Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecRFCut_VdwLJSw_GeomW4W4_c.c
Location:line 745, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSw_GeomW4W4_VF_c
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: LennardJones
53 * Geometry: Water4-Water4
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecRFCut_VdwLJSw_GeomW4W4_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwioffset3;
79 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80 int vdwjidx0;
81 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82 int vdwjidx1;
83 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
84 int vdwjidx2;
85 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
86 int vdwjidx3;
87 real jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
88 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
89 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
90 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
91 real dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
92 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
93 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
94 real dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
95 real dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
96 real dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
97 real dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
98 real velec,felec,velecsum,facel,crf,krf,krf2;
99 real *charge;
100 int nvdwtype;
101 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
102 int *vdwtype;
103 real *vdwparam;
104 real rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
105
106 x = xx[0];
107 f = ff[0];
108
109 nri = nlist->nri;
110 iinr = nlist->iinr;
111 jindex = nlist->jindex;
112 jjnr = nlist->jjnr;
113 shiftidx = nlist->shift;
114 gid = nlist->gid;
115 shiftvec = fr->shift_vec[0];
116 fshift = fr->fshift[0];
117 facel = fr->epsfac;
118 charge = mdatoms->chargeA;
119 krf = fr->ic->k_rf;
120 krf2 = krf*2.0;
121 crf = fr->ic->c_rf;
122 nvdwtype = fr->ntype;
123 vdwparam = fr->nbfp;
124 vdwtype = mdatoms->typeA;
125
126 /* Setup water-specific parameters */
127 inr = nlist->iinr[0];
128 iq1 = facel*charge[inr+1];
129 iq2 = facel*charge[inr+2];
130 iq3 = facel*charge[inr+3];
131 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
132
133 jq1 = charge[inr+1];
134 jq2 = charge[inr+2];
135 jq3 = charge[inr+3];
136 vdwjidx0 = 2*vdwtype[inr+0];
137 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
138 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
139 qq11 = iq1*jq1;
140 qq12 = iq1*jq2;
141 qq13 = iq1*jq3;
142 qq21 = iq2*jq1;
143 qq22 = iq2*jq2;
144 qq23 = iq2*jq3;
145 qq31 = iq3*jq1;
146 qq32 = iq3*jq2;
147 qq33 = iq3*jq3;
148
149 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
150 rcutoff = fr->rcoulomb;
151 rcutoff2 = rcutoff*rcutoff;
152
153 rswitch = fr->rvdw_switch;
154 /* Setup switch parameters */
155 d = rcutoff-rswitch;
156 swV3 = -10.0/(d*d*d);
157 swV4 = 15.0/(d*d*d*d);
158 swV5 = -6.0/(d*d*d*d*d);
159 swF2 = -30.0/(d*d*d);
160 swF3 = 60.0/(d*d*d*d);
161 swF4 = -30.0/(d*d*d*d*d);
162
163 outeriter = 0;
164 inneriter = 0;
165
166 /* Start outer loop over neighborlists */
167 for(iidx=0; iidx<nri; iidx++)
168 {
169 /* Load shift vector for this list */
170 i_shift_offset = DIM3*shiftidx[iidx];
171 shX = shiftvec[i_shift_offset+XX0];
172 shY = shiftvec[i_shift_offset+YY1];
173 shZ = shiftvec[i_shift_offset+ZZ2];
174
175 /* Load limits for loop over neighbors */
176 j_index_start = jindex[iidx];
177 j_index_end = jindex[iidx+1];
178
179 /* Get outer coordinate index */
180 inr = iinr[iidx];
181 i_coord_offset = DIM3*inr;
182
183 /* Load i particle coords and add shift vector */
184 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
185 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
186 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
187 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
188 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
189 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
190 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
191 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
192 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
193 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
194 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
195 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
196
197 fix0 = 0.0;
198 fiy0 = 0.0;
199 fiz0 = 0.0;
200 fix1 = 0.0;
201 fiy1 = 0.0;
202 fiz1 = 0.0;
203 fix2 = 0.0;
204 fiy2 = 0.0;
205 fiz2 = 0.0;
206 fix3 = 0.0;
207 fiy3 = 0.0;
208 fiz3 = 0.0;
209
210 /* Reset potential sums */
211 velecsum = 0.0;
212 vvdwsum = 0.0;
213
214 /* Start inner kernel loop */
215 for(jidx=j_index_start; jidx<j_index_end; jidx++)
216 {
217 /* Get j neighbor index, and coordinate index */
218 jnr = jjnr[jidx];
219 j_coord_offset = DIM3*jnr;
220
221 /* load j atom coordinates */
222 jx0 = x[j_coord_offset+DIM3*0+XX0];
223 jy0 = x[j_coord_offset+DIM3*0+YY1];
224 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
225 jx1 = x[j_coord_offset+DIM3*1+XX0];
226 jy1 = x[j_coord_offset+DIM3*1+YY1];
227 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
228 jx2 = x[j_coord_offset+DIM3*2+XX0];
229 jy2 = x[j_coord_offset+DIM3*2+YY1];
230 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
231 jx3 = x[j_coord_offset+DIM3*3+XX0];
232 jy3 = x[j_coord_offset+DIM3*3+YY1];
233 jz3 = x[j_coord_offset+DIM3*3+ZZ2];
234
235 /* Calculate displacement vector */
236 dx00 = ix0 - jx0;
237 dy00 = iy0 - jy0;
238 dz00 = iz0 - jz0;
239 dx11 = ix1 - jx1;
240 dy11 = iy1 - jy1;
241 dz11 = iz1 - jz1;
242 dx12 = ix1 - jx2;
243 dy12 = iy1 - jy2;
244 dz12 = iz1 - jz2;
245 dx13 = ix1 - jx3;
246 dy13 = iy1 - jy3;
247 dz13 = iz1 - jz3;
248 dx21 = ix2 - jx1;
249 dy21 = iy2 - jy1;
250 dz21 = iz2 - jz1;
251 dx22 = ix2 - jx2;
252 dy22 = iy2 - jy2;
253 dz22 = iz2 - jz2;
254 dx23 = ix2 - jx3;
255 dy23 = iy2 - jy3;
256 dz23 = iz2 - jz3;
257 dx31 = ix3 - jx1;
258 dy31 = iy3 - jy1;
259 dz31 = iz3 - jz1;
260 dx32 = ix3 - jx2;
261 dy32 = iy3 - jy2;
262 dz32 = iz3 - jz2;
263 dx33 = ix3 - jx3;
264 dy33 = iy3 - jy3;
265 dz33 = iz3 - jz3;
266
267 /* Calculate squared distance and things based on it */
268 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
269 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
270 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
271 rsq13 = dx13*dx13+dy13*dy13+dz13*dz13;
272 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
273 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
274 rsq23 = dx23*dx23+dy23*dy23+dz23*dz23;
275 rsq31 = dx31*dx31+dy31*dy31+dz31*dz31;
276 rsq32 = dx32*dx32+dy32*dy32+dz32*dz32;
277 rsq33 = dx33*dx33+dy33*dy33+dz33*dz33;
278
279 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
280 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
281 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
282 rinv13 = gmx_invsqrt(rsq13)gmx_software_invsqrt(rsq13);
283 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
284 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
285 rinv23 = gmx_invsqrt(rsq23)gmx_software_invsqrt(rsq23);
286 rinv31 = gmx_invsqrt(rsq31)gmx_software_invsqrt(rsq31);
287 rinv32 = gmx_invsqrt(rsq32)gmx_software_invsqrt(rsq32);
288 rinv33 = gmx_invsqrt(rsq33)gmx_software_invsqrt(rsq33);
289
290 rinvsq00 = rinv00*rinv00;
291 rinvsq11 = rinv11*rinv11;
292 rinvsq12 = rinv12*rinv12;
293 rinvsq13 = rinv13*rinv13;
294 rinvsq21 = rinv21*rinv21;
295 rinvsq22 = rinv22*rinv22;
296 rinvsq23 = rinv23*rinv23;
297 rinvsq31 = rinv31*rinv31;
298 rinvsq32 = rinv32*rinv32;
299 rinvsq33 = rinv33*rinv33;
300
301 /**************************
302 * CALCULATE INTERACTIONS *
303 **************************/
304
305 if (rsq00<rcutoff2)
306 {
307
308 r00 = rsq00*rinv00;
309
310 /* LENNARD-JONES DISPERSION/REPULSION */
311
312 rinvsix = rinvsq00*rinvsq00*rinvsq00;
313 vvdw6 = c6_00*rinvsix;
314 vvdw12 = c12_00*rinvsix*rinvsix;
315 vvdw = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
316 fvdw = (vvdw12-vvdw6)*rinvsq00;
317
318 d = r00-rswitch;
319 d = (d>0.0) ? d : 0.0;
320 d2 = d*d;
321 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
322
323 dsw = d2*(swF2+d*(swF3+d*swF4));
324
325 /* Evaluate switch function */
326 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
327 fvdw = fvdw*sw - rinv00*vvdw*dsw;
328 vvdw *= sw;
329
330 /* Update potential sums from outer loop */
331 vvdwsum += vvdw;
332
333 fscal = fvdw;
334
335 /* Calculate temporary vectorial force */
336 tx = fscal*dx00;
337 ty = fscal*dy00;
338 tz = fscal*dz00;
339
340 /* Update vectorial force */
341 fix0 += tx;
342 fiy0 += ty;
343 fiz0 += tz;
344 f[j_coord_offset+DIM3*0+XX0] -= tx;
345 f[j_coord_offset+DIM3*0+YY1] -= ty;
346 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
347
348 }
349
350 /**************************
351 * CALCULATE INTERACTIONS *
352 **************************/
353
354 if (rsq11<rcutoff2)
355 {
356
357 /* REACTION-FIELD ELECTROSTATICS */
358 velec = qq11*(rinv11+krf*rsq11-crf);
359 felec = qq11*(rinv11*rinvsq11-krf2);
360
361 /* Update potential sums from outer loop */
362 velecsum += velec;
363
364 fscal = felec;
365
366 /* Calculate temporary vectorial force */
367 tx = fscal*dx11;
368 ty = fscal*dy11;
369 tz = fscal*dz11;
370
371 /* Update vectorial force */
372 fix1 += tx;
373 fiy1 += ty;
374 fiz1 += tz;
375 f[j_coord_offset+DIM3*1+XX0] -= tx;
376 f[j_coord_offset+DIM3*1+YY1] -= ty;
377 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
378
379 }
380
381 /**************************
382 * CALCULATE INTERACTIONS *
383 **************************/
384
385 if (rsq12<rcutoff2)
386 {
387
388 /* REACTION-FIELD ELECTROSTATICS */
389 velec = qq12*(rinv12+krf*rsq12-crf);
390 felec = qq12*(rinv12*rinvsq12-krf2);
391
392 /* Update potential sums from outer loop */
393 velecsum += velec;
394
395 fscal = felec;
396
397 /* Calculate temporary vectorial force */
398 tx = fscal*dx12;
399 ty = fscal*dy12;
400 tz = fscal*dz12;
401
402 /* Update vectorial force */
403 fix1 += tx;
404 fiy1 += ty;
405 fiz1 += tz;
406 f[j_coord_offset+DIM3*2+XX0] -= tx;
407 f[j_coord_offset+DIM3*2+YY1] -= ty;
408 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
409
410 }
411
412 /**************************
413 * CALCULATE INTERACTIONS *
414 **************************/
415
416 if (rsq13<rcutoff2)
417 {
418
419 /* REACTION-FIELD ELECTROSTATICS */
420 velec = qq13*(rinv13+krf*rsq13-crf);
421 felec = qq13*(rinv13*rinvsq13-krf2);
422
423 /* Update potential sums from outer loop */
424 velecsum += velec;
425
426 fscal = felec;
427
428 /* Calculate temporary vectorial force */
429 tx = fscal*dx13;
430 ty = fscal*dy13;
431 tz = fscal*dz13;
432
433 /* Update vectorial force */
434 fix1 += tx;
435 fiy1 += ty;
436 fiz1 += tz;
437 f[j_coord_offset+DIM3*3+XX0] -= tx;
438 f[j_coord_offset+DIM3*3+YY1] -= ty;
439 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
440
441 }
442
443 /**************************
444 * CALCULATE INTERACTIONS *
445 **************************/
446
447 if (rsq21<rcutoff2)
448 {
449
450 /* REACTION-FIELD ELECTROSTATICS */
451 velec = qq21*(rinv21+krf*rsq21-crf);
452 felec = qq21*(rinv21*rinvsq21-krf2);
453
454 /* Update potential sums from outer loop */
455 velecsum += velec;
456
457 fscal = felec;
458
459 /* Calculate temporary vectorial force */
460 tx = fscal*dx21;
461 ty = fscal*dy21;
462 tz = fscal*dz21;
463
464 /* Update vectorial force */
465 fix2 += tx;
466 fiy2 += ty;
467 fiz2 += tz;
468 f[j_coord_offset+DIM3*1+XX0] -= tx;
469 f[j_coord_offset+DIM3*1+YY1] -= ty;
470 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
471
472 }
473
474 /**************************
475 * CALCULATE INTERACTIONS *
476 **************************/
477
478 if (rsq22<rcutoff2)
479 {
480
481 /* REACTION-FIELD ELECTROSTATICS */
482 velec = qq22*(rinv22+krf*rsq22-crf);
483 felec = qq22*(rinv22*rinvsq22-krf2);
484
485 /* Update potential sums from outer loop */
486 velecsum += velec;
487
488 fscal = felec;
489
490 /* Calculate temporary vectorial force */
491 tx = fscal*dx22;
492 ty = fscal*dy22;
493 tz = fscal*dz22;
494
495 /* Update vectorial force */
496 fix2 += tx;
497 fiy2 += ty;
498 fiz2 += tz;
499 f[j_coord_offset+DIM3*2+XX0] -= tx;
500 f[j_coord_offset+DIM3*2+YY1] -= ty;
501 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
502
503 }
504
505 /**************************
506 * CALCULATE INTERACTIONS *
507 **************************/
508
509 if (rsq23<rcutoff2)
510 {
511
512 /* REACTION-FIELD ELECTROSTATICS */
513 velec = qq23*(rinv23+krf*rsq23-crf);
514 felec = qq23*(rinv23*rinvsq23-krf2);
515
516 /* Update potential sums from outer loop */
517 velecsum += velec;
518
519 fscal = felec;
520
521 /* Calculate temporary vectorial force */
522 tx = fscal*dx23;
523 ty = fscal*dy23;
524 tz = fscal*dz23;
525
526 /* Update vectorial force */
527 fix2 += tx;
528 fiy2 += ty;
529 fiz2 += tz;
530 f[j_coord_offset+DIM3*3+XX0] -= tx;
531 f[j_coord_offset+DIM3*3+YY1] -= ty;
532 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
533
534 }
535
536 /**************************
537 * CALCULATE INTERACTIONS *
538 **************************/
539
540 if (rsq31<rcutoff2)
541 {
542
543 /* REACTION-FIELD ELECTROSTATICS */
544 velec = qq31*(rinv31+krf*rsq31-crf);
545 felec = qq31*(rinv31*rinvsq31-krf2);
546
547 /* Update potential sums from outer loop */
548 velecsum += velec;
549
550 fscal = felec;
551
552 /* Calculate temporary vectorial force */
553 tx = fscal*dx31;
554 ty = fscal*dy31;
555 tz = fscal*dz31;
556
557 /* Update vectorial force */
558 fix3 += tx;
559 fiy3 += ty;
560 fiz3 += tz;
561 f[j_coord_offset+DIM3*1+XX0] -= tx;
562 f[j_coord_offset+DIM3*1+YY1] -= ty;
563 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
564
565 }
566
567 /**************************
568 * CALCULATE INTERACTIONS *
569 **************************/
570
571 if (rsq32<rcutoff2)
572 {
573
574 /* REACTION-FIELD ELECTROSTATICS */
575 velec = qq32*(rinv32+krf*rsq32-crf);
576 felec = qq32*(rinv32*rinvsq32-krf2);
577
578 /* Update potential sums from outer loop */
579 velecsum += velec;
580
581 fscal = felec;
582
583 /* Calculate temporary vectorial force */
584 tx = fscal*dx32;
585 ty = fscal*dy32;
586 tz = fscal*dz32;
587
588 /* Update vectorial force */
589 fix3 += tx;
590 fiy3 += ty;
591 fiz3 += tz;
592 f[j_coord_offset+DIM3*2+XX0] -= tx;
593 f[j_coord_offset+DIM3*2+YY1] -= ty;
594 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
595
596 }
597
598 /**************************
599 * CALCULATE INTERACTIONS *
600 **************************/
601
602 if (rsq33<rcutoff2)
603 {
604
605 /* REACTION-FIELD ELECTROSTATICS */
606 velec = qq33*(rinv33+krf*rsq33-crf);
607 felec = qq33*(rinv33*rinvsq33-krf2);
608
609 /* Update potential sums from outer loop */
610 velecsum += velec;
611
612 fscal = felec;
613
614 /* Calculate temporary vectorial force */
615 tx = fscal*dx33;
616 ty = fscal*dy33;
617 tz = fscal*dz33;
618
619 /* Update vectorial force */
620 fix3 += tx;
621 fiy3 += ty;
622 fiz3 += tz;
623 f[j_coord_offset+DIM3*3+XX0] -= tx;
624 f[j_coord_offset+DIM3*3+YY1] -= ty;
625 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
626
627 }
628
629 /* Inner loop uses 332 flops */
630 }
631 /* End of innermost loop */
632
633 tx = ty = tz = 0;
634 f[i_coord_offset+DIM3*0+XX0] += fix0;
635 f[i_coord_offset+DIM3*0+YY1] += fiy0;
636 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
637 tx += fix0;
638 ty += fiy0;
639 tz += fiz0;
640 f[i_coord_offset+DIM3*1+XX0] += fix1;
641 f[i_coord_offset+DIM3*1+YY1] += fiy1;
642 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
643 tx += fix1;
644 ty += fiy1;
645 tz += fiz1;
646 f[i_coord_offset+DIM3*2+XX0] += fix2;
647 f[i_coord_offset+DIM3*2+YY1] += fiy2;
648 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
649 tx += fix2;
650 ty += fiy2;
651 tz += fiz2;
652 f[i_coord_offset+DIM3*3+XX0] += fix3;
653 f[i_coord_offset+DIM3*3+YY1] += fiy3;
654 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
655 tx += fix3;
656 ty += fiy3;
657 tz += fiz3;
658 fshift[i_shift_offset+XX0] += tx;
659 fshift[i_shift_offset+YY1] += ty;
660 fshift[i_shift_offset+ZZ2] += tz;
661
662 ggid = gid[iidx];
663 /* Update potential energies */
664 kernel_data->energygrp_elec[ggid] += velecsum;
665 kernel_data->energygrp_vdw[ggid] += vvdwsum;
666
667 /* Increment number of inner iterations */
668 inneriter += j_index_end - j_index_start;
669
670 /* Outer loop uses 41 flops */
671 }
672
673 /* Increment number of outer iterations */
674 outeriter += nri;
675
676 /* Update outer/inner flops */
677
678 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*41 + inneriter*332)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4W4_VF] += outeriter*41 +
inneriter*332
;
679}
680/*
681 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSw_GeomW4W4_F_c
682 * Electrostatics interaction: ReactionField
683 * VdW interaction: LennardJones
684 * Geometry: Water4-Water4
685 * Calculate force/pot: Force
686 */
687void
688nb_kernel_ElecRFCut_VdwLJSw_GeomW4W4_F_c
689 (t_nblist * gmx_restrict__restrict nlist,
690 rvec * gmx_restrict__restrict xx,
691 rvec * gmx_restrict__restrict ff,
692 t_forcerec * gmx_restrict__restrict fr,
693 t_mdatoms * gmx_restrict__restrict mdatoms,
694 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
695 t_nrnb * gmx_restrict__restrict nrnb)
696{
697 int i_shift_offset,i_coord_offset,j_coord_offset;
698 int j_index_start,j_index_end;
699 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
700 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
701 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
702 real *shiftvec,*fshift,*x,*f;
703 int vdwioffset0;
704 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
705 int vdwioffset1;
706 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
707 int vdwioffset2;
708 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
709 int vdwioffset3;
710 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
711 int vdwjidx0;
712 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
713 int vdwjidx1;
714 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
715 int vdwjidx2;
716 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
717 int vdwjidx3;
718 real jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
719 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
720 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
721 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
722 real dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
723 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
724 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
725 real dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
726 real dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
727 real dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
728 real dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
729 real velec,felec,velecsum,facel,crf,krf,krf2;
730 real *charge;
731 int nvdwtype;
732 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
733 int *vdwtype;
734 real *vdwparam;
735 real rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
736
737 x = xx[0];
738 f = ff[0];
739
740 nri = nlist->nri;
741 iinr = nlist->iinr;
742 jindex = nlist->jindex;
743 jjnr = nlist->jjnr;
744 shiftidx = nlist->shift;
745 gid = nlist->gid;
Value stored to 'gid' is never read
746 shiftvec = fr->shift_vec[0];
747 fshift = fr->fshift[0];
748 facel = fr->epsfac;
749 charge = mdatoms->chargeA;
750 krf = fr->ic->k_rf;
751 krf2 = krf*2.0;
752 crf = fr->ic->c_rf;
753 nvdwtype = fr->ntype;
754 vdwparam = fr->nbfp;
755 vdwtype = mdatoms->typeA;
756
757 /* Setup water-specific parameters */
758 inr = nlist->iinr[0];
759 iq1 = facel*charge[inr+1];
760 iq2 = facel*charge[inr+2];
761 iq3 = facel*charge[inr+3];
762 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
763
764 jq1 = charge[inr+1];
765 jq2 = charge[inr+2];
766 jq3 = charge[inr+3];
767 vdwjidx0 = 2*vdwtype[inr+0];
768 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
769 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
770 qq11 = iq1*jq1;
771 qq12 = iq1*jq2;
772 qq13 = iq1*jq3;
773 qq21 = iq2*jq1;
774 qq22 = iq2*jq2;
775 qq23 = iq2*jq3;
776 qq31 = iq3*jq1;
777 qq32 = iq3*jq2;
778 qq33 = iq3*jq3;
779
780 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
781 rcutoff = fr->rcoulomb;
782 rcutoff2 = rcutoff*rcutoff;
783
784 rswitch = fr->rvdw_switch;
785 /* Setup switch parameters */
786 d = rcutoff-rswitch;
787 swV3 = -10.0/(d*d*d);
788 swV4 = 15.0/(d*d*d*d);
789 swV5 = -6.0/(d*d*d*d*d);
790 swF2 = -30.0/(d*d*d);
791 swF3 = 60.0/(d*d*d*d);
792 swF4 = -30.0/(d*d*d*d*d);
793
794 outeriter = 0;
795 inneriter = 0;
796
797 /* Start outer loop over neighborlists */
798 for(iidx=0; iidx<nri; iidx++)
799 {
800 /* Load shift vector for this list */
801 i_shift_offset = DIM3*shiftidx[iidx];
802 shX = shiftvec[i_shift_offset+XX0];
803 shY = shiftvec[i_shift_offset+YY1];
804 shZ = shiftvec[i_shift_offset+ZZ2];
805
806 /* Load limits for loop over neighbors */
807 j_index_start = jindex[iidx];
808 j_index_end = jindex[iidx+1];
809
810 /* Get outer coordinate index */
811 inr = iinr[iidx];
812 i_coord_offset = DIM3*inr;
813
814 /* Load i particle coords and add shift vector */
815 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
816 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
817 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
818 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
819 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
820 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
821 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
822 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
823 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
824 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
825 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
826 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
827
828 fix0 = 0.0;
829 fiy0 = 0.0;
830 fiz0 = 0.0;
831 fix1 = 0.0;
832 fiy1 = 0.0;
833 fiz1 = 0.0;
834 fix2 = 0.0;
835 fiy2 = 0.0;
836 fiz2 = 0.0;
837 fix3 = 0.0;
838 fiy3 = 0.0;
839 fiz3 = 0.0;
840
841 /* Start inner kernel loop */
842 for(jidx=j_index_start; jidx<j_index_end; jidx++)
843 {
844 /* Get j neighbor index, and coordinate index */
845 jnr = jjnr[jidx];
846 j_coord_offset = DIM3*jnr;
847
848 /* load j atom coordinates */
849 jx0 = x[j_coord_offset+DIM3*0+XX0];
850 jy0 = x[j_coord_offset+DIM3*0+YY1];
851 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
852 jx1 = x[j_coord_offset+DIM3*1+XX0];
853 jy1 = x[j_coord_offset+DIM3*1+YY1];
854 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
855 jx2 = x[j_coord_offset+DIM3*2+XX0];
856 jy2 = x[j_coord_offset+DIM3*2+YY1];
857 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
858 jx3 = x[j_coord_offset+DIM3*3+XX0];
859 jy3 = x[j_coord_offset+DIM3*3+YY1];
860 jz3 = x[j_coord_offset+DIM3*3+ZZ2];
861
862 /* Calculate displacement vector */
863 dx00 = ix0 - jx0;
864 dy00 = iy0 - jy0;
865 dz00 = iz0 - jz0;
866 dx11 = ix1 - jx1;
867 dy11 = iy1 - jy1;
868 dz11 = iz1 - jz1;
869 dx12 = ix1 - jx2;
870 dy12 = iy1 - jy2;
871 dz12 = iz1 - jz2;
872 dx13 = ix1 - jx3;
873 dy13 = iy1 - jy3;
874 dz13 = iz1 - jz3;
875 dx21 = ix2 - jx1;
876 dy21 = iy2 - jy1;
877 dz21 = iz2 - jz1;
878 dx22 = ix2 - jx2;
879 dy22 = iy2 - jy2;
880 dz22 = iz2 - jz2;
881 dx23 = ix2 - jx3;
882 dy23 = iy2 - jy3;
883 dz23 = iz2 - jz3;
884 dx31 = ix3 - jx1;
885 dy31 = iy3 - jy1;
886 dz31 = iz3 - jz1;
887 dx32 = ix3 - jx2;
888 dy32 = iy3 - jy2;
889 dz32 = iz3 - jz2;
890 dx33 = ix3 - jx3;
891 dy33 = iy3 - jy3;
892 dz33 = iz3 - jz3;
893
894 /* Calculate squared distance and things based on it */
895 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
896 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
897 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
898 rsq13 = dx13*dx13+dy13*dy13+dz13*dz13;
899 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
900 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
901 rsq23 = dx23*dx23+dy23*dy23+dz23*dz23;
902 rsq31 = dx31*dx31+dy31*dy31+dz31*dz31;
903 rsq32 = dx32*dx32+dy32*dy32+dz32*dz32;
904 rsq33 = dx33*dx33+dy33*dy33+dz33*dz33;
905
906 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
907 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
908 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
909 rinv13 = gmx_invsqrt(rsq13)gmx_software_invsqrt(rsq13);
910 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
911 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
912 rinv23 = gmx_invsqrt(rsq23)gmx_software_invsqrt(rsq23);
913 rinv31 = gmx_invsqrt(rsq31)gmx_software_invsqrt(rsq31);
914 rinv32 = gmx_invsqrt(rsq32)gmx_software_invsqrt(rsq32);
915 rinv33 = gmx_invsqrt(rsq33)gmx_software_invsqrt(rsq33);
916
917 rinvsq00 = rinv00*rinv00;
918 rinvsq11 = rinv11*rinv11;
919 rinvsq12 = rinv12*rinv12;
920 rinvsq13 = rinv13*rinv13;
921 rinvsq21 = rinv21*rinv21;
922 rinvsq22 = rinv22*rinv22;
923 rinvsq23 = rinv23*rinv23;
924 rinvsq31 = rinv31*rinv31;
925 rinvsq32 = rinv32*rinv32;
926 rinvsq33 = rinv33*rinv33;
927
928 /**************************
929 * CALCULATE INTERACTIONS *
930 **************************/
931
932 if (rsq00<rcutoff2)
933 {
934
935 r00 = rsq00*rinv00;
936
937 /* LENNARD-JONES DISPERSION/REPULSION */
938
939 rinvsix = rinvsq00*rinvsq00*rinvsq00;
940 vvdw6 = c6_00*rinvsix;
941 vvdw12 = c12_00*rinvsix*rinvsix;
942 vvdw = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
943 fvdw = (vvdw12-vvdw6)*rinvsq00;
944
945 d = r00-rswitch;
946 d = (d>0.0) ? d : 0.0;
947 d2 = d*d;
948 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
949
950 dsw = d2*(swF2+d*(swF3+d*swF4));
951
952 /* Evaluate switch function */
953 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
954 fvdw = fvdw*sw - rinv00*vvdw*dsw;
955
956 fscal = fvdw;
957
958 /* Calculate temporary vectorial force */
959 tx = fscal*dx00;
960 ty = fscal*dy00;
961 tz = fscal*dz00;
962
963 /* Update vectorial force */
964 fix0 += tx;
965 fiy0 += ty;
966 fiz0 += tz;
967 f[j_coord_offset+DIM3*0+XX0] -= tx;
968 f[j_coord_offset+DIM3*0+YY1] -= ty;
969 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
970
971 }
972
973 /**************************
974 * CALCULATE INTERACTIONS *
975 **************************/
976
977 if (rsq11<rcutoff2)
978 {
979
980 /* REACTION-FIELD ELECTROSTATICS */
981 felec = qq11*(rinv11*rinvsq11-krf2);
982
983 fscal = felec;
984
985 /* Calculate temporary vectorial force */
986 tx = fscal*dx11;
987 ty = fscal*dy11;
988 tz = fscal*dz11;
989
990 /* Update vectorial force */
991 fix1 += tx;
992 fiy1 += ty;
993 fiz1 += tz;
994 f[j_coord_offset+DIM3*1+XX0] -= tx;
995 f[j_coord_offset+DIM3*1+YY1] -= ty;
996 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
997
998 }
999
1000 /**************************
1001 * CALCULATE INTERACTIONS *
1002 **************************/
1003
1004 if (rsq12<rcutoff2)
1005 {
1006
1007 /* REACTION-FIELD ELECTROSTATICS */
1008 felec = qq12*(rinv12*rinvsq12-krf2);
1009
1010 fscal = felec;
1011
1012 /* Calculate temporary vectorial force */
1013 tx = fscal*dx12;
1014 ty = fscal*dy12;
1015 tz = fscal*dz12;
1016
1017 /* Update vectorial force */
1018 fix1 += tx;
1019 fiy1 += ty;
1020 fiz1 += tz;
1021 f[j_coord_offset+DIM3*2+XX0] -= tx;
1022 f[j_coord_offset+DIM3*2+YY1] -= ty;
1023 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1024
1025 }
1026
1027 /**************************
1028 * CALCULATE INTERACTIONS *
1029 **************************/
1030
1031 if (rsq13<rcutoff2)
1032 {
1033
1034 /* REACTION-FIELD ELECTROSTATICS */
1035 felec = qq13*(rinv13*rinvsq13-krf2);
1036
1037 fscal = felec;
1038
1039 /* Calculate temporary vectorial force */
1040 tx = fscal*dx13;
1041 ty = fscal*dy13;
1042 tz = fscal*dz13;
1043
1044 /* Update vectorial force */
1045 fix1 += tx;
1046 fiy1 += ty;
1047 fiz1 += tz;
1048 f[j_coord_offset+DIM3*3+XX0] -= tx;
1049 f[j_coord_offset+DIM3*3+YY1] -= ty;
1050 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1051
1052 }
1053
1054 /**************************
1055 * CALCULATE INTERACTIONS *
1056 **************************/
1057
1058 if (rsq21<rcutoff2)
1059 {
1060
1061 /* REACTION-FIELD ELECTROSTATICS */
1062 felec = qq21*(rinv21*rinvsq21-krf2);
1063
1064 fscal = felec;
1065
1066 /* Calculate temporary vectorial force */
1067 tx = fscal*dx21;
1068 ty = fscal*dy21;
1069 tz = fscal*dz21;
1070
1071 /* Update vectorial force */
1072 fix2 += tx;
1073 fiy2 += ty;
1074 fiz2 += tz;
1075 f[j_coord_offset+DIM3*1+XX0] -= tx;
1076 f[j_coord_offset+DIM3*1+YY1] -= ty;
1077 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1078
1079 }
1080
1081 /**************************
1082 * CALCULATE INTERACTIONS *
1083 **************************/
1084
1085 if (rsq22<rcutoff2)
1086 {
1087
1088 /* REACTION-FIELD ELECTROSTATICS */
1089 felec = qq22*(rinv22*rinvsq22-krf2);
1090
1091 fscal = felec;
1092
1093 /* Calculate temporary vectorial force */
1094 tx = fscal*dx22;
1095 ty = fscal*dy22;
1096 tz = fscal*dz22;
1097
1098 /* Update vectorial force */
1099 fix2 += tx;
1100 fiy2 += ty;
1101 fiz2 += tz;
1102 f[j_coord_offset+DIM3*2+XX0] -= tx;
1103 f[j_coord_offset+DIM3*2+YY1] -= ty;
1104 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1105
1106 }
1107
1108 /**************************
1109 * CALCULATE INTERACTIONS *
1110 **************************/
1111
1112 if (rsq23<rcutoff2)
1113 {
1114
1115 /* REACTION-FIELD ELECTROSTATICS */
1116 felec = qq23*(rinv23*rinvsq23-krf2);
1117
1118 fscal = felec;
1119
1120 /* Calculate temporary vectorial force */
1121 tx = fscal*dx23;
1122 ty = fscal*dy23;
1123 tz = fscal*dz23;
1124
1125 /* Update vectorial force */
1126 fix2 += tx;
1127 fiy2 += ty;
1128 fiz2 += tz;
1129 f[j_coord_offset+DIM3*3+XX0] -= tx;
1130 f[j_coord_offset+DIM3*3+YY1] -= ty;
1131 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1132
1133 }
1134
1135 /**************************
1136 * CALCULATE INTERACTIONS *
1137 **************************/
1138
1139 if (rsq31<rcutoff2)
1140 {
1141
1142 /* REACTION-FIELD ELECTROSTATICS */
1143 felec = qq31*(rinv31*rinvsq31-krf2);
1144
1145 fscal = felec;
1146
1147 /* Calculate temporary vectorial force */
1148 tx = fscal*dx31;
1149 ty = fscal*dy31;
1150 tz = fscal*dz31;
1151
1152 /* Update vectorial force */
1153 fix3 += tx;
1154 fiy3 += ty;
1155 fiz3 += tz;
1156 f[j_coord_offset+DIM3*1+XX0] -= tx;
1157 f[j_coord_offset+DIM3*1+YY1] -= ty;
1158 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1159
1160 }
1161
1162 /**************************
1163 * CALCULATE INTERACTIONS *
1164 **************************/
1165
1166 if (rsq32<rcutoff2)
1167 {
1168
1169 /* REACTION-FIELD ELECTROSTATICS */
1170 felec = qq32*(rinv32*rinvsq32-krf2);
1171
1172 fscal = felec;
1173
1174 /* Calculate temporary vectorial force */
1175 tx = fscal*dx32;
1176 ty = fscal*dy32;
1177 tz = fscal*dz32;
1178
1179 /* Update vectorial force */
1180 fix3 += tx;
1181 fiy3 += ty;
1182 fiz3 += tz;
1183 f[j_coord_offset+DIM3*2+XX0] -= tx;
1184 f[j_coord_offset+DIM3*2+YY1] -= ty;
1185 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1186
1187 }
1188
1189 /**************************
1190 * CALCULATE INTERACTIONS *
1191 **************************/
1192
1193 if (rsq33<rcutoff2)
1194 {
1195
1196 /* REACTION-FIELD ELECTROSTATICS */
1197 felec = qq33*(rinv33*rinvsq33-krf2);
1198
1199 fscal = felec;
1200
1201 /* Calculate temporary vectorial force */
1202 tx = fscal*dx33;
1203 ty = fscal*dy33;
1204 tz = fscal*dz33;
1205
1206 /* Update vectorial force */
1207 fix3 += tx;
1208 fiy3 += ty;
1209 fiz3 += tz;
1210 f[j_coord_offset+DIM3*3+XX0] -= tx;
1211 f[j_coord_offset+DIM3*3+YY1] -= ty;
1212 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1213
1214 }
1215
1216 /* Inner loop uses 285 flops */
1217 }
1218 /* End of innermost loop */
1219
1220 tx = ty = tz = 0;
1221 f[i_coord_offset+DIM3*0+XX0] += fix0;
1222 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1223 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1224 tx += fix0;
1225 ty += fiy0;
1226 tz += fiz0;
1227 f[i_coord_offset+DIM3*1+XX0] += fix1;
1228 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1229 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1230 tx += fix1;
1231 ty += fiy1;
1232 tz += fiz1;
1233 f[i_coord_offset+DIM3*2+XX0] += fix2;
1234 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1235 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1236 tx += fix2;
1237 ty += fiy2;
1238 tz += fiz2;
1239 f[i_coord_offset+DIM3*3+XX0] += fix3;
1240 f[i_coord_offset+DIM3*3+YY1] += fiy3;
1241 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
1242 tx += fix3;
1243 ty += fiy3;
1244 tz += fiz3;
1245 fshift[i_shift_offset+XX0] += tx;
1246 fshift[i_shift_offset+YY1] += ty;
1247 fshift[i_shift_offset+ZZ2] += tz;
1248
1249 /* Increment number of inner iterations */
1250 inneriter += j_index_end - j_index_start;
1251
1252 /* Outer loop uses 39 flops */
1253 }
1254
1255 /* Increment number of outer iterations */
1256 outeriter += nri;
1257
1258 /* Update outer/inner flops */
1259
1260 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*39 + inneriter*285)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4W4_F] += outeriter*39 + inneriter
*285
;
1261}