Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_c.c
Location:line 315, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_c
51 * Electrostatics interaction: Coulomb
52 * VdW interaction: CubicSplineTable
53 * Geometry: Particle-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwjidx0;
75 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77 real velec,felec,velecsum,facel,crf,krf,krf2;
78 real *charge;
79 int nvdwtype;
80 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
81 int *vdwtype;
82 real *vdwparam;
83 int vfitab;
84 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
85 real *vftab;
86
87 x = xx[0];
88 f = ff[0];
89
90 nri = nlist->nri;
91 iinr = nlist->iinr;
92 jindex = nlist->jindex;
93 jjnr = nlist->jjnr;
94 shiftidx = nlist->shift;
95 gid = nlist->gid;
96 shiftvec = fr->shift_vec[0];
97 fshift = fr->fshift[0];
98 facel = fr->epsfac;
99 charge = mdatoms->chargeA;
100 nvdwtype = fr->ntype;
101 vdwparam = fr->nbfp;
102 vdwtype = mdatoms->typeA;
103
104 vftab = kernel_data->table_vdw->data;
105 vftabscale = kernel_data->table_vdw->scale;
106
107 outeriter = 0;
108 inneriter = 0;
109
110 /* Start outer loop over neighborlists */
111 for(iidx=0; iidx<nri; iidx++)
112 {
113 /* Load shift vector for this list */
114 i_shift_offset = DIM3*shiftidx[iidx];
115 shX = shiftvec[i_shift_offset+XX0];
116 shY = shiftvec[i_shift_offset+YY1];
117 shZ = shiftvec[i_shift_offset+ZZ2];
118
119 /* Load limits for loop over neighbors */
120 j_index_start = jindex[iidx];
121 j_index_end = jindex[iidx+1];
122
123 /* Get outer coordinate index */
124 inr = iinr[iidx];
125 i_coord_offset = DIM3*inr;
126
127 /* Load i particle coords and add shift vector */
128 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
129 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
130 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
131
132 fix0 = 0.0;
133 fiy0 = 0.0;
134 fiz0 = 0.0;
135
136 /* Load parameters for i particles */
137 iq0 = facel*charge[inr+0];
138 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
139
140 /* Reset potential sums */
141 velecsum = 0.0;
142 vvdwsum = 0.0;
143
144 /* Start inner kernel loop */
145 for(jidx=j_index_start; jidx<j_index_end; jidx++)
146 {
147 /* Get j neighbor index, and coordinate index */
148 jnr = jjnr[jidx];
149 j_coord_offset = DIM3*jnr;
150
151 /* load j atom coordinates */
152 jx0 = x[j_coord_offset+DIM3*0+XX0];
153 jy0 = x[j_coord_offset+DIM3*0+YY1];
154 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
155
156 /* Calculate displacement vector */
157 dx00 = ix0 - jx0;
158 dy00 = iy0 - jy0;
159 dz00 = iz0 - jz0;
160
161 /* Calculate squared distance and things based on it */
162 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
163
164 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
165
166 rinvsq00 = rinv00*rinv00;
167
168 /* Load parameters for j particles */
169 jq0 = charge[jnr+0];
170 vdwjidx0 = 2*vdwtype[jnr+0];
171
172 /**************************
173 * CALCULATE INTERACTIONS *
174 **************************/
175
176 r00 = rsq00*rinv00;
177
178 qq00 = iq0*jq0;
179 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
180 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
181
182 /* Calculate table index by multiplying r with table scale and truncate to integer */
183 rt = r00*vftabscale;
184 vfitab = rt;
185 vfeps = rt-vfitab;
186 vfitab = 2*4*vfitab;
187
188 /* COULOMB ELECTROSTATICS */
189 velec = qq00*rinv00;
190 felec = velec*rinvsq00;
191
192 /* CUBIC SPLINE TABLE DISPERSION */
193 vfitab += 0;
194 Y = vftab[vfitab];
195 F = vftab[vfitab+1];
196 Geps = vfeps*vftab[vfitab+2];
197 Heps2 = vfeps*vfeps*vftab[vfitab+3];
198 Fp = F+Geps+Heps2;
199 VV = Y+vfeps*Fp;
200 vvdw6 = c6_00*VV;
201 FF = Fp+Geps+2.0*Heps2;
202 fvdw6 = c6_00*FF;
203
204 /* CUBIC SPLINE TABLE REPULSION */
205 Y = vftab[vfitab+4];
206 F = vftab[vfitab+5];
207 Geps = vfeps*vftab[vfitab+6];
208 Heps2 = vfeps*vfeps*vftab[vfitab+7];
209 Fp = F+Geps+Heps2;
210 VV = Y+vfeps*Fp;
211 vvdw12 = c12_00*VV;
212 FF = Fp+Geps+2.0*Heps2;
213 fvdw12 = c12_00*FF;
214 vvdw = vvdw12+vvdw6;
215 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
216
217 /* Update potential sums from outer loop */
218 velecsum += velec;
219 vvdwsum += vvdw;
220
221 fscal = felec+fvdw;
222
223 /* Calculate temporary vectorial force */
224 tx = fscal*dx00;
225 ty = fscal*dy00;
226 tz = fscal*dz00;
227
228 /* Update vectorial force */
229 fix0 += tx;
230 fiy0 += ty;
231 fiz0 += tz;
232 f[j_coord_offset+DIM3*0+XX0] -= tx;
233 f[j_coord_offset+DIM3*0+YY1] -= ty;
234 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
235
236 /* Inner loop uses 62 flops */
237 }
238 /* End of innermost loop */
239
240 tx = ty = tz = 0;
241 f[i_coord_offset+DIM3*0+XX0] += fix0;
242 f[i_coord_offset+DIM3*0+YY1] += fiy0;
243 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
244 tx += fix0;
245 ty += fiy0;
246 tz += fiz0;
247 fshift[i_shift_offset+XX0] += tx;
248 fshift[i_shift_offset+YY1] += ty;
249 fshift[i_shift_offset+ZZ2] += tz;
250
251 ggid = gid[iidx];
252 /* Update potential energies */
253 kernel_data->energygrp_elec[ggid] += velecsum;
254 kernel_data->energygrp_vdw[ggid] += vvdwsum;
255
256 /* Increment number of inner iterations */
257 inneriter += j_index_end - j_index_start;
258
259 /* Outer loop uses 15 flops */
260 }
261
262 /* Increment number of outer iterations */
263 outeriter += nri;
264
265 /* Update outer/inner flops */
266
267 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*62)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_VF] += outeriter*15 + inneriter
*62
;
268}
269/*
270 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_c
271 * Electrostatics interaction: Coulomb
272 * VdW interaction: CubicSplineTable
273 * Geometry: Particle-Particle
274 * Calculate force/pot: Force
275 */
276void
277nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_c
278 (t_nblist * gmx_restrict__restrict nlist,
279 rvec * gmx_restrict__restrict xx,
280 rvec * gmx_restrict__restrict ff,
281 t_forcerec * gmx_restrict__restrict fr,
282 t_mdatoms * gmx_restrict__restrict mdatoms,
283 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
284 t_nrnb * gmx_restrict__restrict nrnb)
285{
286 int i_shift_offset,i_coord_offset,j_coord_offset;
287 int j_index_start,j_index_end;
288 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
289 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
290 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
291 real *shiftvec,*fshift,*x,*f;
292 int vdwioffset0;
293 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
294 int vdwjidx0;
295 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
296 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
297 real velec,felec,velecsum,facel,crf,krf,krf2;
298 real *charge;
299 int nvdwtype;
300 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
301 int *vdwtype;
302 real *vdwparam;
303 int vfitab;
304 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
305 real *vftab;
306
307 x = xx[0];
308 f = ff[0];
309
310 nri = nlist->nri;
311 iinr = nlist->iinr;
312 jindex = nlist->jindex;
313 jjnr = nlist->jjnr;
314 shiftidx = nlist->shift;
315 gid = nlist->gid;
Value stored to 'gid' is never read
316 shiftvec = fr->shift_vec[0];
317 fshift = fr->fshift[0];
318 facel = fr->epsfac;
319 charge = mdatoms->chargeA;
320 nvdwtype = fr->ntype;
321 vdwparam = fr->nbfp;
322 vdwtype = mdatoms->typeA;
323
324 vftab = kernel_data->table_vdw->data;
325 vftabscale = kernel_data->table_vdw->scale;
326
327 outeriter = 0;
328 inneriter = 0;
329
330 /* Start outer loop over neighborlists */
331 for(iidx=0; iidx<nri; iidx++)
332 {
333 /* Load shift vector for this list */
334 i_shift_offset = DIM3*shiftidx[iidx];
335 shX = shiftvec[i_shift_offset+XX0];
336 shY = shiftvec[i_shift_offset+YY1];
337 shZ = shiftvec[i_shift_offset+ZZ2];
338
339 /* Load limits for loop over neighbors */
340 j_index_start = jindex[iidx];
341 j_index_end = jindex[iidx+1];
342
343 /* Get outer coordinate index */
344 inr = iinr[iidx];
345 i_coord_offset = DIM3*inr;
346
347 /* Load i particle coords and add shift vector */
348 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
349 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
350 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
351
352 fix0 = 0.0;
353 fiy0 = 0.0;
354 fiz0 = 0.0;
355
356 /* Load parameters for i particles */
357 iq0 = facel*charge[inr+0];
358 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
359
360 /* Start inner kernel loop */
361 for(jidx=j_index_start; jidx<j_index_end; jidx++)
362 {
363 /* Get j neighbor index, and coordinate index */
364 jnr = jjnr[jidx];
365 j_coord_offset = DIM3*jnr;
366
367 /* load j atom coordinates */
368 jx0 = x[j_coord_offset+DIM3*0+XX0];
369 jy0 = x[j_coord_offset+DIM3*0+YY1];
370 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
371
372 /* Calculate displacement vector */
373 dx00 = ix0 - jx0;
374 dy00 = iy0 - jy0;
375 dz00 = iz0 - jz0;
376
377 /* Calculate squared distance and things based on it */
378 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
379
380 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
381
382 rinvsq00 = rinv00*rinv00;
383
384 /* Load parameters for j particles */
385 jq0 = charge[jnr+0];
386 vdwjidx0 = 2*vdwtype[jnr+0];
387
388 /**************************
389 * CALCULATE INTERACTIONS *
390 **************************/
391
392 r00 = rsq00*rinv00;
393
394 qq00 = iq0*jq0;
395 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
396 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
397
398 /* Calculate table index by multiplying r with table scale and truncate to integer */
399 rt = r00*vftabscale;
400 vfitab = rt;
401 vfeps = rt-vfitab;
402 vfitab = 2*4*vfitab;
403
404 /* COULOMB ELECTROSTATICS */
405 velec = qq00*rinv00;
406 felec = velec*rinvsq00;
407
408 /* CUBIC SPLINE TABLE DISPERSION */
409 vfitab += 0;
410 F = vftab[vfitab+1];
411 Geps = vfeps*vftab[vfitab+2];
412 Heps2 = vfeps*vfeps*vftab[vfitab+3];
413 Fp = F+Geps+Heps2;
414 FF = Fp+Geps+2.0*Heps2;
415 fvdw6 = c6_00*FF;
416
417 /* CUBIC SPLINE TABLE REPULSION */
418 F = vftab[vfitab+5];
419 Geps = vfeps*vftab[vfitab+6];
420 Heps2 = vfeps*vfeps*vftab[vfitab+7];
421 Fp = F+Geps+Heps2;
422 FF = Fp+Geps+2.0*Heps2;
423 fvdw12 = c12_00*FF;
424 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
425
426 fscal = felec+fvdw;
427
428 /* Calculate temporary vectorial force */
429 tx = fscal*dx00;
430 ty = fscal*dy00;
431 tz = fscal*dz00;
432
433 /* Update vectorial force */
434 fix0 += tx;
435 fiy0 += ty;
436 fiz0 += tz;
437 f[j_coord_offset+DIM3*0+XX0] -= tx;
438 f[j_coord_offset+DIM3*0+YY1] -= ty;
439 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
440
441 /* Inner loop uses 53 flops */
442 }
443 /* End of innermost loop */
444
445 tx = ty = tz = 0;
446 f[i_coord_offset+DIM3*0+XX0] += fix0;
447 f[i_coord_offset+DIM3*0+YY1] += fiy0;
448 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
449 tx += fix0;
450 ty += fiy0;
451 tz += fiz0;
452 fshift[i_shift_offset+XX0] += tx;
453 fshift[i_shift_offset+YY1] += ty;
454 fshift[i_shift_offset+ZZ2] += tz;
455
456 /* Increment number of inner iterations */
457 inneriter += j_index_end - j_index_start;
458
459 /* Outer loop uses 13 flops */
460 }
461
462 /* Increment number of outer iterations */
463 outeriter += nri;
464
465 /* Update outer/inner flops */
466
467 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*53)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_F] += outeriter*13 + inneriter
*53
;
468}