Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEw_VdwNone_GeomW3W3_c.c
Location:line 113, column 5
Description:Value stored to 'sh_ewald' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwNone_GeomW3W3_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: None
53 * Geometry: Water3-Water3
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEw_VdwNone_GeomW3W3_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 int vdwjidx1;
81 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
82 int vdwjidx2;
83 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
84 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
85 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
86 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
87 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
88 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
89 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
90 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
91 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
92 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
93 real velec,felec,velecsum,facel,crf,krf,krf2;
94 real *charge;
95 int ewitab;
96 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
97 real *ewtab;
98
99 x = xx[0];
100 f = ff[0];
101
102 nri = nlist->nri;
103 iinr = nlist->iinr;
104 jindex = nlist->jindex;
105 jjnr = nlist->jjnr;
106 shiftidx = nlist->shift;
107 gid = nlist->gid;
108 shiftvec = fr->shift_vec[0];
109 fshift = fr->fshift[0];
110 facel = fr->epsfac;
111 charge = mdatoms->chargeA;
112
113 sh_ewald = fr->ic->sh_ewald;
Value stored to 'sh_ewald' is never read
114 ewtab = fr->ic->tabq_coul_FDV0;
115 ewtabscale = fr->ic->tabq_scale;
116 ewtabhalfspace = 0.5/ewtabscale;
117
118 /* Setup water-specific parameters */
119 inr = nlist->iinr[0];
120 iq0 = facel*charge[inr+0];
121 iq1 = facel*charge[inr+1];
122 iq2 = facel*charge[inr+2];
123
124 jq0 = charge[inr+0];
125 jq1 = charge[inr+1];
126 jq2 = charge[inr+2];
127 qq00 = iq0*jq0;
128 qq01 = iq0*jq1;
129 qq02 = iq0*jq2;
130 qq10 = iq1*jq0;
131 qq11 = iq1*jq1;
132 qq12 = iq1*jq2;
133 qq20 = iq2*jq0;
134 qq21 = iq2*jq1;
135 qq22 = iq2*jq2;
136
137 outeriter = 0;
138 inneriter = 0;
139
140 /* Start outer loop over neighborlists */
141 for(iidx=0; iidx<nri; iidx++)
142 {
143 /* Load shift vector for this list */
144 i_shift_offset = DIM3*shiftidx[iidx];
145 shX = shiftvec[i_shift_offset+XX0];
146 shY = shiftvec[i_shift_offset+YY1];
147 shZ = shiftvec[i_shift_offset+ZZ2];
148
149 /* Load limits for loop over neighbors */
150 j_index_start = jindex[iidx];
151 j_index_end = jindex[iidx+1];
152
153 /* Get outer coordinate index */
154 inr = iinr[iidx];
155 i_coord_offset = DIM3*inr;
156
157 /* Load i particle coords and add shift vector */
158 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
159 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
160 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
161 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
162 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
163 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
164 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
165 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
166 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
167
168 fix0 = 0.0;
169 fiy0 = 0.0;
170 fiz0 = 0.0;
171 fix1 = 0.0;
172 fiy1 = 0.0;
173 fiz1 = 0.0;
174 fix2 = 0.0;
175 fiy2 = 0.0;
176 fiz2 = 0.0;
177
178 /* Reset potential sums */
179 velecsum = 0.0;
180
181 /* Start inner kernel loop */
182 for(jidx=j_index_start; jidx<j_index_end; jidx++)
183 {
184 /* Get j neighbor index, and coordinate index */
185 jnr = jjnr[jidx];
186 j_coord_offset = DIM3*jnr;
187
188 /* load j atom coordinates */
189 jx0 = x[j_coord_offset+DIM3*0+XX0];
190 jy0 = x[j_coord_offset+DIM3*0+YY1];
191 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
192 jx1 = x[j_coord_offset+DIM3*1+XX0];
193 jy1 = x[j_coord_offset+DIM3*1+YY1];
194 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
195 jx2 = x[j_coord_offset+DIM3*2+XX0];
196 jy2 = x[j_coord_offset+DIM3*2+YY1];
197 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
198
199 /* Calculate displacement vector */
200 dx00 = ix0 - jx0;
201 dy00 = iy0 - jy0;
202 dz00 = iz0 - jz0;
203 dx01 = ix0 - jx1;
204 dy01 = iy0 - jy1;
205 dz01 = iz0 - jz1;
206 dx02 = ix0 - jx2;
207 dy02 = iy0 - jy2;
208 dz02 = iz0 - jz2;
209 dx10 = ix1 - jx0;
210 dy10 = iy1 - jy0;
211 dz10 = iz1 - jz0;
212 dx11 = ix1 - jx1;
213 dy11 = iy1 - jy1;
214 dz11 = iz1 - jz1;
215 dx12 = ix1 - jx2;
216 dy12 = iy1 - jy2;
217 dz12 = iz1 - jz2;
218 dx20 = ix2 - jx0;
219 dy20 = iy2 - jy0;
220 dz20 = iz2 - jz0;
221 dx21 = ix2 - jx1;
222 dy21 = iy2 - jy1;
223 dz21 = iz2 - jz1;
224 dx22 = ix2 - jx2;
225 dy22 = iy2 - jy2;
226 dz22 = iz2 - jz2;
227
228 /* Calculate squared distance and things based on it */
229 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
230 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
231 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
232 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
233 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
234 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
235 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
236 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
237 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
238
239 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
240 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
241 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
242 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
243 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
244 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
245 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
246 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
247 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
248
249 rinvsq00 = rinv00*rinv00;
250 rinvsq01 = rinv01*rinv01;
251 rinvsq02 = rinv02*rinv02;
252 rinvsq10 = rinv10*rinv10;
253 rinvsq11 = rinv11*rinv11;
254 rinvsq12 = rinv12*rinv12;
255 rinvsq20 = rinv20*rinv20;
256 rinvsq21 = rinv21*rinv21;
257 rinvsq22 = rinv22*rinv22;
258
259 /**************************
260 * CALCULATE INTERACTIONS *
261 **************************/
262
263 r00 = rsq00*rinv00;
264
265 /* EWALD ELECTROSTATICS */
266
267 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
268 ewrt = r00*ewtabscale;
269 ewitab = ewrt;
270 eweps = ewrt-ewitab;
271 ewitab = 4*ewitab;
272 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
273 velec = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
274 felec = qq00*rinv00*(rinvsq00-felec);
275
276 /* Update potential sums from outer loop */
277 velecsum += velec;
278
279 fscal = felec;
280
281 /* Calculate temporary vectorial force */
282 tx = fscal*dx00;
283 ty = fscal*dy00;
284 tz = fscal*dz00;
285
286 /* Update vectorial force */
287 fix0 += tx;
288 fiy0 += ty;
289 fiz0 += tz;
290 f[j_coord_offset+DIM3*0+XX0] -= tx;
291 f[j_coord_offset+DIM3*0+YY1] -= ty;
292 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
293
294 /**************************
295 * CALCULATE INTERACTIONS *
296 **************************/
297
298 r01 = rsq01*rinv01;
299
300 /* EWALD ELECTROSTATICS */
301
302 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
303 ewrt = r01*ewtabscale;
304 ewitab = ewrt;
305 eweps = ewrt-ewitab;
306 ewitab = 4*ewitab;
307 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
308 velec = qq01*(rinv01-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
309 felec = qq01*rinv01*(rinvsq01-felec);
310
311 /* Update potential sums from outer loop */
312 velecsum += velec;
313
314 fscal = felec;
315
316 /* Calculate temporary vectorial force */
317 tx = fscal*dx01;
318 ty = fscal*dy01;
319 tz = fscal*dz01;
320
321 /* Update vectorial force */
322 fix0 += tx;
323 fiy0 += ty;
324 fiz0 += tz;
325 f[j_coord_offset+DIM3*1+XX0] -= tx;
326 f[j_coord_offset+DIM3*1+YY1] -= ty;
327 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
328
329 /**************************
330 * CALCULATE INTERACTIONS *
331 **************************/
332
333 r02 = rsq02*rinv02;
334
335 /* EWALD ELECTROSTATICS */
336
337 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
338 ewrt = r02*ewtabscale;
339 ewitab = ewrt;
340 eweps = ewrt-ewitab;
341 ewitab = 4*ewitab;
342 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
343 velec = qq02*(rinv02-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
344 felec = qq02*rinv02*(rinvsq02-felec);
345
346 /* Update potential sums from outer loop */
347 velecsum += velec;
348
349 fscal = felec;
350
351 /* Calculate temporary vectorial force */
352 tx = fscal*dx02;
353 ty = fscal*dy02;
354 tz = fscal*dz02;
355
356 /* Update vectorial force */
357 fix0 += tx;
358 fiy0 += ty;
359 fiz0 += tz;
360 f[j_coord_offset+DIM3*2+XX0] -= tx;
361 f[j_coord_offset+DIM3*2+YY1] -= ty;
362 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
363
364 /**************************
365 * CALCULATE INTERACTIONS *
366 **************************/
367
368 r10 = rsq10*rinv10;
369
370 /* EWALD ELECTROSTATICS */
371
372 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
373 ewrt = r10*ewtabscale;
374 ewitab = ewrt;
375 eweps = ewrt-ewitab;
376 ewitab = 4*ewitab;
377 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
378 velec = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
379 felec = qq10*rinv10*(rinvsq10-felec);
380
381 /* Update potential sums from outer loop */
382 velecsum += velec;
383
384 fscal = felec;
385
386 /* Calculate temporary vectorial force */
387 tx = fscal*dx10;
388 ty = fscal*dy10;
389 tz = fscal*dz10;
390
391 /* Update vectorial force */
392 fix1 += tx;
393 fiy1 += ty;
394 fiz1 += tz;
395 f[j_coord_offset+DIM3*0+XX0] -= tx;
396 f[j_coord_offset+DIM3*0+YY1] -= ty;
397 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
398
399 /**************************
400 * CALCULATE INTERACTIONS *
401 **************************/
402
403 r11 = rsq11*rinv11;
404
405 /* EWALD ELECTROSTATICS */
406
407 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
408 ewrt = r11*ewtabscale;
409 ewitab = ewrt;
410 eweps = ewrt-ewitab;
411 ewitab = 4*ewitab;
412 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
413 velec = qq11*(rinv11-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
414 felec = qq11*rinv11*(rinvsq11-felec);
415
416 /* Update potential sums from outer loop */
417 velecsum += velec;
418
419 fscal = felec;
420
421 /* Calculate temporary vectorial force */
422 tx = fscal*dx11;
423 ty = fscal*dy11;
424 tz = fscal*dz11;
425
426 /* Update vectorial force */
427 fix1 += tx;
428 fiy1 += ty;
429 fiz1 += tz;
430 f[j_coord_offset+DIM3*1+XX0] -= tx;
431 f[j_coord_offset+DIM3*1+YY1] -= ty;
432 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
433
434 /**************************
435 * CALCULATE INTERACTIONS *
436 **************************/
437
438 r12 = rsq12*rinv12;
439
440 /* EWALD ELECTROSTATICS */
441
442 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
443 ewrt = r12*ewtabscale;
444 ewitab = ewrt;
445 eweps = ewrt-ewitab;
446 ewitab = 4*ewitab;
447 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
448 velec = qq12*(rinv12-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
449 felec = qq12*rinv12*(rinvsq12-felec);
450
451 /* Update potential sums from outer loop */
452 velecsum += velec;
453
454 fscal = felec;
455
456 /* Calculate temporary vectorial force */
457 tx = fscal*dx12;
458 ty = fscal*dy12;
459 tz = fscal*dz12;
460
461 /* Update vectorial force */
462 fix1 += tx;
463 fiy1 += ty;
464 fiz1 += tz;
465 f[j_coord_offset+DIM3*2+XX0] -= tx;
466 f[j_coord_offset+DIM3*2+YY1] -= ty;
467 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
468
469 /**************************
470 * CALCULATE INTERACTIONS *
471 **************************/
472
473 r20 = rsq20*rinv20;
474
475 /* EWALD ELECTROSTATICS */
476
477 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
478 ewrt = r20*ewtabscale;
479 ewitab = ewrt;
480 eweps = ewrt-ewitab;
481 ewitab = 4*ewitab;
482 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
483 velec = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
484 felec = qq20*rinv20*(rinvsq20-felec);
485
486 /* Update potential sums from outer loop */
487 velecsum += velec;
488
489 fscal = felec;
490
491 /* Calculate temporary vectorial force */
492 tx = fscal*dx20;
493 ty = fscal*dy20;
494 tz = fscal*dz20;
495
496 /* Update vectorial force */
497 fix2 += tx;
498 fiy2 += ty;
499 fiz2 += tz;
500 f[j_coord_offset+DIM3*0+XX0] -= tx;
501 f[j_coord_offset+DIM3*0+YY1] -= ty;
502 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
503
504 /**************************
505 * CALCULATE INTERACTIONS *
506 **************************/
507
508 r21 = rsq21*rinv21;
509
510 /* EWALD ELECTROSTATICS */
511
512 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
513 ewrt = r21*ewtabscale;
514 ewitab = ewrt;
515 eweps = ewrt-ewitab;
516 ewitab = 4*ewitab;
517 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
518 velec = qq21*(rinv21-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
519 felec = qq21*rinv21*(rinvsq21-felec);
520
521 /* Update potential sums from outer loop */
522 velecsum += velec;
523
524 fscal = felec;
525
526 /* Calculate temporary vectorial force */
527 tx = fscal*dx21;
528 ty = fscal*dy21;
529 tz = fscal*dz21;
530
531 /* Update vectorial force */
532 fix2 += tx;
533 fiy2 += ty;
534 fiz2 += tz;
535 f[j_coord_offset+DIM3*1+XX0] -= tx;
536 f[j_coord_offset+DIM3*1+YY1] -= ty;
537 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
538
539 /**************************
540 * CALCULATE INTERACTIONS *
541 **************************/
542
543 r22 = rsq22*rinv22;
544
545 /* EWALD ELECTROSTATICS */
546
547 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
548 ewrt = r22*ewtabscale;
549 ewitab = ewrt;
550 eweps = ewrt-ewitab;
551 ewitab = 4*ewitab;
552 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
553 velec = qq22*(rinv22-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
554 felec = qq22*rinv22*(rinvsq22-felec);
555
556 /* Update potential sums from outer loop */
557 velecsum += velec;
558
559 fscal = felec;
560
561 /* Calculate temporary vectorial force */
562 tx = fscal*dx22;
563 ty = fscal*dy22;
564 tz = fscal*dz22;
565
566 /* Update vectorial force */
567 fix2 += tx;
568 fiy2 += ty;
569 fiz2 += tz;
570 f[j_coord_offset+DIM3*2+XX0] -= tx;
571 f[j_coord_offset+DIM3*2+YY1] -= ty;
572 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
573
574 /* Inner loop uses 360 flops */
575 }
576 /* End of innermost loop */
577
578 tx = ty = tz = 0;
579 f[i_coord_offset+DIM3*0+XX0] += fix0;
580 f[i_coord_offset+DIM3*0+YY1] += fiy0;
581 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
582 tx += fix0;
583 ty += fiy0;
584 tz += fiz0;
585 f[i_coord_offset+DIM3*1+XX0] += fix1;
586 f[i_coord_offset+DIM3*1+YY1] += fiy1;
587 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
588 tx += fix1;
589 ty += fiy1;
590 tz += fiz1;
591 f[i_coord_offset+DIM3*2+XX0] += fix2;
592 f[i_coord_offset+DIM3*2+YY1] += fiy2;
593 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
594 tx += fix2;
595 ty += fiy2;
596 tz += fiz2;
597 fshift[i_shift_offset+XX0] += tx;
598 fshift[i_shift_offset+YY1] += ty;
599 fshift[i_shift_offset+ZZ2] += tz;
600
601 ggid = gid[iidx];
602 /* Update potential energies */
603 kernel_data->energygrp_elec[ggid] += velecsum;
604
605 /* Increment number of inner iterations */
606 inneriter += j_index_end - j_index_start;
607
608 /* Outer loop uses 31 flops */
609 }
610
611 /* Increment number of outer iterations */
612 outeriter += nri;
613
614 /* Update outer/inner flops */
615
616 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_VF,outeriter*31 + inneriter*360)(nrnb)->n[eNR_NBKERNEL_ELEC_W3W3_VF] += outeriter*31 + inneriter
*360
;
617}
618/*
619 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwNone_GeomW3W3_F_c
620 * Electrostatics interaction: Ewald
621 * VdW interaction: None
622 * Geometry: Water3-Water3
623 * Calculate force/pot: Force
624 */
625void
626nb_kernel_ElecEw_VdwNone_GeomW3W3_F_c
627 (t_nblist * gmx_restrict__restrict nlist,
628 rvec * gmx_restrict__restrict xx,
629 rvec * gmx_restrict__restrict ff,
630 t_forcerec * gmx_restrict__restrict fr,
631 t_mdatoms * gmx_restrict__restrict mdatoms,
632 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
633 t_nrnb * gmx_restrict__restrict nrnb)
634{
635 int i_shift_offset,i_coord_offset,j_coord_offset;
636 int j_index_start,j_index_end;
637 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
638 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
639 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
640 real *shiftvec,*fshift,*x,*f;
641 int vdwioffset0;
642 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
643 int vdwioffset1;
644 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
645 int vdwioffset2;
646 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
647 int vdwjidx0;
648 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
649 int vdwjidx1;
650 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
651 int vdwjidx2;
652 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
653 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
654 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
655 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
656 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
657 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
658 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
659 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
660 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
661 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
662 real velec,felec,velecsum,facel,crf,krf,krf2;
663 real *charge;
664 int ewitab;
665 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
666 real *ewtab;
667
668 x = xx[0];
669 f = ff[0];
670
671 nri = nlist->nri;
672 iinr = nlist->iinr;
673 jindex = nlist->jindex;
674 jjnr = nlist->jjnr;
675 shiftidx = nlist->shift;
676 gid = nlist->gid;
677 shiftvec = fr->shift_vec[0];
678 fshift = fr->fshift[0];
679 facel = fr->epsfac;
680 charge = mdatoms->chargeA;
681
682 sh_ewald = fr->ic->sh_ewald;
683 ewtab = fr->ic->tabq_coul_F;
684 ewtabscale = fr->ic->tabq_scale;
685 ewtabhalfspace = 0.5/ewtabscale;
686
687 /* Setup water-specific parameters */
688 inr = nlist->iinr[0];
689 iq0 = facel*charge[inr+0];
690 iq1 = facel*charge[inr+1];
691 iq2 = facel*charge[inr+2];
692
693 jq0 = charge[inr+0];
694 jq1 = charge[inr+1];
695 jq2 = charge[inr+2];
696 qq00 = iq0*jq0;
697 qq01 = iq0*jq1;
698 qq02 = iq0*jq2;
699 qq10 = iq1*jq0;
700 qq11 = iq1*jq1;
701 qq12 = iq1*jq2;
702 qq20 = iq2*jq0;
703 qq21 = iq2*jq1;
704 qq22 = iq2*jq2;
705
706 outeriter = 0;
707 inneriter = 0;
708
709 /* Start outer loop over neighborlists */
710 for(iidx=0; iidx<nri; iidx++)
711 {
712 /* Load shift vector for this list */
713 i_shift_offset = DIM3*shiftidx[iidx];
714 shX = shiftvec[i_shift_offset+XX0];
715 shY = shiftvec[i_shift_offset+YY1];
716 shZ = shiftvec[i_shift_offset+ZZ2];
717
718 /* Load limits for loop over neighbors */
719 j_index_start = jindex[iidx];
720 j_index_end = jindex[iidx+1];
721
722 /* Get outer coordinate index */
723 inr = iinr[iidx];
724 i_coord_offset = DIM3*inr;
725
726 /* Load i particle coords and add shift vector */
727 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
728 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
729 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
730 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
731 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
732 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
733 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
734 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
735 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
736
737 fix0 = 0.0;
738 fiy0 = 0.0;
739 fiz0 = 0.0;
740 fix1 = 0.0;
741 fiy1 = 0.0;
742 fiz1 = 0.0;
743 fix2 = 0.0;
744 fiy2 = 0.0;
745 fiz2 = 0.0;
746
747 /* Start inner kernel loop */
748 for(jidx=j_index_start; jidx<j_index_end; jidx++)
749 {
750 /* Get j neighbor index, and coordinate index */
751 jnr = jjnr[jidx];
752 j_coord_offset = DIM3*jnr;
753
754 /* load j atom coordinates */
755 jx0 = x[j_coord_offset+DIM3*0+XX0];
756 jy0 = x[j_coord_offset+DIM3*0+YY1];
757 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
758 jx1 = x[j_coord_offset+DIM3*1+XX0];
759 jy1 = x[j_coord_offset+DIM3*1+YY1];
760 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
761 jx2 = x[j_coord_offset+DIM3*2+XX0];
762 jy2 = x[j_coord_offset+DIM3*2+YY1];
763 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
764
765 /* Calculate displacement vector */
766 dx00 = ix0 - jx0;
767 dy00 = iy0 - jy0;
768 dz00 = iz0 - jz0;
769 dx01 = ix0 - jx1;
770 dy01 = iy0 - jy1;
771 dz01 = iz0 - jz1;
772 dx02 = ix0 - jx2;
773 dy02 = iy0 - jy2;
774 dz02 = iz0 - jz2;
775 dx10 = ix1 - jx0;
776 dy10 = iy1 - jy0;
777 dz10 = iz1 - jz0;
778 dx11 = ix1 - jx1;
779 dy11 = iy1 - jy1;
780 dz11 = iz1 - jz1;
781 dx12 = ix1 - jx2;
782 dy12 = iy1 - jy2;
783 dz12 = iz1 - jz2;
784 dx20 = ix2 - jx0;
785 dy20 = iy2 - jy0;
786 dz20 = iz2 - jz0;
787 dx21 = ix2 - jx1;
788 dy21 = iy2 - jy1;
789 dz21 = iz2 - jz1;
790 dx22 = ix2 - jx2;
791 dy22 = iy2 - jy2;
792 dz22 = iz2 - jz2;
793
794 /* Calculate squared distance and things based on it */
795 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
796 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
797 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
798 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
799 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
800 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
801 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
802 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
803 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
804
805 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
806 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
807 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
808 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
809 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
810 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
811 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
812 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
813 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
814
815 rinvsq00 = rinv00*rinv00;
816 rinvsq01 = rinv01*rinv01;
817 rinvsq02 = rinv02*rinv02;
818 rinvsq10 = rinv10*rinv10;
819 rinvsq11 = rinv11*rinv11;
820 rinvsq12 = rinv12*rinv12;
821 rinvsq20 = rinv20*rinv20;
822 rinvsq21 = rinv21*rinv21;
823 rinvsq22 = rinv22*rinv22;
824
825 /**************************
826 * CALCULATE INTERACTIONS *
827 **************************/
828
829 r00 = rsq00*rinv00;
830
831 /* EWALD ELECTROSTATICS */
832
833 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
834 ewrt = r00*ewtabscale;
835 ewitab = ewrt;
836 eweps = ewrt-ewitab;
837 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
838 felec = qq00*rinv00*(rinvsq00-felec);
839
840 fscal = felec;
841
842 /* Calculate temporary vectorial force */
843 tx = fscal*dx00;
844 ty = fscal*dy00;
845 tz = fscal*dz00;
846
847 /* Update vectorial force */
848 fix0 += tx;
849 fiy0 += ty;
850 fiz0 += tz;
851 f[j_coord_offset+DIM3*0+XX0] -= tx;
852 f[j_coord_offset+DIM3*0+YY1] -= ty;
853 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
854
855 /**************************
856 * CALCULATE INTERACTIONS *
857 **************************/
858
859 r01 = rsq01*rinv01;
860
861 /* EWALD ELECTROSTATICS */
862
863 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
864 ewrt = r01*ewtabscale;
865 ewitab = ewrt;
866 eweps = ewrt-ewitab;
867 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
868 felec = qq01*rinv01*(rinvsq01-felec);
869
870 fscal = felec;
871
872 /* Calculate temporary vectorial force */
873 tx = fscal*dx01;
874 ty = fscal*dy01;
875 tz = fscal*dz01;
876
877 /* Update vectorial force */
878 fix0 += tx;
879 fiy0 += ty;
880 fiz0 += tz;
881 f[j_coord_offset+DIM3*1+XX0] -= tx;
882 f[j_coord_offset+DIM3*1+YY1] -= ty;
883 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
884
885 /**************************
886 * CALCULATE INTERACTIONS *
887 **************************/
888
889 r02 = rsq02*rinv02;
890
891 /* EWALD ELECTROSTATICS */
892
893 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
894 ewrt = r02*ewtabscale;
895 ewitab = ewrt;
896 eweps = ewrt-ewitab;
897 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
898 felec = qq02*rinv02*(rinvsq02-felec);
899
900 fscal = felec;
901
902 /* Calculate temporary vectorial force */
903 tx = fscal*dx02;
904 ty = fscal*dy02;
905 tz = fscal*dz02;
906
907 /* Update vectorial force */
908 fix0 += tx;
909 fiy0 += ty;
910 fiz0 += tz;
911 f[j_coord_offset+DIM3*2+XX0] -= tx;
912 f[j_coord_offset+DIM3*2+YY1] -= ty;
913 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
914
915 /**************************
916 * CALCULATE INTERACTIONS *
917 **************************/
918
919 r10 = rsq10*rinv10;
920
921 /* EWALD ELECTROSTATICS */
922
923 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
924 ewrt = r10*ewtabscale;
925 ewitab = ewrt;
926 eweps = ewrt-ewitab;
927 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
928 felec = qq10*rinv10*(rinvsq10-felec);
929
930 fscal = felec;
931
932 /* Calculate temporary vectorial force */
933 tx = fscal*dx10;
934 ty = fscal*dy10;
935 tz = fscal*dz10;
936
937 /* Update vectorial force */
938 fix1 += tx;
939 fiy1 += ty;
940 fiz1 += tz;
941 f[j_coord_offset+DIM3*0+XX0] -= tx;
942 f[j_coord_offset+DIM3*0+YY1] -= ty;
943 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
944
945 /**************************
946 * CALCULATE INTERACTIONS *
947 **************************/
948
949 r11 = rsq11*rinv11;
950
951 /* EWALD ELECTROSTATICS */
952
953 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
954 ewrt = r11*ewtabscale;
955 ewitab = ewrt;
956 eweps = ewrt-ewitab;
957 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
958 felec = qq11*rinv11*(rinvsq11-felec);
959
960 fscal = felec;
961
962 /* Calculate temporary vectorial force */
963 tx = fscal*dx11;
964 ty = fscal*dy11;
965 tz = fscal*dz11;
966
967 /* Update vectorial force */
968 fix1 += tx;
969 fiy1 += ty;
970 fiz1 += tz;
971 f[j_coord_offset+DIM3*1+XX0] -= tx;
972 f[j_coord_offset+DIM3*1+YY1] -= ty;
973 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
974
975 /**************************
976 * CALCULATE INTERACTIONS *
977 **************************/
978
979 r12 = rsq12*rinv12;
980
981 /* EWALD ELECTROSTATICS */
982
983 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
984 ewrt = r12*ewtabscale;
985 ewitab = ewrt;
986 eweps = ewrt-ewitab;
987 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
988 felec = qq12*rinv12*(rinvsq12-felec);
989
990 fscal = felec;
991
992 /* Calculate temporary vectorial force */
993 tx = fscal*dx12;
994 ty = fscal*dy12;
995 tz = fscal*dz12;
996
997 /* Update vectorial force */
998 fix1 += tx;
999 fiy1 += ty;
1000 fiz1 += tz;
1001 f[j_coord_offset+DIM3*2+XX0] -= tx;
1002 f[j_coord_offset+DIM3*2+YY1] -= ty;
1003 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1004
1005 /**************************
1006 * CALCULATE INTERACTIONS *
1007 **************************/
1008
1009 r20 = rsq20*rinv20;
1010
1011 /* EWALD ELECTROSTATICS */
1012
1013 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1014 ewrt = r20*ewtabscale;
1015 ewitab = ewrt;
1016 eweps = ewrt-ewitab;
1017 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1018 felec = qq20*rinv20*(rinvsq20-felec);
1019
1020 fscal = felec;
1021
1022 /* Calculate temporary vectorial force */
1023 tx = fscal*dx20;
1024 ty = fscal*dy20;
1025 tz = fscal*dz20;
1026
1027 /* Update vectorial force */
1028 fix2 += tx;
1029 fiy2 += ty;
1030 fiz2 += tz;
1031 f[j_coord_offset+DIM3*0+XX0] -= tx;
1032 f[j_coord_offset+DIM3*0+YY1] -= ty;
1033 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1034
1035 /**************************
1036 * CALCULATE INTERACTIONS *
1037 **************************/
1038
1039 r21 = rsq21*rinv21;
1040
1041 /* EWALD ELECTROSTATICS */
1042
1043 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1044 ewrt = r21*ewtabscale;
1045 ewitab = ewrt;
1046 eweps = ewrt-ewitab;
1047 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1048 felec = qq21*rinv21*(rinvsq21-felec);
1049
1050 fscal = felec;
1051
1052 /* Calculate temporary vectorial force */
1053 tx = fscal*dx21;
1054 ty = fscal*dy21;
1055 tz = fscal*dz21;
1056
1057 /* Update vectorial force */
1058 fix2 += tx;
1059 fiy2 += ty;
1060 fiz2 += tz;
1061 f[j_coord_offset+DIM3*1+XX0] -= tx;
1062 f[j_coord_offset+DIM3*1+YY1] -= ty;
1063 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1064
1065 /**************************
1066 * CALCULATE INTERACTIONS *
1067 **************************/
1068
1069 r22 = rsq22*rinv22;
1070
1071 /* EWALD ELECTROSTATICS */
1072
1073 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1074 ewrt = r22*ewtabscale;
1075 ewitab = ewrt;
1076 eweps = ewrt-ewitab;
1077 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1078 felec = qq22*rinv22*(rinvsq22-felec);
1079
1080 fscal = felec;
1081
1082 /* Calculate temporary vectorial force */
1083 tx = fscal*dx22;
1084 ty = fscal*dy22;
1085 tz = fscal*dz22;
1086
1087 /* Update vectorial force */
1088 fix2 += tx;
1089 fiy2 += ty;
1090 fiz2 += tz;
1091 f[j_coord_offset+DIM3*2+XX0] -= tx;
1092 f[j_coord_offset+DIM3*2+YY1] -= ty;
1093 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1094
1095 /* Inner loop uses 297 flops */
1096 }
1097 /* End of innermost loop */
1098
1099 tx = ty = tz = 0;
1100 f[i_coord_offset+DIM3*0+XX0] += fix0;
1101 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1102 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1103 tx += fix0;
1104 ty += fiy0;
1105 tz += fiz0;
1106 f[i_coord_offset+DIM3*1+XX0] += fix1;
1107 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1108 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1109 tx += fix1;
1110 ty += fiy1;
1111 tz += fiz1;
1112 f[i_coord_offset+DIM3*2+XX0] += fix2;
1113 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1114 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1115 tx += fix2;
1116 ty += fiy2;
1117 tz += fiz2;
1118 fshift[i_shift_offset+XX0] += tx;
1119 fshift[i_shift_offset+YY1] += ty;
1120 fshift[i_shift_offset+ZZ2] += tz;
1121
1122 /* Increment number of inner iterations */
1123 inneriter += j_index_end - j_index_start;
1124
1125 /* Outer loop uses 30 flops */
1126 }
1127
1128 /* Increment number of outer iterations */
1129 outeriter += nri;
1130
1131 /* Update outer/inner flops */
1132
1133 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_F,outeriter*30 + inneriter*297)(nrnb)->n[eNR_NBKERNEL_ELEC_W3W3_F] += outeriter*30 + inneriter
*297
;
1134}