
411 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
412 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
413 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
414 real rcutoff_scalar;
415 real *shiftvec,*fshift,*x,*f;
416 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
417 real scratch[4*DIM3];
418 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
419 int vdwioffset0;
420 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
421 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
422 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
423 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
424 int nvdwtype;
425 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
426 int *vdwtype;
427 real *vdwparam;
428 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
429 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
430 __m128 c6grid_00;
431 __m128 ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,f6A,f6B,sh_lj_ewald;
432 real *vdwgridparam;
433 __m128 one_half = _mm_set1_ps(0.5);
434 __m128 minus_one = _mm_set1_ps(-1.0);
435 __m128 dummy_mask,cutoff_mask;
436 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
437 __m128 one = _mm_set1_ps(1.0);
438 __m128 two = _mm_set1_ps(2.0);
439 x = xx[0];
440 f = ff[0];
441
442 nri = nlist->nri;
443 iinr = nlist->iinr;
444 jindex = nlist->jindex;
445 jjnr = nlist->jjnr;
446 shiftidx = nlist->shift;
447 gid = nlist->gid;
448 shiftvec = fr->shift_vec[0];
449 fshift = fr->fshift[0];
450 nvdwtype = fr->ntype;
451 vdwparam = fr->nbfp;
452 vdwtype = mdatoms->typeA;
453 vdwgridparam = fr->ljpme_c6grid;
454 sh_lj_ewald = _mm_set1_ps(fr->ic->sh_lj_ewald);
455 ewclj = _mm_set1_ps(fr->ewaldcoeff_lj);
456 ewclj2 = _mm_mul_ps(minus_one,_mm_mul_ps(ewclj,ewclj));
457
458 /* Avoid stupid compiler warnings */
459 jnrA = jnrB = jnrC = jnrD = 0;
460 j_coord_offsetA = 0;
461 j_coord_offsetB = 0;
462 j_coord_offsetC = 0;
463 j_coord_offsetD = 0;
464
465 outeriter = 0;
466 inneriter = 0;
467
468 for(iidx=0;iidx<4*DIM3;iidx++)
469 {
470 scratch[iidx] = 0.0;
471 }
472
473 /* Start outer loop over neighborlists */
474 for(iidx=0; iidx<nri; iidx++)
475 {
476 /* Load shift vector for this list */
477 i_shift_offset = DIM3*shiftidx[iidx];
478
479 /* Load limits for loop over neighbors */
480 j_index_start = jindex[iidx];
481 j_index_end = jindex[iidx+1];
482
483 /* Get outer coordinate index */
484 inr = iinr[iidx];
485 i_coord_offset = DIM3*inr;
486
487 /* Load i particle coords and add shift vector */
488 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
489
490 fix0 = _mm_setzero_ps();
491 fiy0 = _mm_setzero_ps();
492 fiz0 = _mm_setzero_ps();
493
494 /* Load parameters for i particles */
495 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
496
497 /* Start inner kernel loop */
498 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
499 {
500
501 /* Get j neighbor index, and coordinate index */
502 jnrA = jjnr[jidx];
503 jnrB = jjnr[jidx+1];
504 jnrC = jjnr[jidx+2];
505 jnrD = jjnr[jidx+3];
506 j_coord_offsetA = DIM3*jnrA;
507 j_coord_offsetB = DIM3*jnrB;
508 j_coord_offsetC = DIM3*jnrC;
509 j_coord_offsetD = DIM3*jnrD;
510
511 /* load j atom coordinates */
512 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
513 x+j_coord_offsetC,x+j_coord_offsetD,
514 &jx0,&jy0,&jz0);
515
516 /* Calculate displacement vector */
517 dx00 = _mm_sub_ps(ix0,jx0);
518 dy00 = _mm_sub_ps(iy0,jy0);
519 dz00 = _mm_sub_ps(iz0,jz0);
520
521 /* Calculate squared distance and things based on it */
522 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
523
524 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
525
526 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
527
528 /* Load parameters for j particles */
529 vdwjidx0A = 2*vdwtype[jnrA+0];
530 vdwjidx0B = 2*vdwtype[jnrB+0];
531 vdwjidx0C = 2*vdwtype[jnrC+0];
532 vdwjidx0D = 2*vdwtype[jnrD+0];
533
534 /**************************
535 * CALCULATE INTERACTIONS *
536 **************************/
537
538 r00 = _mm_mul_ps(rsq00,rinv00);
539
540 /* Compute parameters for interactions between i and j atoms */
541 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
542 vdwparam+vdwioffset0+vdwjidx0B,
543 vdwparam+vdwioffset0+vdwjidx0C,
544 vdwparam+vdwioffset0+vdwjidx0D,
545 &c6_00,&c12_00);
546
547 c6grid_00 = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
548 vdwgridparam+vdwioffset0+vdwjidx0B,
549 vdwgridparam+vdwioffset0+vdwjidx0C,
550 vdwgridparam+vdwioffset0+vdwjidx0D);
551
552 /* Analytical LJ-PME */
553 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
554 ewcljrsq = _mm_mul_ps(ewclj2,rsq00);
555 ewclj6 = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
556 exponent = gmx_simd_exp_rgmx_simd_exp_f(ewcljrsq);
557 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
558 poly = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
559 /* f6A = 6 * C6grid * (1 - poly) */
560 f6A = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
561 /* f6B = C6grid * exponent * beta^6 */
562 f6B = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
563 /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
564 fvdw = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
565
566 fscal = fvdw;
567
568 /* Calculate temporary vectorial force */
569 tx = _mm_mul_ps(fscal,dx00);
570 ty = _mm_mul_ps(fscal,dy00);
571 tz = _mm_mul_ps(fscal,dz00);
572
573 /* Update vectorial force */
574 fix0 = _mm_add_ps(fix0,tx);
575 fiy0 = _mm_add_ps(fiy0,ty);
576 fiz0 = _mm_add_ps(fiz0,tz);
577
578 fjptrA = f+j_coord_offsetA;
579 fjptrB = f+j_coord_offsetB;
580 fjptrC = f+j_coord_offsetC;
581 fjptrD = f+j_coord_offsetD;
582 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
583
584 /* Inner loop uses 46 flops */
585 }
586
587 if(jidx<j_index_end)
588 {
589
590 /* Get j neighbor index, and coordinate index */
591 jnrlistA = jjnr[jidx];
592 jnrlistB = jjnr[jidx+1];
593 jnrlistC = jjnr[jidx+2];
594 jnrlistD = jjnr[jidx+3];
595 /* Sign of each element will be negative for non-real atoms.
596 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
597 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
598 */
599 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
600 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
601 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
602 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
603 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
604 j_coord_offsetA = DIM3*jnrA;
605 j_coord_offsetB = DIM3*jnrB;
606 j_coord_offsetC = DIM3*jnrC;
607 j_coord_offsetD = DIM3*jnrD;
608
609 /* load j atom coordinates */
610 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
611 x+j_coord_offsetC,x+j_coord_offsetD,
612 &jx0,&jy0,&jz0);
613
614 /* Calculate displacement vector */
615 dx00 = _mm_sub_ps(ix0,jx0);
616 dy00 = _mm_sub_ps(iy0,jy0);
617 dz00 = _mm_sub_ps(iz0,jz0);
618
619 /* Calculate squared distance and things based on it */
620 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
621
622 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
623
624 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
625
626 /* Load parameters for j particles */
627 vdwjidx0A = 2*vdwtype[jnrA+0];
628 vdwjidx0B = 2*vdwtype[jnrB+0];
629 vdwjidx0C = 2*vdwtype[jnrC+0];
630 vdwjidx0D = 2*vdwtype[jnrD+0];
631
632 /**************************
633 * CALCULATE INTERACTIONS *
634 **************************/
635
636 r00 = _mm_mul_ps(rsq00,rinv00);
637 r00 = _mm_andnot_ps(dummy_mask,r00);
638
639 /* Compute parameters for interactions between i and j atoms */
640 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
641 vdwparam+vdwioffset0+vdwjidx0B,
642 vdwparam+vdwioffset0+vdwjidx0C,
643 vdwparam+vdwioffset0+vdwjidx0D,
644 &c6_00,&c12_00);
645
646 c6grid_00 = gmx_mm_load_4real_swizzle_ps(vdwgridparam+vdwioffset0+vdwjidx0A,
647 vdwgridparam+vdwioffset0+vdwjidx0B,
648 vdwgridparam+vdwioffset0+vdwjidx0C,
649 vdwgridparam+vdwioffset0+vdwjidx0D);
650
651 /* Analytical LJ-PME */
652 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
653 ewcljrsq = _mm_mul_ps(ewclj2,rsq00);
654 ewclj6 = _mm_mul_ps(ewclj2,_mm_mul_ps(ewclj2,ewclj2));
655 exponent = gmx_simd_exp_rgmx_simd_exp_f(ewcljrsq);
656 /* poly = exp(-(beta*r)^2) * (1 + (beta*r)^2 + (beta*r)^4 /2) */
657 poly = _mm_mul_ps(exponent,_mm_add_ps(_mm_sub_ps(one,ewcljrsq),_mm_mul_ps(_mm_mul_ps(ewcljrsq,ewcljrsq),one_half)));
658 /* f6A = 6 * C6grid * (1 - poly) */
659 f6A = _mm_mul_ps(c6grid_00,_mm_sub_ps(one,poly));
660 /* f6B = C6grid * exponent * beta^6 */
661 f6B = _mm_mul_ps(_mm_mul_ps(c6grid_00,one_sixth),_mm_mul_ps(exponent,ewclj6));
662 /* fvdw = 12*C12/r13 - ((6*C6 - f6A)/r6 + f6B)/r */
663 fvdw = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),_mm_sub_ps(c6_00,f6A)),rinvsix),f6B),rinvsq00);
664
665 fscal = fvdw;
666
667 fscal = _mm_andnot_ps(dummy_mask,fscal);
668
669 /* Calculate temporary vectorial force */
670 tx = _mm_mul_ps(fscal,dx00);
671 ty = _mm_mul_ps(fscal,dy00);
672 tz = _mm_mul_ps(fscal,dz00);
673
674 /* Update vectorial force */
675 fix0 = _mm_add_ps(fix0,tx);
676 fiy0 = _mm_add_ps(fiy0,ty);
677 fiz0 = _mm_add_ps(fiz0,tz);
678
679 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
680 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
681 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
682 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
683 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
684
685 /* Inner loop uses 47 flops */
686 }
687
688 /* End of innermost loop */
689
690 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
691 f+i_coord_offset,fshift+i_shift_offset);
692
693 /* Increment number of inner iterations */
694 inneriter += j_index_end - j_index_start;
695
696 /* Outer loop uses 6 flops */
697 }
698
699 /* Increment number of outer iterations */
700 outeriter += nri;
701
702 /* Update outer/inner flops */
703
704 inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*47)(nrnb)->n[eNR_NBKERNEL_VDW_F] += outeriter*6 + inneriter*47;
705}