Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEw_VdwLJEw_GeomW4P1_c.c
Location:line 120, column 5
Description:Value stored to 'sh_lj_ewald' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: LJEwald
53 * Geometry: Water4-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEw_VdwLJEw_GeomW4P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwioffset3;
79 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80 int vdwjidx0;
81 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
83 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
84 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
85 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
86 real velec,felec,velecsum,facel,crf,krf,krf2;
87 real *charge;
88 int nvdwtype;
89 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
90 int *vdwtype;
91 real *vdwparam;
92 real c6grid_00;
93 real c6grid_10;
94 real c6grid_20;
95 real c6grid_30;
96 real ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,sh_lj_ewald;
97 real *vdwgridparam;
98 int ewitab;
99 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
100 real *ewtab;
101
102 x = xx[0];
103 f = ff[0];
104
105 nri = nlist->nri;
106 iinr = nlist->iinr;
107 jindex = nlist->jindex;
108 jjnr = nlist->jjnr;
109 shiftidx = nlist->shift;
110 gid = nlist->gid;
111 shiftvec = fr->shift_vec[0];
112 fshift = fr->fshift[0];
113 facel = fr->epsfac;
114 charge = mdatoms->chargeA;
115 nvdwtype = fr->ntype;
116 vdwparam = fr->nbfp;
117 vdwtype = mdatoms->typeA;
118 vdwgridparam = fr->ljpme_c6grid;
119 ewclj = fr->ewaldcoeff_lj;
120 sh_lj_ewald = fr->ic->sh_lj_ewald;
Value stored to 'sh_lj_ewald' is never read
121 ewclj2 = ewclj*ewclj;
122 ewclj6 = ewclj2*ewclj2*ewclj2;
123
124 sh_ewald = fr->ic->sh_ewald;
125 ewtab = fr->ic->tabq_coul_FDV0;
126 ewtabscale = fr->ic->tabq_scale;
127 ewtabhalfspace = 0.5/ewtabscale;
128
129 /* Setup water-specific parameters */
130 inr = nlist->iinr[0];
131 iq1 = facel*charge[inr+1];
132 iq2 = facel*charge[inr+2];
133 iq3 = facel*charge[inr+3];
134 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
135
136 outeriter = 0;
137 inneriter = 0;
138
139 /* Start outer loop over neighborlists */
140 for(iidx=0; iidx<nri; iidx++)
141 {
142 /* Load shift vector for this list */
143 i_shift_offset = DIM3*shiftidx[iidx];
144 shX = shiftvec[i_shift_offset+XX0];
145 shY = shiftvec[i_shift_offset+YY1];
146 shZ = shiftvec[i_shift_offset+ZZ2];
147
148 /* Load limits for loop over neighbors */
149 j_index_start = jindex[iidx];
150 j_index_end = jindex[iidx+1];
151
152 /* Get outer coordinate index */
153 inr = iinr[iidx];
154 i_coord_offset = DIM3*inr;
155
156 /* Load i particle coords and add shift vector */
157 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
158 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
159 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
160 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
161 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
162 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
163 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
164 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
165 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
166 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
167 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
168 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
169
170 fix0 = 0.0;
171 fiy0 = 0.0;
172 fiz0 = 0.0;
173 fix1 = 0.0;
174 fiy1 = 0.0;
175 fiz1 = 0.0;
176 fix2 = 0.0;
177 fiy2 = 0.0;
178 fiz2 = 0.0;
179 fix3 = 0.0;
180 fiy3 = 0.0;
181 fiz3 = 0.0;
182
183 /* Reset potential sums */
184 velecsum = 0.0;
185 vvdwsum = 0.0;
186
187 /* Start inner kernel loop */
188 for(jidx=j_index_start; jidx<j_index_end; jidx++)
189 {
190 /* Get j neighbor index, and coordinate index */
191 jnr = jjnr[jidx];
192 j_coord_offset = DIM3*jnr;
193
194 /* load j atom coordinates */
195 jx0 = x[j_coord_offset+DIM3*0+XX0];
196 jy0 = x[j_coord_offset+DIM3*0+YY1];
197 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
198
199 /* Calculate displacement vector */
200 dx00 = ix0 - jx0;
201 dy00 = iy0 - jy0;
202 dz00 = iz0 - jz0;
203 dx10 = ix1 - jx0;
204 dy10 = iy1 - jy0;
205 dz10 = iz1 - jz0;
206 dx20 = ix2 - jx0;
207 dy20 = iy2 - jy0;
208 dz20 = iz2 - jz0;
209 dx30 = ix3 - jx0;
210 dy30 = iy3 - jy0;
211 dz30 = iz3 - jz0;
212
213 /* Calculate squared distance and things based on it */
214 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
215 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
216 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
217 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
218
219 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
220 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
221 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
222 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
223
224 rinvsq00 = rinv00*rinv00;
225 rinvsq10 = rinv10*rinv10;
226 rinvsq20 = rinv20*rinv20;
227 rinvsq30 = rinv30*rinv30;
228
229 /* Load parameters for j particles */
230 jq0 = charge[jnr+0];
231 vdwjidx0 = 2*vdwtype[jnr+0];
232
233 /**************************
234 * CALCULATE INTERACTIONS *
235 **************************/
236
237 r00 = rsq00*rinv00;
238
239 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
240 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
241 c6grid_00 = vdwgridparam[vdwioffset0+vdwjidx0];
242
243 rinvsix = rinvsq00*rinvsq00*rinvsq00;
244 ewcljrsq = ewclj2*rsq00;
245 exponent = exp(-ewcljrsq);
246 poly = exponent*(1.0 + ewcljrsq + ewcljrsq*ewcljrsq*0.5);
247 vvdw6 = (c6_00-c6grid_00*(1.0-poly))*rinvsix;
248 vvdw12 = c12_00*rinvsix*rinvsix;
249 vvdw = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
250 fvdw = (vvdw12 - vvdw6 - c6grid_00*(1.0/6.0)*exponent*ewclj6)*rinvsq00;
251
252 /* Update potential sums from outer loop */
253 vvdwsum += vvdw;
254
255 fscal = fvdw;
256
257 /* Calculate temporary vectorial force */
258 tx = fscal*dx00;
259 ty = fscal*dy00;
260 tz = fscal*dz00;
261
262 /* Update vectorial force */
263 fix0 += tx;
264 fiy0 += ty;
265 fiz0 += tz;
266 f[j_coord_offset+DIM3*0+XX0] -= tx;
267 f[j_coord_offset+DIM3*0+YY1] -= ty;
268 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
269
270 /**************************
271 * CALCULATE INTERACTIONS *
272 **************************/
273
274 r10 = rsq10*rinv10;
275
276 qq10 = iq1*jq0;
277
278 /* EWALD ELECTROSTATICS */
279
280 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
281 ewrt = r10*ewtabscale;
282 ewitab = ewrt;
283 eweps = ewrt-ewitab;
284 ewitab = 4*ewitab;
285 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
286 velec = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
287 felec = qq10*rinv10*(rinvsq10-felec);
288
289 /* Update potential sums from outer loop */
290 velecsum += velec;
291
292 fscal = felec;
293
294 /* Calculate temporary vectorial force */
295 tx = fscal*dx10;
296 ty = fscal*dy10;
297 tz = fscal*dz10;
298
299 /* Update vectorial force */
300 fix1 += tx;
301 fiy1 += ty;
302 fiz1 += tz;
303 f[j_coord_offset+DIM3*0+XX0] -= tx;
304 f[j_coord_offset+DIM3*0+YY1] -= ty;
305 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
306
307 /**************************
308 * CALCULATE INTERACTIONS *
309 **************************/
310
311 r20 = rsq20*rinv20;
312
313 qq20 = iq2*jq0;
314
315 /* EWALD ELECTROSTATICS */
316
317 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
318 ewrt = r20*ewtabscale;
319 ewitab = ewrt;
320 eweps = ewrt-ewitab;
321 ewitab = 4*ewitab;
322 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
323 velec = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
324 felec = qq20*rinv20*(rinvsq20-felec);
325
326 /* Update potential sums from outer loop */
327 velecsum += velec;
328
329 fscal = felec;
330
331 /* Calculate temporary vectorial force */
332 tx = fscal*dx20;
333 ty = fscal*dy20;
334 tz = fscal*dz20;
335
336 /* Update vectorial force */
337 fix2 += tx;
338 fiy2 += ty;
339 fiz2 += tz;
340 f[j_coord_offset+DIM3*0+XX0] -= tx;
341 f[j_coord_offset+DIM3*0+YY1] -= ty;
342 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
343
344 /**************************
345 * CALCULATE INTERACTIONS *
346 **************************/
347
348 r30 = rsq30*rinv30;
349
350 qq30 = iq3*jq0;
351
352 /* EWALD ELECTROSTATICS */
353
354 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
355 ewrt = r30*ewtabscale;
356 ewitab = ewrt;
357 eweps = ewrt-ewitab;
358 ewitab = 4*ewitab;
359 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
360 velec = qq30*(rinv30-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
361 felec = qq30*rinv30*(rinvsq30-felec);
362
363 /* Update potential sums from outer loop */
364 velecsum += velec;
365
366 fscal = felec;
367
368 /* Calculate temporary vectorial force */
369 tx = fscal*dx30;
370 ty = fscal*dy30;
371 tz = fscal*dz30;
372
373 /* Update vectorial force */
374 fix3 += tx;
375 fiy3 += ty;
376 fiz3 += tz;
377 f[j_coord_offset+DIM3*0+XX0] -= tx;
378 f[j_coord_offset+DIM3*0+YY1] -= ty;
379 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
380
381 /* Inner loop uses 172 flops */
382 }
383 /* End of innermost loop */
384
385 tx = ty = tz = 0;
386 f[i_coord_offset+DIM3*0+XX0] += fix0;
387 f[i_coord_offset+DIM3*0+YY1] += fiy0;
388 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
389 tx += fix0;
390 ty += fiy0;
391 tz += fiz0;
392 f[i_coord_offset+DIM3*1+XX0] += fix1;
393 f[i_coord_offset+DIM3*1+YY1] += fiy1;
394 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
395 tx += fix1;
396 ty += fiy1;
397 tz += fiz1;
398 f[i_coord_offset+DIM3*2+XX0] += fix2;
399 f[i_coord_offset+DIM3*2+YY1] += fiy2;
400 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
401 tx += fix2;
402 ty += fiy2;
403 tz += fiz2;
404 f[i_coord_offset+DIM3*3+XX0] += fix3;
405 f[i_coord_offset+DIM3*3+YY1] += fiy3;
406 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
407 tx += fix3;
408 ty += fiy3;
409 tz += fiz3;
410 fshift[i_shift_offset+XX0] += tx;
411 fshift[i_shift_offset+YY1] += ty;
412 fshift[i_shift_offset+ZZ2] += tz;
413
414 ggid = gid[iidx];
415 /* Update potential energies */
416 kernel_data->energygrp_elec[ggid] += velecsum;
417 kernel_data->energygrp_vdw[ggid] += vvdwsum;
418
419 /* Increment number of inner iterations */
420 inneriter += j_index_end - j_index_start;
421
422 /* Outer loop uses 41 flops */
423 }
424
425 /* Increment number of outer iterations */
426 outeriter += nri;
427
428 /* Update outer/inner flops */
429
430 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*172)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_VF] += outeriter*41 + inneriter
*172
;
431}
432/*
433 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_c
434 * Electrostatics interaction: Ewald
435 * VdW interaction: LJEwald
436 * Geometry: Water4-Particle
437 * Calculate force/pot: Force
438 */
439void
440nb_kernel_ElecEw_VdwLJEw_GeomW4P1_F_c
441 (t_nblist * gmx_restrict__restrict nlist,
442 rvec * gmx_restrict__restrict xx,
443 rvec * gmx_restrict__restrict ff,
444 t_forcerec * gmx_restrict__restrict fr,
445 t_mdatoms * gmx_restrict__restrict mdatoms,
446 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
447 t_nrnb * gmx_restrict__restrict nrnb)
448{
449 int i_shift_offset,i_coord_offset,j_coord_offset;
450 int j_index_start,j_index_end;
451 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
452 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
453 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
454 real *shiftvec,*fshift,*x,*f;
455 int vdwioffset0;
456 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
457 int vdwioffset1;
458 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
459 int vdwioffset2;
460 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
461 int vdwioffset3;
462 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
463 int vdwjidx0;
464 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
465 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
466 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
467 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
468 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
469 real velec,felec,velecsum,facel,crf,krf,krf2;
470 real *charge;
471 int nvdwtype;
472 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
473 int *vdwtype;
474 real *vdwparam;
475 real c6grid_00;
476 real c6grid_10;
477 real c6grid_20;
478 real c6grid_30;
479 real ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,sh_lj_ewald;
480 real *vdwgridparam;
481 int ewitab;
482 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
483 real *ewtab;
484
485 x = xx[0];
486 f = ff[0];
487
488 nri = nlist->nri;
489 iinr = nlist->iinr;
490 jindex = nlist->jindex;
491 jjnr = nlist->jjnr;
492 shiftidx = nlist->shift;
493 gid = nlist->gid;
494 shiftvec = fr->shift_vec[0];
495 fshift = fr->fshift[0];
496 facel = fr->epsfac;
497 charge = mdatoms->chargeA;
498 nvdwtype = fr->ntype;
499 vdwparam = fr->nbfp;
500 vdwtype = mdatoms->typeA;
501 vdwgridparam = fr->ljpme_c6grid;
502 ewclj = fr->ewaldcoeff_lj;
503 sh_lj_ewald = fr->ic->sh_lj_ewald;
504 ewclj2 = ewclj*ewclj;
505 ewclj6 = ewclj2*ewclj2*ewclj2;
506
507 sh_ewald = fr->ic->sh_ewald;
508 ewtab = fr->ic->tabq_coul_F;
509 ewtabscale = fr->ic->tabq_scale;
510 ewtabhalfspace = 0.5/ewtabscale;
511
512 /* Setup water-specific parameters */
513 inr = nlist->iinr[0];
514 iq1 = facel*charge[inr+1];
515 iq2 = facel*charge[inr+2];
516 iq3 = facel*charge[inr+3];
517 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
518
519 outeriter = 0;
520 inneriter = 0;
521
522 /* Start outer loop over neighborlists */
523 for(iidx=0; iidx<nri; iidx++)
524 {
525 /* Load shift vector for this list */
526 i_shift_offset = DIM3*shiftidx[iidx];
527 shX = shiftvec[i_shift_offset+XX0];
528 shY = shiftvec[i_shift_offset+YY1];
529 shZ = shiftvec[i_shift_offset+ZZ2];
530
531 /* Load limits for loop over neighbors */
532 j_index_start = jindex[iidx];
533 j_index_end = jindex[iidx+1];
534
535 /* Get outer coordinate index */
536 inr = iinr[iidx];
537 i_coord_offset = DIM3*inr;
538
539 /* Load i particle coords and add shift vector */
540 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
541 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
542 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
543 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
544 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
545 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
546 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
547 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
548 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
549 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
550 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
551 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
552
553 fix0 = 0.0;
554 fiy0 = 0.0;
555 fiz0 = 0.0;
556 fix1 = 0.0;
557 fiy1 = 0.0;
558 fiz1 = 0.0;
559 fix2 = 0.0;
560 fiy2 = 0.0;
561 fiz2 = 0.0;
562 fix3 = 0.0;
563 fiy3 = 0.0;
564 fiz3 = 0.0;
565
566 /* Start inner kernel loop */
567 for(jidx=j_index_start; jidx<j_index_end; jidx++)
568 {
569 /* Get j neighbor index, and coordinate index */
570 jnr = jjnr[jidx];
571 j_coord_offset = DIM3*jnr;
572
573 /* load j atom coordinates */
574 jx0 = x[j_coord_offset+DIM3*0+XX0];
575 jy0 = x[j_coord_offset+DIM3*0+YY1];
576 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
577
578 /* Calculate displacement vector */
579 dx00 = ix0 - jx0;
580 dy00 = iy0 - jy0;
581 dz00 = iz0 - jz0;
582 dx10 = ix1 - jx0;
583 dy10 = iy1 - jy0;
584 dz10 = iz1 - jz0;
585 dx20 = ix2 - jx0;
586 dy20 = iy2 - jy0;
587 dz20 = iz2 - jz0;
588 dx30 = ix3 - jx0;
589 dy30 = iy3 - jy0;
590 dz30 = iz3 - jz0;
591
592 /* Calculate squared distance and things based on it */
593 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
594 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
595 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
596 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
597
598 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
599 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
600 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
601 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
602
603 rinvsq00 = rinv00*rinv00;
604 rinvsq10 = rinv10*rinv10;
605 rinvsq20 = rinv20*rinv20;
606 rinvsq30 = rinv30*rinv30;
607
608 /* Load parameters for j particles */
609 jq0 = charge[jnr+0];
610 vdwjidx0 = 2*vdwtype[jnr+0];
611
612 /**************************
613 * CALCULATE INTERACTIONS *
614 **************************/
615
616 r00 = rsq00*rinv00;
617
618 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
619 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
620 c6grid_00 = vdwgridparam[vdwioffset0+vdwjidx0];
621
622 rinvsix = rinvsq00*rinvsq00*rinvsq00;
623 ewcljrsq = ewclj2*rsq00;
624 exponent = exp(-ewcljrsq);
625 poly = exponent*(1.0 + ewcljrsq + ewcljrsq*ewcljrsq*0.5);
626 fvdw = (((c12_00*rinvsix - c6_00 + c6grid_00*(1.0-poly))*rinvsix) - c6grid_00*(1.0/6.0)*exponent*ewclj6)*rinvsq00;
627
628 fscal = fvdw;
629
630 /* Calculate temporary vectorial force */
631 tx = fscal*dx00;
632 ty = fscal*dy00;
633 tz = fscal*dz00;
634
635 /* Update vectorial force */
636 fix0 += tx;
637 fiy0 += ty;
638 fiz0 += tz;
639 f[j_coord_offset+DIM3*0+XX0] -= tx;
640 f[j_coord_offset+DIM3*0+YY1] -= ty;
641 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
642
643 /**************************
644 * CALCULATE INTERACTIONS *
645 **************************/
646
647 r10 = rsq10*rinv10;
648
649 qq10 = iq1*jq0;
650
651 /* EWALD ELECTROSTATICS */
652
653 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
654 ewrt = r10*ewtabscale;
655 ewitab = ewrt;
656 eweps = ewrt-ewitab;
657 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
658 felec = qq10*rinv10*(rinvsq10-felec);
659
660 fscal = felec;
661
662 /* Calculate temporary vectorial force */
663 tx = fscal*dx10;
664 ty = fscal*dy10;
665 tz = fscal*dz10;
666
667 /* Update vectorial force */
668 fix1 += tx;
669 fiy1 += ty;
670 fiz1 += tz;
671 f[j_coord_offset+DIM3*0+XX0] -= tx;
672 f[j_coord_offset+DIM3*0+YY1] -= ty;
673 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
674
675 /**************************
676 * CALCULATE INTERACTIONS *
677 **************************/
678
679 r20 = rsq20*rinv20;
680
681 qq20 = iq2*jq0;
682
683 /* EWALD ELECTROSTATICS */
684
685 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
686 ewrt = r20*ewtabscale;
687 ewitab = ewrt;
688 eweps = ewrt-ewitab;
689 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
690 felec = qq20*rinv20*(rinvsq20-felec);
691
692 fscal = felec;
693
694 /* Calculate temporary vectorial force */
695 tx = fscal*dx20;
696 ty = fscal*dy20;
697 tz = fscal*dz20;
698
699 /* Update vectorial force */
700 fix2 += tx;
701 fiy2 += ty;
702 fiz2 += tz;
703 f[j_coord_offset+DIM3*0+XX0] -= tx;
704 f[j_coord_offset+DIM3*0+YY1] -= ty;
705 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
706
707 /**************************
708 * CALCULATE INTERACTIONS *
709 **************************/
710
711 r30 = rsq30*rinv30;
712
713 qq30 = iq3*jq0;
714
715 /* EWALD ELECTROSTATICS */
716
717 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
718 ewrt = r30*ewtabscale;
719 ewitab = ewrt;
720 eweps = ewrt-ewitab;
721 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
722 felec = qq30*rinv30*(rinvsq30-felec);
723
724 fscal = felec;
725
726 /* Calculate temporary vectorial force */
727 tx = fscal*dx30;
728 ty = fscal*dy30;
729 tz = fscal*dz30;
730
731 /* Update vectorial force */
732 fix3 += tx;
733 fiy3 += ty;
734 fiz3 += tz;
735 f[j_coord_offset+DIM3*0+XX0] -= tx;
736 f[j_coord_offset+DIM3*0+YY1] -= ty;
737 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
738
739 /* Inner loop uses 146 flops */
740 }
741 /* End of innermost loop */
742
743 tx = ty = tz = 0;
744 f[i_coord_offset+DIM3*0+XX0] += fix0;
745 f[i_coord_offset+DIM3*0+YY1] += fiy0;
746 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
747 tx += fix0;
748 ty += fiy0;
749 tz += fiz0;
750 f[i_coord_offset+DIM3*1+XX0] += fix1;
751 f[i_coord_offset+DIM3*1+YY1] += fiy1;
752 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
753 tx += fix1;
754 ty += fiy1;
755 tz += fiz1;
756 f[i_coord_offset+DIM3*2+XX0] += fix2;
757 f[i_coord_offset+DIM3*2+YY1] += fiy2;
758 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
759 tx += fix2;
760 ty += fiy2;
761 tz += fiz2;
762 f[i_coord_offset+DIM3*3+XX0] += fix3;
763 f[i_coord_offset+DIM3*3+YY1] += fiy3;
764 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
765 tx += fix3;
766 ty += fiy3;
767 tz += fiz3;
768 fshift[i_shift_offset+XX0] += tx;
769 fshift[i_shift_offset+YY1] += ty;
770 fshift[i_shift_offset+ZZ2] += tz;
771
772 /* Increment number of inner iterations */
773 inneriter += j_index_end - j_index_start;
774
775 /* Outer loop uses 39 flops */
776 }
777
778 /* Increment number of outer iterations */
779 outeriter += nri;
780
781 /* Update outer/inner flops */
782
783 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*146)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_F] += outeriter*39 + inneriter
*146
;
784}