Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecGB_VdwLJ_GeomP1P1_c.c
Location:line 334, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_c
51 * Electrostatics interaction: GeneralizedBorn
52 * VdW interaction: LennardJones
53 * Geometry: Particle-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecGB_VdwLJ_GeomP1P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwjidx0;
75 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77 real velec,felec,velecsum,facel,crf,krf,krf2;
78 real *charge;
79 int gbitab;
80 real vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
81 real *invsqrta,*dvda,*gbtab;
82 int nvdwtype;
83 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
84 int *vdwtype;
85 real *vdwparam;
86 int vfitab;
87 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
88 real *vftab;
89
90 x = xx[0];
91 f = ff[0];
92
93 nri = nlist->nri;
94 iinr = nlist->iinr;
95 jindex = nlist->jindex;
96 jjnr = nlist->jjnr;
97 shiftidx = nlist->shift;
98 gid = nlist->gid;
99 shiftvec = fr->shift_vec[0];
100 fshift = fr->fshift[0];
101 facel = fr->epsfac;
102 charge = mdatoms->chargeA;
103 nvdwtype = fr->ntype;
104 vdwparam = fr->nbfp;
105 vdwtype = mdatoms->typeA;
106
107 invsqrta = fr->invsqrta;
108 dvda = fr->dvda;
109 gbtabscale = fr->gbtab.scale;
110 gbtab = fr->gbtab.data;
111 gbinvepsdiff = (1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent);
112
113 outeriter = 0;
114 inneriter = 0;
115
116 /* Start outer loop over neighborlists */
117 for(iidx=0; iidx<nri; iidx++)
118 {
119 /* Load shift vector for this list */
120 i_shift_offset = DIM3*shiftidx[iidx];
121 shX = shiftvec[i_shift_offset+XX0];
122 shY = shiftvec[i_shift_offset+YY1];
123 shZ = shiftvec[i_shift_offset+ZZ2];
124
125 /* Load limits for loop over neighbors */
126 j_index_start = jindex[iidx];
127 j_index_end = jindex[iidx+1];
128
129 /* Get outer coordinate index */
130 inr = iinr[iidx];
131 i_coord_offset = DIM3*inr;
132
133 /* Load i particle coords and add shift vector */
134 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
135 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
136 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
137
138 fix0 = 0.0;
139 fiy0 = 0.0;
140 fiz0 = 0.0;
141
142 /* Load parameters for i particles */
143 iq0 = facel*charge[inr+0];
144 isai0 = invsqrta[inr+0];
145 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
146
147 /* Reset potential sums */
148 velecsum = 0.0;
149 vgbsum = 0.0;
150 vvdwsum = 0.0;
151 dvdasum = 0.0;
152
153 /* Start inner kernel loop */
154 for(jidx=j_index_start; jidx<j_index_end; jidx++)
155 {
156 /* Get j neighbor index, and coordinate index */
157 jnr = jjnr[jidx];
158 j_coord_offset = DIM3*jnr;
159
160 /* load j atom coordinates */
161 jx0 = x[j_coord_offset+DIM3*0+XX0];
162 jy0 = x[j_coord_offset+DIM3*0+YY1];
163 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
164
165 /* Calculate displacement vector */
166 dx00 = ix0 - jx0;
167 dy00 = iy0 - jy0;
168 dz00 = iz0 - jz0;
169
170 /* Calculate squared distance and things based on it */
171 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
172
173 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
174
175 rinvsq00 = rinv00*rinv00;
176
177 /* Load parameters for j particles */
178 jq0 = charge[jnr+0];
179 isaj0 = invsqrta[jnr+0];
180 vdwjidx0 = 2*vdwtype[jnr+0];
181
182 /**************************
183 * CALCULATE INTERACTIONS *
184 **************************/
185
186 r00 = rsq00*rinv00;
187
188 qq00 = iq0*jq0;
189 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
190 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
191
192 /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
193 isaprod = isai0*isaj0;
194 gbqqfactor = isaprod*(-qq00)*gbinvepsdiff;
195 gbscale = isaprod*gbtabscale;
196 dvdaj = dvda[jnr+0];
197
198 /* Calculate generalized born table index - this is a separate table from the normal one,
199 * but we use the same procedure by multiplying r with scale and truncating to integer.
200 */
201 rt = r00*gbscale;
202 gbitab = rt;
203 gbeps = rt-gbitab;
204 gbitab = 4*gbitab;
205
206 Y = gbtab[gbitab];
207 F = gbtab[gbitab+1];
208 Geps = gbeps*gbtab[gbitab+2];
209 Heps2 = gbeps*gbeps*gbtab[gbitab+3];
210 Fp = F+Geps+Heps2;
211 VV = Y+gbeps*Fp;
212 vgb = gbqqfactor*VV;
213
214 FF = Fp+Geps+2.0*Heps2;
215 fgb = gbqqfactor*FF*gbscale;
216 dvdatmp = -0.5*(vgb+fgb*r00);
217 dvdasum = dvdasum + dvdatmp;
218 dvda[jnr] = dvdaj+dvdatmp*isaj0*isaj0;
219 velec = qq00*rinv00;
220 felec = (velec*rinv00-fgb)*rinv00;
221
222 /* LENNARD-JONES DISPERSION/REPULSION */
223
224 rinvsix = rinvsq00*rinvsq00*rinvsq00;
225 vvdw6 = c6_00*rinvsix;
226 vvdw12 = c12_00*rinvsix*rinvsix;
227 vvdw = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
228 fvdw = (vvdw12-vvdw6)*rinvsq00;
229
230 /* Update potential sums from outer loop */
231 velecsum += velec;
232 vgbsum += vgb;
233 vvdwsum += vvdw;
234
235 fscal = felec+fvdw;
236
237 /* Calculate temporary vectorial force */
238 tx = fscal*dx00;
239 ty = fscal*dy00;
240 tz = fscal*dz00;
241
242 /* Update vectorial force */
243 fix0 += tx;
244 fiy0 += ty;
245 fiz0 += tz;
246 f[j_coord_offset+DIM3*0+XX0] -= tx;
247 f[j_coord_offset+DIM3*0+YY1] -= ty;
248 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
249
250 /* Inner loop uses 71 flops */
251 }
252 /* End of innermost loop */
253
254 tx = ty = tz = 0;
255 f[i_coord_offset+DIM3*0+XX0] += fix0;
256 f[i_coord_offset+DIM3*0+YY1] += fiy0;
257 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
258 tx += fix0;
259 ty += fiy0;
260 tz += fiz0;
261 fshift[i_shift_offset+XX0] += tx;
262 fshift[i_shift_offset+YY1] += ty;
263 fshift[i_shift_offset+ZZ2] += tz;
264
265 ggid = gid[iidx];
266 /* Update potential energies */
267 kernel_data->energygrp_elec[ggid] += velecsum;
268 kernel_data->energygrp_polarization[ggid] += vgbsum;
269 kernel_data->energygrp_vdw[ggid] += vvdwsum;
270 dvda[inr] = dvda[inr] + dvdasum*isai0*isai0;
271
272 /* Increment number of inner iterations */
273 inneriter += j_index_end - j_index_start;
274
275 /* Outer loop uses 16 flops */
276 }
277
278 /* Increment number of outer iterations */
279 outeriter += nri;
280
281 /* Update outer/inner flops */
282
283 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*16 + inneriter*71)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_VF] += outeriter*16 + inneriter
*71
;
284}
285/*
286 * Gromacs nonbonded kernel: nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_c
287 * Electrostatics interaction: GeneralizedBorn
288 * VdW interaction: LennardJones
289 * Geometry: Particle-Particle
290 * Calculate force/pot: Force
291 */
292void
293nb_kernel_ElecGB_VdwLJ_GeomP1P1_F_c
294 (t_nblist * gmx_restrict__restrict nlist,
295 rvec * gmx_restrict__restrict xx,
296 rvec * gmx_restrict__restrict ff,
297 t_forcerec * gmx_restrict__restrict fr,
298 t_mdatoms * gmx_restrict__restrict mdatoms,
299 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
300 t_nrnb * gmx_restrict__restrict nrnb)
301{
302 int i_shift_offset,i_coord_offset,j_coord_offset;
303 int j_index_start,j_index_end;
304 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
305 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
306 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
307 real *shiftvec,*fshift,*x,*f;
308 int vdwioffset0;
309 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
310 int vdwjidx0;
311 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
312 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
313 real velec,felec,velecsum,facel,crf,krf,krf2;
314 real *charge;
315 int gbitab;
316 real vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
317 real *invsqrta,*dvda,*gbtab;
318 int nvdwtype;
319 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
320 int *vdwtype;
321 real *vdwparam;
322 int vfitab;
323 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
324 real *vftab;
325
326 x = xx[0];
327 f = ff[0];
328
329 nri = nlist->nri;
330 iinr = nlist->iinr;
331 jindex = nlist->jindex;
332 jjnr = nlist->jjnr;
333 shiftidx = nlist->shift;
334 gid = nlist->gid;
Value stored to 'gid' is never read
335 shiftvec = fr->shift_vec[0];
336 fshift = fr->fshift[0];
337 facel = fr->epsfac;
338 charge = mdatoms->chargeA;
339 nvdwtype = fr->ntype;
340 vdwparam = fr->nbfp;
341 vdwtype = mdatoms->typeA;
342
343 invsqrta = fr->invsqrta;
344 dvda = fr->dvda;
345 gbtabscale = fr->gbtab.scale;
346 gbtab = fr->gbtab.data;
347 gbinvepsdiff = (1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent);
348
349 outeriter = 0;
350 inneriter = 0;
351
352 /* Start outer loop over neighborlists */
353 for(iidx=0; iidx<nri; iidx++)
354 {
355 /* Load shift vector for this list */
356 i_shift_offset = DIM3*shiftidx[iidx];
357 shX = shiftvec[i_shift_offset+XX0];
358 shY = shiftvec[i_shift_offset+YY1];
359 shZ = shiftvec[i_shift_offset+ZZ2];
360
361 /* Load limits for loop over neighbors */
362 j_index_start = jindex[iidx];
363 j_index_end = jindex[iidx+1];
364
365 /* Get outer coordinate index */
366 inr = iinr[iidx];
367 i_coord_offset = DIM3*inr;
368
369 /* Load i particle coords and add shift vector */
370 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
371 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
372 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
373
374 fix0 = 0.0;
375 fiy0 = 0.0;
376 fiz0 = 0.0;
377
378 /* Load parameters for i particles */
379 iq0 = facel*charge[inr+0];
380 isai0 = invsqrta[inr+0];
381 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
382
383 dvdasum = 0.0;
384
385 /* Start inner kernel loop */
386 for(jidx=j_index_start; jidx<j_index_end; jidx++)
387 {
388 /* Get j neighbor index, and coordinate index */
389 jnr = jjnr[jidx];
390 j_coord_offset = DIM3*jnr;
391
392 /* load j atom coordinates */
393 jx0 = x[j_coord_offset+DIM3*0+XX0];
394 jy0 = x[j_coord_offset+DIM3*0+YY1];
395 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
396
397 /* Calculate displacement vector */
398 dx00 = ix0 - jx0;
399 dy00 = iy0 - jy0;
400 dz00 = iz0 - jz0;
401
402 /* Calculate squared distance and things based on it */
403 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
404
405 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
406
407 rinvsq00 = rinv00*rinv00;
408
409 /* Load parameters for j particles */
410 jq0 = charge[jnr+0];
411 isaj0 = invsqrta[jnr+0];
412 vdwjidx0 = 2*vdwtype[jnr+0];
413
414 /**************************
415 * CALCULATE INTERACTIONS *
416 **************************/
417
418 r00 = rsq00*rinv00;
419
420 qq00 = iq0*jq0;
421 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
422 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
423
424 /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
425 isaprod = isai0*isaj0;
426 gbqqfactor = isaprod*(-qq00)*gbinvepsdiff;
427 gbscale = isaprod*gbtabscale;
428 dvdaj = dvda[jnr+0];
429
430 /* Calculate generalized born table index - this is a separate table from the normal one,
431 * but we use the same procedure by multiplying r with scale and truncating to integer.
432 */
433 rt = r00*gbscale;
434 gbitab = rt;
435 gbeps = rt-gbitab;
436 gbitab = 4*gbitab;
437
438 Y = gbtab[gbitab];
439 F = gbtab[gbitab+1];
440 Geps = gbeps*gbtab[gbitab+2];
441 Heps2 = gbeps*gbeps*gbtab[gbitab+3];
442 Fp = F+Geps+Heps2;
443 VV = Y+gbeps*Fp;
444 vgb = gbqqfactor*VV;
445
446 FF = Fp+Geps+2.0*Heps2;
447 fgb = gbqqfactor*FF*gbscale;
448 dvdatmp = -0.5*(vgb+fgb*r00);
449 dvdasum = dvdasum + dvdatmp;
450 dvda[jnr] = dvdaj+dvdatmp*isaj0*isaj0;
451 velec = qq00*rinv00;
452 felec = (velec*rinv00-fgb)*rinv00;
453
454 /* LENNARD-JONES DISPERSION/REPULSION */
455
456 rinvsix = rinvsq00*rinvsq00*rinvsq00;
457 fvdw = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
458
459 fscal = felec+fvdw;
460
461 /* Calculate temporary vectorial force */
462 tx = fscal*dx00;
463 ty = fscal*dy00;
464 tz = fscal*dz00;
465
466 /* Update vectorial force */
467 fix0 += tx;
468 fiy0 += ty;
469 fiz0 += tz;
470 f[j_coord_offset+DIM3*0+XX0] -= tx;
471 f[j_coord_offset+DIM3*0+YY1] -= ty;
472 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
473
474 /* Inner loop uses 64 flops */
475 }
476 /* End of innermost loop */
477
478 tx = ty = tz = 0;
479 f[i_coord_offset+DIM3*0+XX0] += fix0;
480 f[i_coord_offset+DIM3*0+YY1] += fiy0;
481 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
482 tx += fix0;
483 ty += fiy0;
484 tz += fiz0;
485 fshift[i_shift_offset+XX0] += tx;
486 fshift[i_shift_offset+YY1] += ty;
487 fshift[i_shift_offset+ZZ2] += tz;
488
489 dvda[inr] = dvda[inr] + dvdasum*isai0*isai0;
490
491 /* Increment number of inner iterations */
492 inneriter += j_index_end - j_index_start;
493
494 /* Outer loop uses 13 flops */
495 }
496
497 /* Increment number of outer iterations */
498 outeriter += nri;
499
500 /* Update outer/inner flops */
501
502 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*64)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_F] += outeriter*13 + inneriter
*64
;
503}