Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecCSTab_VdwBham_GeomW4P1_c.c
Location:line 488, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwBham_GeomW4P1_VF_c
51 * Electrostatics interaction: CubicSplineTable
52 * VdW interaction: Buckingham
53 * Geometry: Water4-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecCSTab_VdwBham_GeomW4P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwioffset3;
79 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80 int vdwjidx0;
81 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
83 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
84 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
85 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
86 real velec,felec,velecsum,facel,crf,krf,krf2;
87 real *charge;
88 int nvdwtype;
89 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
90 int *vdwtype;
91 real *vdwparam;
92 int vfitab;
93 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
94 real *vftab;
95
96 x = xx[0];
97 f = ff[0];
98
99 nri = nlist->nri;
100 iinr = nlist->iinr;
101 jindex = nlist->jindex;
102 jjnr = nlist->jjnr;
103 shiftidx = nlist->shift;
104 gid = nlist->gid;
105 shiftvec = fr->shift_vec[0];
106 fshift = fr->fshift[0];
107 facel = fr->epsfac;
108 charge = mdatoms->chargeA;
109 nvdwtype = fr->ntype;
110 vdwparam = fr->nbfp;
111 vdwtype = mdatoms->typeA;
112
113 vftab = kernel_data->table_elec->data;
114 vftabscale = kernel_data->table_elec->scale;
115
116 /* Setup water-specific parameters */
117 inr = nlist->iinr[0];
118 iq1 = facel*charge[inr+1];
119 iq2 = facel*charge[inr+2];
120 iq3 = facel*charge[inr+3];
121 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
122
123 outeriter = 0;
124 inneriter = 0;
125
126 /* Start outer loop over neighborlists */
127 for(iidx=0; iidx<nri; iidx++)
128 {
129 /* Load shift vector for this list */
130 i_shift_offset = DIM3*shiftidx[iidx];
131 shX = shiftvec[i_shift_offset+XX0];
132 shY = shiftvec[i_shift_offset+YY1];
133 shZ = shiftvec[i_shift_offset+ZZ2];
134
135 /* Load limits for loop over neighbors */
136 j_index_start = jindex[iidx];
137 j_index_end = jindex[iidx+1];
138
139 /* Get outer coordinate index */
140 inr = iinr[iidx];
141 i_coord_offset = DIM3*inr;
142
143 /* Load i particle coords and add shift vector */
144 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
145 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
146 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
147 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
148 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
149 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
150 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
151 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
152 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
153 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
154 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
155 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
156
157 fix0 = 0.0;
158 fiy0 = 0.0;
159 fiz0 = 0.0;
160 fix1 = 0.0;
161 fiy1 = 0.0;
162 fiz1 = 0.0;
163 fix2 = 0.0;
164 fiy2 = 0.0;
165 fiz2 = 0.0;
166 fix3 = 0.0;
167 fiy3 = 0.0;
168 fiz3 = 0.0;
169
170 /* Reset potential sums */
171 velecsum = 0.0;
172 vvdwsum = 0.0;
173
174 /* Start inner kernel loop */
175 for(jidx=j_index_start; jidx<j_index_end; jidx++)
176 {
177 /* Get j neighbor index, and coordinate index */
178 jnr = jjnr[jidx];
179 j_coord_offset = DIM3*jnr;
180
181 /* load j atom coordinates */
182 jx0 = x[j_coord_offset+DIM3*0+XX0];
183 jy0 = x[j_coord_offset+DIM3*0+YY1];
184 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
185
186 /* Calculate displacement vector */
187 dx00 = ix0 - jx0;
188 dy00 = iy0 - jy0;
189 dz00 = iz0 - jz0;
190 dx10 = ix1 - jx0;
191 dy10 = iy1 - jy0;
192 dz10 = iz1 - jz0;
193 dx20 = ix2 - jx0;
194 dy20 = iy2 - jy0;
195 dz20 = iz2 - jz0;
196 dx30 = ix3 - jx0;
197 dy30 = iy3 - jy0;
198 dz30 = iz3 - jz0;
199
200 /* Calculate squared distance and things based on it */
201 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
202 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
203 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
204 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
205
206 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
207 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
208 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
209 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
210
211 rinvsq00 = rinv00*rinv00;
212
213 /* Load parameters for j particles */
214 jq0 = charge[jnr+0];
215 vdwjidx0 = 3*vdwtype[jnr+0];
216
217 /**************************
218 * CALCULATE INTERACTIONS *
219 **************************/
220
221 r00 = rsq00*rinv00;
222
223 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
224 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
225 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
226
227 /* BUCKINGHAM DISPERSION/REPULSION */
228 rinvsix = rinvsq00*rinvsq00*rinvsq00;
229 vvdw6 = c6_00*rinvsix;
230 br = cexp2_00*r00;
231 vvdwexp = cexp1_00*exp(-br);
232 vvdw = vvdwexp - vvdw6*(1.0/6.0);
233 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
234
235 /* Update potential sums from outer loop */
236 vvdwsum += vvdw;
237
238 fscal = fvdw;
239
240 /* Calculate temporary vectorial force */
241 tx = fscal*dx00;
242 ty = fscal*dy00;
243 tz = fscal*dz00;
244
245 /* Update vectorial force */
246 fix0 += tx;
247 fiy0 += ty;
248 fiz0 += tz;
249 f[j_coord_offset+DIM3*0+XX0] -= tx;
250 f[j_coord_offset+DIM3*0+YY1] -= ty;
251 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
252
253 /**************************
254 * CALCULATE INTERACTIONS *
255 **************************/
256
257 r10 = rsq10*rinv10;
258
259 qq10 = iq1*jq0;
260
261 /* Calculate table index by multiplying r with table scale and truncate to integer */
262 rt = r10*vftabscale;
263 vfitab = rt;
264 vfeps = rt-vfitab;
265 vfitab = 1*4*vfitab;
266
267 /* CUBIC SPLINE TABLE ELECTROSTATICS */
268 Y = vftab[vfitab];
269 F = vftab[vfitab+1];
270 Geps = vfeps*vftab[vfitab+2];
271 Heps2 = vfeps*vfeps*vftab[vfitab+3];
272 Fp = F+Geps+Heps2;
273 VV = Y+vfeps*Fp;
274 velec = qq10*VV;
275 FF = Fp+Geps+2.0*Heps2;
276 felec = -qq10*FF*vftabscale*rinv10;
277
278 /* Update potential sums from outer loop */
279 velecsum += velec;
280
281 fscal = felec;
282
283 /* Calculate temporary vectorial force */
284 tx = fscal*dx10;
285 ty = fscal*dy10;
286 tz = fscal*dz10;
287
288 /* Update vectorial force */
289 fix1 += tx;
290 fiy1 += ty;
291 fiz1 += tz;
292 f[j_coord_offset+DIM3*0+XX0] -= tx;
293 f[j_coord_offset+DIM3*0+YY1] -= ty;
294 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
295
296 /**************************
297 * CALCULATE INTERACTIONS *
298 **************************/
299
300 r20 = rsq20*rinv20;
301
302 qq20 = iq2*jq0;
303
304 /* Calculate table index by multiplying r with table scale and truncate to integer */
305 rt = r20*vftabscale;
306 vfitab = rt;
307 vfeps = rt-vfitab;
308 vfitab = 1*4*vfitab;
309
310 /* CUBIC SPLINE TABLE ELECTROSTATICS */
311 Y = vftab[vfitab];
312 F = vftab[vfitab+1];
313 Geps = vfeps*vftab[vfitab+2];
314 Heps2 = vfeps*vfeps*vftab[vfitab+3];
315 Fp = F+Geps+Heps2;
316 VV = Y+vfeps*Fp;
317 velec = qq20*VV;
318 FF = Fp+Geps+2.0*Heps2;
319 felec = -qq20*FF*vftabscale*rinv20;
320
321 /* Update potential sums from outer loop */
322 velecsum += velec;
323
324 fscal = felec;
325
326 /* Calculate temporary vectorial force */
327 tx = fscal*dx20;
328 ty = fscal*dy20;
329 tz = fscal*dz20;
330
331 /* Update vectorial force */
332 fix2 += tx;
333 fiy2 += ty;
334 fiz2 += tz;
335 f[j_coord_offset+DIM3*0+XX0] -= tx;
336 f[j_coord_offset+DIM3*0+YY1] -= ty;
337 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
338
339 /**************************
340 * CALCULATE INTERACTIONS *
341 **************************/
342
343 r30 = rsq30*rinv30;
344
345 qq30 = iq3*jq0;
346
347 /* Calculate table index by multiplying r with table scale and truncate to integer */
348 rt = r30*vftabscale;
349 vfitab = rt;
350 vfeps = rt-vfitab;
351 vfitab = 1*4*vfitab;
352
353 /* CUBIC SPLINE TABLE ELECTROSTATICS */
354 Y = vftab[vfitab];
355 F = vftab[vfitab+1];
356 Geps = vfeps*vftab[vfitab+2];
357 Heps2 = vfeps*vfeps*vftab[vfitab+3];
358 Fp = F+Geps+Heps2;
359 VV = Y+vfeps*Fp;
360 velec = qq30*VV;
361 FF = Fp+Geps+2.0*Heps2;
362 felec = -qq30*FF*vftabscale*rinv30;
363
364 /* Update potential sums from outer loop */
365 velecsum += velec;
366
367 fscal = felec;
368
369 /* Calculate temporary vectorial force */
370 tx = fscal*dx30;
371 ty = fscal*dy30;
372 tz = fscal*dz30;
373
374 /* Update vectorial force */
375 fix3 += tx;
376 fiy3 += ty;
377 fiz3 += tz;
378 f[j_coord_offset+DIM3*0+XX0] -= tx;
379 f[j_coord_offset+DIM3*0+YY1] -= ty;
380 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
381
382 /* Inner loop uses 187 flops */
383 }
384 /* End of innermost loop */
385
386 tx = ty = tz = 0;
387 f[i_coord_offset+DIM3*0+XX0] += fix0;
388 f[i_coord_offset+DIM3*0+YY1] += fiy0;
389 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
390 tx += fix0;
391 ty += fiy0;
392 tz += fiz0;
393 f[i_coord_offset+DIM3*1+XX0] += fix1;
394 f[i_coord_offset+DIM3*1+YY1] += fiy1;
395 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
396 tx += fix1;
397 ty += fiy1;
398 tz += fiz1;
399 f[i_coord_offset+DIM3*2+XX0] += fix2;
400 f[i_coord_offset+DIM3*2+YY1] += fiy2;
401 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
402 tx += fix2;
403 ty += fiy2;
404 tz += fiz2;
405 f[i_coord_offset+DIM3*3+XX0] += fix3;
406 f[i_coord_offset+DIM3*3+YY1] += fiy3;
407 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
408 tx += fix3;
409 ty += fiy3;
410 tz += fiz3;
411 fshift[i_shift_offset+XX0] += tx;
412 fshift[i_shift_offset+YY1] += ty;
413 fshift[i_shift_offset+ZZ2] += tz;
414
415 ggid = gid[iidx];
416 /* Update potential energies */
417 kernel_data->energygrp_elec[ggid] += velecsum;
418 kernel_data->energygrp_vdw[ggid] += vvdwsum;
419
420 /* Increment number of inner iterations */
421 inneriter += j_index_end - j_index_start;
422
423 /* Outer loop uses 41 flops */
424 }
425
426 /* Increment number of outer iterations */
427 outeriter += nri;
428
429 /* Update outer/inner flops */
430
431 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*187)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_VF] += outeriter*41 + inneriter
*187
;
432}
433/*
434 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwBham_GeomW4P1_F_c
435 * Electrostatics interaction: CubicSplineTable
436 * VdW interaction: Buckingham
437 * Geometry: Water4-Particle
438 * Calculate force/pot: Force
439 */
440void
441nb_kernel_ElecCSTab_VdwBham_GeomW4P1_F_c
442 (t_nblist * gmx_restrict__restrict nlist,
443 rvec * gmx_restrict__restrict xx,
444 rvec * gmx_restrict__restrict ff,
445 t_forcerec * gmx_restrict__restrict fr,
446 t_mdatoms * gmx_restrict__restrict mdatoms,
447 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
448 t_nrnb * gmx_restrict__restrict nrnb)
449{
450 int i_shift_offset,i_coord_offset,j_coord_offset;
451 int j_index_start,j_index_end;
452 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
453 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
454 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
455 real *shiftvec,*fshift,*x,*f;
456 int vdwioffset0;
457 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
458 int vdwioffset1;
459 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
460 int vdwioffset2;
461 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
462 int vdwioffset3;
463 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
464 int vdwjidx0;
465 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
466 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
467 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
468 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
469 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
470 real velec,felec,velecsum,facel,crf,krf,krf2;
471 real *charge;
472 int nvdwtype;
473 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
474 int *vdwtype;
475 real *vdwparam;
476 int vfitab;
477 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
478 real *vftab;
479
480 x = xx[0];
481 f = ff[0];
482
483 nri = nlist->nri;
484 iinr = nlist->iinr;
485 jindex = nlist->jindex;
486 jjnr = nlist->jjnr;
487 shiftidx = nlist->shift;
488 gid = nlist->gid;
Value stored to 'gid' is never read
489 shiftvec = fr->shift_vec[0];
490 fshift = fr->fshift[0];
491 facel = fr->epsfac;
492 charge = mdatoms->chargeA;
493 nvdwtype = fr->ntype;
494 vdwparam = fr->nbfp;
495 vdwtype = mdatoms->typeA;
496
497 vftab = kernel_data->table_elec->data;
498 vftabscale = kernel_data->table_elec->scale;
499
500 /* Setup water-specific parameters */
501 inr = nlist->iinr[0];
502 iq1 = facel*charge[inr+1];
503 iq2 = facel*charge[inr+2];
504 iq3 = facel*charge[inr+3];
505 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
506
507 outeriter = 0;
508 inneriter = 0;
509
510 /* Start outer loop over neighborlists */
511 for(iidx=0; iidx<nri; iidx++)
512 {
513 /* Load shift vector for this list */
514 i_shift_offset = DIM3*shiftidx[iidx];
515 shX = shiftvec[i_shift_offset+XX0];
516 shY = shiftvec[i_shift_offset+YY1];
517 shZ = shiftvec[i_shift_offset+ZZ2];
518
519 /* Load limits for loop over neighbors */
520 j_index_start = jindex[iidx];
521 j_index_end = jindex[iidx+1];
522
523 /* Get outer coordinate index */
524 inr = iinr[iidx];
525 i_coord_offset = DIM3*inr;
526
527 /* Load i particle coords and add shift vector */
528 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
529 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
530 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
531 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
532 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
533 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
534 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
535 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
536 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
537 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
538 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
539 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
540
541 fix0 = 0.0;
542 fiy0 = 0.0;
543 fiz0 = 0.0;
544 fix1 = 0.0;
545 fiy1 = 0.0;
546 fiz1 = 0.0;
547 fix2 = 0.0;
548 fiy2 = 0.0;
549 fiz2 = 0.0;
550 fix3 = 0.0;
551 fiy3 = 0.0;
552 fiz3 = 0.0;
553
554 /* Start inner kernel loop */
555 for(jidx=j_index_start; jidx<j_index_end; jidx++)
556 {
557 /* Get j neighbor index, and coordinate index */
558 jnr = jjnr[jidx];
559 j_coord_offset = DIM3*jnr;
560
561 /* load j atom coordinates */
562 jx0 = x[j_coord_offset+DIM3*0+XX0];
563 jy0 = x[j_coord_offset+DIM3*0+YY1];
564 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
565
566 /* Calculate displacement vector */
567 dx00 = ix0 - jx0;
568 dy00 = iy0 - jy0;
569 dz00 = iz0 - jz0;
570 dx10 = ix1 - jx0;
571 dy10 = iy1 - jy0;
572 dz10 = iz1 - jz0;
573 dx20 = ix2 - jx0;
574 dy20 = iy2 - jy0;
575 dz20 = iz2 - jz0;
576 dx30 = ix3 - jx0;
577 dy30 = iy3 - jy0;
578 dz30 = iz3 - jz0;
579
580 /* Calculate squared distance and things based on it */
581 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
582 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
583 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
584 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
585
586 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
587 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
588 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
589 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
590
591 rinvsq00 = rinv00*rinv00;
592
593 /* Load parameters for j particles */
594 jq0 = charge[jnr+0];
595 vdwjidx0 = 3*vdwtype[jnr+0];
596
597 /**************************
598 * CALCULATE INTERACTIONS *
599 **************************/
600
601 r00 = rsq00*rinv00;
602
603 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
604 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
605 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
606
607 /* BUCKINGHAM DISPERSION/REPULSION */
608 rinvsix = rinvsq00*rinvsq00*rinvsq00;
609 vvdw6 = c6_00*rinvsix;
610 br = cexp2_00*r00;
611 vvdwexp = cexp1_00*exp(-br);
612 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
613
614 fscal = fvdw;
615
616 /* Calculate temporary vectorial force */
617 tx = fscal*dx00;
618 ty = fscal*dy00;
619 tz = fscal*dz00;
620
621 /* Update vectorial force */
622 fix0 += tx;
623 fiy0 += ty;
624 fiz0 += tz;
625 f[j_coord_offset+DIM3*0+XX0] -= tx;
626 f[j_coord_offset+DIM3*0+YY1] -= ty;
627 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
628
629 /**************************
630 * CALCULATE INTERACTIONS *
631 **************************/
632
633 r10 = rsq10*rinv10;
634
635 qq10 = iq1*jq0;
636
637 /* Calculate table index by multiplying r with table scale and truncate to integer */
638 rt = r10*vftabscale;
639 vfitab = rt;
640 vfeps = rt-vfitab;
641 vfitab = 1*4*vfitab;
642
643 /* CUBIC SPLINE TABLE ELECTROSTATICS */
644 F = vftab[vfitab+1];
645 Geps = vfeps*vftab[vfitab+2];
646 Heps2 = vfeps*vfeps*vftab[vfitab+3];
647 Fp = F+Geps+Heps2;
648 FF = Fp+Geps+2.0*Heps2;
649 felec = -qq10*FF*vftabscale*rinv10;
650
651 fscal = felec;
652
653 /* Calculate temporary vectorial force */
654 tx = fscal*dx10;
655 ty = fscal*dy10;
656 tz = fscal*dz10;
657
658 /* Update vectorial force */
659 fix1 += tx;
660 fiy1 += ty;
661 fiz1 += tz;
662 f[j_coord_offset+DIM3*0+XX0] -= tx;
663 f[j_coord_offset+DIM3*0+YY1] -= ty;
664 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
665
666 /**************************
667 * CALCULATE INTERACTIONS *
668 **************************/
669
670 r20 = rsq20*rinv20;
671
672 qq20 = iq2*jq0;
673
674 /* Calculate table index by multiplying r with table scale and truncate to integer */
675 rt = r20*vftabscale;
676 vfitab = rt;
677 vfeps = rt-vfitab;
678 vfitab = 1*4*vfitab;
679
680 /* CUBIC SPLINE TABLE ELECTROSTATICS */
681 F = vftab[vfitab+1];
682 Geps = vfeps*vftab[vfitab+2];
683 Heps2 = vfeps*vfeps*vftab[vfitab+3];
684 Fp = F+Geps+Heps2;
685 FF = Fp+Geps+2.0*Heps2;
686 felec = -qq20*FF*vftabscale*rinv20;
687
688 fscal = felec;
689
690 /* Calculate temporary vectorial force */
691 tx = fscal*dx20;
692 ty = fscal*dy20;
693 tz = fscal*dz20;
694
695 /* Update vectorial force */
696 fix2 += tx;
697 fiy2 += ty;
698 fiz2 += tz;
699 f[j_coord_offset+DIM3*0+XX0] -= tx;
700 f[j_coord_offset+DIM3*0+YY1] -= ty;
701 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
702
703 /**************************
704 * CALCULATE INTERACTIONS *
705 **************************/
706
707 r30 = rsq30*rinv30;
708
709 qq30 = iq3*jq0;
710
711 /* Calculate table index by multiplying r with table scale and truncate to integer */
712 rt = r30*vftabscale;
713 vfitab = rt;
714 vfeps = rt-vfitab;
715 vfitab = 1*4*vfitab;
716
717 /* CUBIC SPLINE TABLE ELECTROSTATICS */
718 F = vftab[vfitab+1];
719 Geps = vfeps*vftab[vfitab+2];
720 Heps2 = vfeps*vfeps*vftab[vfitab+3];
721 Fp = F+Geps+Heps2;
722 FF = Fp+Geps+2.0*Heps2;
723 felec = -qq30*FF*vftabscale*rinv30;
724
725 fscal = felec;
726
727 /* Calculate temporary vectorial force */
728 tx = fscal*dx30;
729 ty = fscal*dy30;
730 tz = fscal*dz30;
731
732 /* Update vectorial force */
733 fix3 += tx;
734 fiy3 += ty;
735 fiz3 += tz;
736 f[j_coord_offset+DIM3*0+XX0] -= tx;
737 f[j_coord_offset+DIM3*0+YY1] -= ty;
738 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
739
740 /* Inner loop uses 172 flops */
741 }
742 /* End of innermost loop */
743
744 tx = ty = tz = 0;
745 f[i_coord_offset+DIM3*0+XX0] += fix0;
746 f[i_coord_offset+DIM3*0+YY1] += fiy0;
747 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
748 tx += fix0;
749 ty += fiy0;
750 tz += fiz0;
751 f[i_coord_offset+DIM3*1+XX0] += fix1;
752 f[i_coord_offset+DIM3*1+YY1] += fiy1;
753 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
754 tx += fix1;
755 ty += fiy1;
756 tz += fiz1;
757 f[i_coord_offset+DIM3*2+XX0] += fix2;
758 f[i_coord_offset+DIM3*2+YY1] += fiy2;
759 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
760 tx += fix2;
761 ty += fiy2;
762 tz += fiz2;
763 f[i_coord_offset+DIM3*3+XX0] += fix3;
764 f[i_coord_offset+DIM3*3+YY1] += fiy3;
765 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
766 tx += fix3;
767 ty += fiy3;
768 tz += fiz3;
769 fshift[i_shift_offset+XX0] += tx;
770 fshift[i_shift_offset+YY1] += ty;
771 fshift[i_shift_offset+ZZ2] += tz;
772
773 /* Increment number of inner iterations */
774 inneriter += j_index_end - j_index_start;
775
776 /* Outer loop uses 39 flops */
777 }
778
779 /* Increment number of outer iterations */
780 outeriter += nri;
781
782 /* Update outer/inner flops */
783
784 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*172)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_F] += outeriter*39 + inneriter
*172
;
785}