Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecRF_VdwCSTab_GeomW4P1_sse4_1_single.c
Location:line 769, column 5
Description:Value stored to 'krf' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_sse4_1_single
54 * Electrostatics interaction: ReactionField
55 * VdW interaction: CubicSplineTable
56 * Geometry: Water4-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecRF_VdwCSTab_GeomW4P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwioffset1;
88 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89 int vdwioffset2;
90 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91 int vdwioffset3;
92 __m128 ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
94 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98 __m128 dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
100 real *charge;
101 int nvdwtype;
102 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103 int *vdwtype;
104 real *vdwparam;
105 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
106 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
107 __m128i vfitab;
108 __m128i ifour = _mm_set1_epi32(4);
109 __m128 rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
110 real *vftab;
111 __m128 dummy_mask,cutoff_mask;
112 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
113 __m128 one = _mm_set1_ps(1.0);
114 __m128 two = _mm_set1_ps(2.0);
115 x = xx[0];
116 f = ff[0];
117
118 nri = nlist->nri;
119 iinr = nlist->iinr;
120 jindex = nlist->jindex;
121 jjnr = nlist->jjnr;
122 shiftidx = nlist->shift;
123 gid = nlist->gid;
124 shiftvec = fr->shift_vec[0];
125 fshift = fr->fshift[0];
126 facel = _mm_set1_ps(fr->epsfac);
127 charge = mdatoms->chargeA;
128 krf = _mm_set1_ps(fr->ic->k_rf);
129 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
130 crf = _mm_set1_ps(fr->ic->c_rf);
131 nvdwtype = fr->ntype;
132 vdwparam = fr->nbfp;
133 vdwtype = mdatoms->typeA;
134
135 vftab = kernel_data->table_vdw->data;
136 vftabscale = _mm_set1_ps(kernel_data->table_vdw->scale);
137
138 /* Setup water-specific parameters */
139 inr = nlist->iinr[0];
140 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
141 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
142 iq3 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
143 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
144
145 /* Avoid stupid compiler warnings */
146 jnrA = jnrB = jnrC = jnrD = 0;
147 j_coord_offsetA = 0;
148 j_coord_offsetB = 0;
149 j_coord_offsetC = 0;
150 j_coord_offsetD = 0;
151
152 outeriter = 0;
153 inneriter = 0;
154
155 for(iidx=0;iidx<4*DIM3;iidx++)
156 {
157 scratch[iidx] = 0.0;
158 }
159
160 /* Start outer loop over neighborlists */
161 for(iidx=0; iidx<nri; iidx++)
162 {
163 /* Load shift vector for this list */
164 i_shift_offset = DIM3*shiftidx[iidx];
165
166 /* Load limits for loop over neighbors */
167 j_index_start = jindex[iidx];
168 j_index_end = jindex[iidx+1];
169
170 /* Get outer coordinate index */
171 inr = iinr[iidx];
172 i_coord_offset = DIM3*inr;
173
174 /* Load i particle coords and add shift vector */
175 gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
176 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
177
178 fix0 = _mm_setzero_ps();
179 fiy0 = _mm_setzero_ps();
180 fiz0 = _mm_setzero_ps();
181 fix1 = _mm_setzero_ps();
182 fiy1 = _mm_setzero_ps();
183 fiz1 = _mm_setzero_ps();
184 fix2 = _mm_setzero_ps();
185 fiy2 = _mm_setzero_ps();
186 fiz2 = _mm_setzero_ps();
187 fix3 = _mm_setzero_ps();
188 fiy3 = _mm_setzero_ps();
189 fiz3 = _mm_setzero_ps();
190
191 /* Reset potential sums */
192 velecsum = _mm_setzero_ps();
193 vvdwsum = _mm_setzero_ps();
194
195 /* Start inner kernel loop */
196 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
197 {
198
199 /* Get j neighbor index, and coordinate index */
200 jnrA = jjnr[jidx];
201 jnrB = jjnr[jidx+1];
202 jnrC = jjnr[jidx+2];
203 jnrD = jjnr[jidx+3];
204 j_coord_offsetA = DIM3*jnrA;
205 j_coord_offsetB = DIM3*jnrB;
206 j_coord_offsetC = DIM3*jnrC;
207 j_coord_offsetD = DIM3*jnrD;
208
209 /* load j atom coordinates */
210 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
211 x+j_coord_offsetC,x+j_coord_offsetD,
212 &jx0,&jy0,&jz0);
213
214 /* Calculate displacement vector */
215 dx00 = _mm_sub_ps(ix0,jx0);
216 dy00 = _mm_sub_ps(iy0,jy0);
217 dz00 = _mm_sub_ps(iz0,jz0);
218 dx10 = _mm_sub_ps(ix1,jx0);
219 dy10 = _mm_sub_ps(iy1,jy0);
220 dz10 = _mm_sub_ps(iz1,jz0);
221 dx20 = _mm_sub_ps(ix2,jx0);
222 dy20 = _mm_sub_ps(iy2,jy0);
223 dz20 = _mm_sub_ps(iz2,jz0);
224 dx30 = _mm_sub_ps(ix3,jx0);
225 dy30 = _mm_sub_ps(iy3,jy0);
226 dz30 = _mm_sub_ps(iz3,jz0);
227
228 /* Calculate squared distance and things based on it */
229 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
230 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
231 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
232 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
233
234 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
235 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
236 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
237 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
238
239 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
240 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
241 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
242
243 /* Load parameters for j particles */
244 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
245 charge+jnrC+0,charge+jnrD+0);
246 vdwjidx0A = 2*vdwtype[jnrA+0];
247 vdwjidx0B = 2*vdwtype[jnrB+0];
248 vdwjidx0C = 2*vdwtype[jnrC+0];
249 vdwjidx0D = 2*vdwtype[jnrD+0];
250
251 fjx0 = _mm_setzero_ps();
252 fjy0 = _mm_setzero_ps();
253 fjz0 = _mm_setzero_ps();
254
255 /**************************
256 * CALCULATE INTERACTIONS *
257 **************************/
258
259 r00 = _mm_mul_ps(rsq00,rinv00);
260
261 /* Compute parameters for interactions between i and j atoms */
262 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
263 vdwparam+vdwioffset0+vdwjidx0B,
264 vdwparam+vdwioffset0+vdwjidx0C,
265 vdwparam+vdwioffset0+vdwjidx0D,
266 &c6_00,&c12_00);
267
268 /* Calculate table index by multiplying r with table scale and truncate to integer */
269 rt = _mm_mul_ps(r00,vftabscale);
270 vfitab = _mm_cvttps_epi32(rt);
271 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
272 vfitab = _mm_slli_epi32(vfitab,3);
273
274 /* CUBIC SPLINE TABLE DISPERSION */
275 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
276 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
277 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
278 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
279 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
280 Heps = _mm_mul_ps(vfeps,H);
281 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
282 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
283 vvdw6 = _mm_mul_ps(c6_00,VV);
284 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
285 fvdw6 = _mm_mul_ps(c6_00,FF);
286
287 /* CUBIC SPLINE TABLE REPULSION */
288 vfitab = _mm_add_epi32(vfitab,ifour);
289 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
290 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
291 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
292 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
293 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
294 Heps = _mm_mul_ps(vfeps,H);
295 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
296 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
297 vvdw12 = _mm_mul_ps(c12_00,VV);
298 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
299 fvdw12 = _mm_mul_ps(c12_00,FF);
300 vvdw = _mm_add_ps(vvdw12,vvdw6);
301 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
302
303 /* Update potential sum for this i atom from the interaction with this j atom. */
304 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
305
306 fscal = fvdw;
307
308 /* Calculate temporary vectorial force */
309 tx = _mm_mul_ps(fscal,dx00);
310 ty = _mm_mul_ps(fscal,dy00);
311 tz = _mm_mul_ps(fscal,dz00);
312
313 /* Update vectorial force */
314 fix0 = _mm_add_ps(fix0,tx);
315 fiy0 = _mm_add_ps(fiy0,ty);
316 fiz0 = _mm_add_ps(fiz0,tz);
317
318 fjx0 = _mm_add_ps(fjx0,tx);
319 fjy0 = _mm_add_ps(fjy0,ty);
320 fjz0 = _mm_add_ps(fjz0,tz);
321
322 /**************************
323 * CALCULATE INTERACTIONS *
324 **************************/
325
326 /* Compute parameters for interactions between i and j atoms */
327 qq10 = _mm_mul_ps(iq1,jq0);
328
329 /* REACTION-FIELD ELECTROSTATICS */
330 velec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
331 felec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
332
333 /* Update potential sum for this i atom from the interaction with this j atom. */
334 velecsum = _mm_add_ps(velecsum,velec);
335
336 fscal = felec;
337
338 /* Calculate temporary vectorial force */
339 tx = _mm_mul_ps(fscal,dx10);
340 ty = _mm_mul_ps(fscal,dy10);
341 tz = _mm_mul_ps(fscal,dz10);
342
343 /* Update vectorial force */
344 fix1 = _mm_add_ps(fix1,tx);
345 fiy1 = _mm_add_ps(fiy1,ty);
346 fiz1 = _mm_add_ps(fiz1,tz);
347
348 fjx0 = _mm_add_ps(fjx0,tx);
349 fjy0 = _mm_add_ps(fjy0,ty);
350 fjz0 = _mm_add_ps(fjz0,tz);
351
352 /**************************
353 * CALCULATE INTERACTIONS *
354 **************************/
355
356 /* Compute parameters for interactions between i and j atoms */
357 qq20 = _mm_mul_ps(iq2,jq0);
358
359 /* REACTION-FIELD ELECTROSTATICS */
360 velec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
361 felec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
362
363 /* Update potential sum for this i atom from the interaction with this j atom. */
364 velecsum = _mm_add_ps(velecsum,velec);
365
366 fscal = felec;
367
368 /* Calculate temporary vectorial force */
369 tx = _mm_mul_ps(fscal,dx20);
370 ty = _mm_mul_ps(fscal,dy20);
371 tz = _mm_mul_ps(fscal,dz20);
372
373 /* Update vectorial force */
374 fix2 = _mm_add_ps(fix2,tx);
375 fiy2 = _mm_add_ps(fiy2,ty);
376 fiz2 = _mm_add_ps(fiz2,tz);
377
378 fjx0 = _mm_add_ps(fjx0,tx);
379 fjy0 = _mm_add_ps(fjy0,ty);
380 fjz0 = _mm_add_ps(fjz0,tz);
381
382 /**************************
383 * CALCULATE INTERACTIONS *
384 **************************/
385
386 /* Compute parameters for interactions between i and j atoms */
387 qq30 = _mm_mul_ps(iq3,jq0);
388
389 /* REACTION-FIELD ELECTROSTATICS */
390 velec = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
391 felec = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
392
393 /* Update potential sum for this i atom from the interaction with this j atom. */
394 velecsum = _mm_add_ps(velecsum,velec);
395
396 fscal = felec;
397
398 /* Calculate temporary vectorial force */
399 tx = _mm_mul_ps(fscal,dx30);
400 ty = _mm_mul_ps(fscal,dy30);
401 tz = _mm_mul_ps(fscal,dz30);
402
403 /* Update vectorial force */
404 fix3 = _mm_add_ps(fix3,tx);
405 fiy3 = _mm_add_ps(fiy3,ty);
406 fiz3 = _mm_add_ps(fiz3,tz);
407
408 fjx0 = _mm_add_ps(fjx0,tx);
409 fjy0 = _mm_add_ps(fjy0,ty);
410 fjz0 = _mm_add_ps(fjz0,tz);
411
412 fjptrA = f+j_coord_offsetA;
413 fjptrB = f+j_coord_offsetB;
414 fjptrC = f+j_coord_offsetC;
415 fjptrD = f+j_coord_offsetD;
416
417 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
418
419 /* Inner loop uses 152 flops */
420 }
421
422 if(jidx<j_index_end)
423 {
424
425 /* Get j neighbor index, and coordinate index */
426 jnrlistA = jjnr[jidx];
427 jnrlistB = jjnr[jidx+1];
428 jnrlistC = jjnr[jidx+2];
429 jnrlistD = jjnr[jidx+3];
430 /* Sign of each element will be negative for non-real atoms.
431 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
432 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
433 */
434 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
435 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
436 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
437 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
438 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
439 j_coord_offsetA = DIM3*jnrA;
440 j_coord_offsetB = DIM3*jnrB;
441 j_coord_offsetC = DIM3*jnrC;
442 j_coord_offsetD = DIM3*jnrD;
443
444 /* load j atom coordinates */
445 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
446 x+j_coord_offsetC,x+j_coord_offsetD,
447 &jx0,&jy0,&jz0);
448
449 /* Calculate displacement vector */
450 dx00 = _mm_sub_ps(ix0,jx0);
451 dy00 = _mm_sub_ps(iy0,jy0);
452 dz00 = _mm_sub_ps(iz0,jz0);
453 dx10 = _mm_sub_ps(ix1,jx0);
454 dy10 = _mm_sub_ps(iy1,jy0);
455 dz10 = _mm_sub_ps(iz1,jz0);
456 dx20 = _mm_sub_ps(ix2,jx0);
457 dy20 = _mm_sub_ps(iy2,jy0);
458 dz20 = _mm_sub_ps(iz2,jz0);
459 dx30 = _mm_sub_ps(ix3,jx0);
460 dy30 = _mm_sub_ps(iy3,jy0);
461 dz30 = _mm_sub_ps(iz3,jz0);
462
463 /* Calculate squared distance and things based on it */
464 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
465 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
466 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
467 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
468
469 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
470 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
471 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
472 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
473
474 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
475 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
476 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
477
478 /* Load parameters for j particles */
479 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
480 charge+jnrC+0,charge+jnrD+0);
481 vdwjidx0A = 2*vdwtype[jnrA+0];
482 vdwjidx0B = 2*vdwtype[jnrB+0];
483 vdwjidx0C = 2*vdwtype[jnrC+0];
484 vdwjidx0D = 2*vdwtype[jnrD+0];
485
486 fjx0 = _mm_setzero_ps();
487 fjy0 = _mm_setzero_ps();
488 fjz0 = _mm_setzero_ps();
489
490 /**************************
491 * CALCULATE INTERACTIONS *
492 **************************/
493
494 r00 = _mm_mul_ps(rsq00,rinv00);
495 r00 = _mm_andnot_ps(dummy_mask,r00);
496
497 /* Compute parameters for interactions between i and j atoms */
498 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
499 vdwparam+vdwioffset0+vdwjidx0B,
500 vdwparam+vdwioffset0+vdwjidx0C,
501 vdwparam+vdwioffset0+vdwjidx0D,
502 &c6_00,&c12_00);
503
504 /* Calculate table index by multiplying r with table scale and truncate to integer */
505 rt = _mm_mul_ps(r00,vftabscale);
506 vfitab = _mm_cvttps_epi32(rt);
507 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
508 vfitab = _mm_slli_epi32(vfitab,3);
509
510 /* CUBIC SPLINE TABLE DISPERSION */
511 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
512 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
513 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
514 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
515 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
516 Heps = _mm_mul_ps(vfeps,H);
517 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
518 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
519 vvdw6 = _mm_mul_ps(c6_00,VV);
520 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
521 fvdw6 = _mm_mul_ps(c6_00,FF);
522
523 /* CUBIC SPLINE TABLE REPULSION */
524 vfitab = _mm_add_epi32(vfitab,ifour);
525 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
526 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
527 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
528 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
529 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
530 Heps = _mm_mul_ps(vfeps,H);
531 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
532 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
533 vvdw12 = _mm_mul_ps(c12_00,VV);
534 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
535 fvdw12 = _mm_mul_ps(c12_00,FF);
536 vvdw = _mm_add_ps(vvdw12,vvdw6);
537 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
538
539 /* Update potential sum for this i atom from the interaction with this j atom. */
540 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
541 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
542
543 fscal = fvdw;
544
545 fscal = _mm_andnot_ps(dummy_mask,fscal);
546
547 /* Calculate temporary vectorial force */
548 tx = _mm_mul_ps(fscal,dx00);
549 ty = _mm_mul_ps(fscal,dy00);
550 tz = _mm_mul_ps(fscal,dz00);
551
552 /* Update vectorial force */
553 fix0 = _mm_add_ps(fix0,tx);
554 fiy0 = _mm_add_ps(fiy0,ty);
555 fiz0 = _mm_add_ps(fiz0,tz);
556
557 fjx0 = _mm_add_ps(fjx0,tx);
558 fjy0 = _mm_add_ps(fjy0,ty);
559 fjz0 = _mm_add_ps(fjz0,tz);
560
561 /**************************
562 * CALCULATE INTERACTIONS *
563 **************************/
564
565 /* Compute parameters for interactions between i and j atoms */
566 qq10 = _mm_mul_ps(iq1,jq0);
567
568 /* REACTION-FIELD ELECTROSTATICS */
569 velec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
570 felec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
571
572 /* Update potential sum for this i atom from the interaction with this j atom. */
573 velec = _mm_andnot_ps(dummy_mask,velec);
574 velecsum = _mm_add_ps(velecsum,velec);
575
576 fscal = felec;
577
578 fscal = _mm_andnot_ps(dummy_mask,fscal);
579
580 /* Calculate temporary vectorial force */
581 tx = _mm_mul_ps(fscal,dx10);
582 ty = _mm_mul_ps(fscal,dy10);
583 tz = _mm_mul_ps(fscal,dz10);
584
585 /* Update vectorial force */
586 fix1 = _mm_add_ps(fix1,tx);
587 fiy1 = _mm_add_ps(fiy1,ty);
588 fiz1 = _mm_add_ps(fiz1,tz);
589
590 fjx0 = _mm_add_ps(fjx0,tx);
591 fjy0 = _mm_add_ps(fjy0,ty);
592 fjz0 = _mm_add_ps(fjz0,tz);
593
594 /**************************
595 * CALCULATE INTERACTIONS *
596 **************************/
597
598 /* Compute parameters for interactions between i and j atoms */
599 qq20 = _mm_mul_ps(iq2,jq0);
600
601 /* REACTION-FIELD ELECTROSTATICS */
602 velec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
603 felec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
604
605 /* Update potential sum for this i atom from the interaction with this j atom. */
606 velec = _mm_andnot_ps(dummy_mask,velec);
607 velecsum = _mm_add_ps(velecsum,velec);
608
609 fscal = felec;
610
611 fscal = _mm_andnot_ps(dummy_mask,fscal);
612
613 /* Calculate temporary vectorial force */
614 tx = _mm_mul_ps(fscal,dx20);
615 ty = _mm_mul_ps(fscal,dy20);
616 tz = _mm_mul_ps(fscal,dz20);
617
618 /* Update vectorial force */
619 fix2 = _mm_add_ps(fix2,tx);
620 fiy2 = _mm_add_ps(fiy2,ty);
621 fiz2 = _mm_add_ps(fiz2,tz);
622
623 fjx0 = _mm_add_ps(fjx0,tx);
624 fjy0 = _mm_add_ps(fjy0,ty);
625 fjz0 = _mm_add_ps(fjz0,tz);
626
627 /**************************
628 * CALCULATE INTERACTIONS *
629 **************************/
630
631 /* Compute parameters for interactions between i and j atoms */
632 qq30 = _mm_mul_ps(iq3,jq0);
633
634 /* REACTION-FIELD ELECTROSTATICS */
635 velec = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
636 felec = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
637
638 /* Update potential sum for this i atom from the interaction with this j atom. */
639 velec = _mm_andnot_ps(dummy_mask,velec);
640 velecsum = _mm_add_ps(velecsum,velec);
641
642 fscal = felec;
643
644 fscal = _mm_andnot_ps(dummy_mask,fscal);
645
646 /* Calculate temporary vectorial force */
647 tx = _mm_mul_ps(fscal,dx30);
648 ty = _mm_mul_ps(fscal,dy30);
649 tz = _mm_mul_ps(fscal,dz30);
650
651 /* Update vectorial force */
652 fix3 = _mm_add_ps(fix3,tx);
653 fiy3 = _mm_add_ps(fiy3,ty);
654 fiz3 = _mm_add_ps(fiz3,tz);
655
656 fjx0 = _mm_add_ps(fjx0,tx);
657 fjy0 = _mm_add_ps(fjy0,ty);
658 fjz0 = _mm_add_ps(fjz0,tz);
659
660 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
661 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
662 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
663 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
664
665 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
666
667 /* Inner loop uses 153 flops */
668 }
669
670 /* End of innermost loop */
671
672 gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
673 f+i_coord_offset,fshift+i_shift_offset);
674
675 ggid = gid[iidx];
676 /* Update potential energies */
677 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
678 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
679
680 /* Increment number of inner iterations */
681 inneriter += j_index_end - j_index_start;
682
683 /* Outer loop uses 26 flops */
684 }
685
686 /* Increment number of outer iterations */
687 outeriter += nri;
688
689 /* Update outer/inner flops */
690
691 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*153)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_VF] += outeriter*26 + inneriter
*153
;
692}
693/*
694 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_sse4_1_single
695 * Electrostatics interaction: ReactionField
696 * VdW interaction: CubicSplineTable
697 * Geometry: Water4-Particle
698 * Calculate force/pot: Force
699 */
700void
701nb_kernel_ElecRF_VdwCSTab_GeomW4P1_F_sse4_1_single
702 (t_nblist * gmx_restrict nlist,
703 rvec * gmx_restrict xx,
704 rvec * gmx_restrict ff,
705 t_forcerec * gmx_restrict fr,
706 t_mdatoms * gmx_restrict mdatoms,
707 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
708 t_nrnb * gmx_restrict nrnb)
709{
710 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
711 * just 0 for non-waters.
712 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
713 * jnr indices corresponding to data put in the four positions in the SIMD register.
714 */
715 int i_shift_offset,i_coord_offset,outeriter,inneriter;
716 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
717 int jnrA,jnrB,jnrC,jnrD;
718 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
719 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
720 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
721 real rcutoff_scalar;
722 real *shiftvec,*fshift,*x,*f;
723 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
724 real scratch[4*DIM3];
725 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
726 int vdwioffset0;
727 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
728 int vdwioffset1;
729 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
730 int vdwioffset2;
731 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
732 int vdwioffset3;
733 __m128 ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
734 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
735 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
736 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
737 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
738 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
739 __m128 dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
740 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
741 real *charge;
742 int nvdwtype;
743 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
744 int *vdwtype;
745 real *vdwparam;
746 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
747 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
748 __m128i vfitab;
749 __m128i ifour = _mm_set1_epi32(4);
750 __m128 rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
751 real *vftab;
752 __m128 dummy_mask,cutoff_mask;
753 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
754 __m128 one = _mm_set1_ps(1.0);
755 __m128 two = _mm_set1_ps(2.0);
756 x = xx[0];
757 f = ff[0];
758
759 nri = nlist->nri;
760 iinr = nlist->iinr;
761 jindex = nlist->jindex;
762 jjnr = nlist->jjnr;
763 shiftidx = nlist->shift;
764 gid = nlist->gid;
765 shiftvec = fr->shift_vec[0];
766 fshift = fr->fshift[0];
767 facel = _mm_set1_ps(fr->epsfac);
768 charge = mdatoms->chargeA;
769 krf = _mm_set1_ps(fr->ic->k_rf);
Value stored to 'krf' is never read
770 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
771 crf = _mm_set1_ps(fr->ic->c_rf);
772 nvdwtype = fr->ntype;
773 vdwparam = fr->nbfp;
774 vdwtype = mdatoms->typeA;
775
776 vftab = kernel_data->table_vdw->data;
777 vftabscale = _mm_set1_ps(kernel_data->table_vdw->scale);
778
779 /* Setup water-specific parameters */
780 inr = nlist->iinr[0];
781 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
782 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
783 iq3 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
784 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
785
786 /* Avoid stupid compiler warnings */
787 jnrA = jnrB = jnrC = jnrD = 0;
788 j_coord_offsetA = 0;
789 j_coord_offsetB = 0;
790 j_coord_offsetC = 0;
791 j_coord_offsetD = 0;
792
793 outeriter = 0;
794 inneriter = 0;
795
796 for(iidx=0;iidx<4*DIM3;iidx++)
797 {
798 scratch[iidx] = 0.0;
799 }
800
801 /* Start outer loop over neighborlists */
802 for(iidx=0; iidx<nri; iidx++)
803 {
804 /* Load shift vector for this list */
805 i_shift_offset = DIM3*shiftidx[iidx];
806
807 /* Load limits for loop over neighbors */
808 j_index_start = jindex[iidx];
809 j_index_end = jindex[iidx+1];
810
811 /* Get outer coordinate index */
812 inr = iinr[iidx];
813 i_coord_offset = DIM3*inr;
814
815 /* Load i particle coords and add shift vector */
816 gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
817 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
818
819 fix0 = _mm_setzero_ps();
820 fiy0 = _mm_setzero_ps();
821 fiz0 = _mm_setzero_ps();
822 fix1 = _mm_setzero_ps();
823 fiy1 = _mm_setzero_ps();
824 fiz1 = _mm_setzero_ps();
825 fix2 = _mm_setzero_ps();
826 fiy2 = _mm_setzero_ps();
827 fiz2 = _mm_setzero_ps();
828 fix3 = _mm_setzero_ps();
829 fiy3 = _mm_setzero_ps();
830 fiz3 = _mm_setzero_ps();
831
832 /* Start inner kernel loop */
833 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
834 {
835
836 /* Get j neighbor index, and coordinate index */
837 jnrA = jjnr[jidx];
838 jnrB = jjnr[jidx+1];
839 jnrC = jjnr[jidx+2];
840 jnrD = jjnr[jidx+3];
841 j_coord_offsetA = DIM3*jnrA;
842 j_coord_offsetB = DIM3*jnrB;
843 j_coord_offsetC = DIM3*jnrC;
844 j_coord_offsetD = DIM3*jnrD;
845
846 /* load j atom coordinates */
847 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
848 x+j_coord_offsetC,x+j_coord_offsetD,
849 &jx0,&jy0,&jz0);
850
851 /* Calculate displacement vector */
852 dx00 = _mm_sub_ps(ix0,jx0);
853 dy00 = _mm_sub_ps(iy0,jy0);
854 dz00 = _mm_sub_ps(iz0,jz0);
855 dx10 = _mm_sub_ps(ix1,jx0);
856 dy10 = _mm_sub_ps(iy1,jy0);
857 dz10 = _mm_sub_ps(iz1,jz0);
858 dx20 = _mm_sub_ps(ix2,jx0);
859 dy20 = _mm_sub_ps(iy2,jy0);
860 dz20 = _mm_sub_ps(iz2,jz0);
861 dx30 = _mm_sub_ps(ix3,jx0);
862 dy30 = _mm_sub_ps(iy3,jy0);
863 dz30 = _mm_sub_ps(iz3,jz0);
864
865 /* Calculate squared distance and things based on it */
866 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
867 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
868 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
869 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
870
871 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
872 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
873 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
874 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
875
876 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
877 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
878 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
879
880 /* Load parameters for j particles */
881 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
882 charge+jnrC+0,charge+jnrD+0);
883 vdwjidx0A = 2*vdwtype[jnrA+0];
884 vdwjidx0B = 2*vdwtype[jnrB+0];
885 vdwjidx0C = 2*vdwtype[jnrC+0];
886 vdwjidx0D = 2*vdwtype[jnrD+0];
887
888 fjx0 = _mm_setzero_ps();
889 fjy0 = _mm_setzero_ps();
890 fjz0 = _mm_setzero_ps();
891
892 /**************************
893 * CALCULATE INTERACTIONS *
894 **************************/
895
896 r00 = _mm_mul_ps(rsq00,rinv00);
897
898 /* Compute parameters for interactions between i and j atoms */
899 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
900 vdwparam+vdwioffset0+vdwjidx0B,
901 vdwparam+vdwioffset0+vdwjidx0C,
902 vdwparam+vdwioffset0+vdwjidx0D,
903 &c6_00,&c12_00);
904
905 /* Calculate table index by multiplying r with table scale and truncate to integer */
906 rt = _mm_mul_ps(r00,vftabscale);
907 vfitab = _mm_cvttps_epi32(rt);
908 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
909 vfitab = _mm_slli_epi32(vfitab,3);
910
911 /* CUBIC SPLINE TABLE DISPERSION */
912 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
913 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
914 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
915 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
916 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
917 Heps = _mm_mul_ps(vfeps,H);
918 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
919 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
920 fvdw6 = _mm_mul_ps(c6_00,FF);
921
922 /* CUBIC SPLINE TABLE REPULSION */
923 vfitab = _mm_add_epi32(vfitab,ifour);
924 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
925 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
926 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
927 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
928 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
929 Heps = _mm_mul_ps(vfeps,H);
930 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
931 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
932 fvdw12 = _mm_mul_ps(c12_00,FF);
933 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
934
935 fscal = fvdw;
936
937 /* Calculate temporary vectorial force */
938 tx = _mm_mul_ps(fscal,dx00);
939 ty = _mm_mul_ps(fscal,dy00);
940 tz = _mm_mul_ps(fscal,dz00);
941
942 /* Update vectorial force */
943 fix0 = _mm_add_ps(fix0,tx);
944 fiy0 = _mm_add_ps(fiy0,ty);
945 fiz0 = _mm_add_ps(fiz0,tz);
946
947 fjx0 = _mm_add_ps(fjx0,tx);
948 fjy0 = _mm_add_ps(fjy0,ty);
949 fjz0 = _mm_add_ps(fjz0,tz);
950
951 /**************************
952 * CALCULATE INTERACTIONS *
953 **************************/
954
955 /* Compute parameters for interactions between i and j atoms */
956 qq10 = _mm_mul_ps(iq1,jq0);
957
958 /* REACTION-FIELD ELECTROSTATICS */
959 felec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
960
961 fscal = felec;
962
963 /* Calculate temporary vectorial force */
964 tx = _mm_mul_ps(fscal,dx10);
965 ty = _mm_mul_ps(fscal,dy10);
966 tz = _mm_mul_ps(fscal,dz10);
967
968 /* Update vectorial force */
969 fix1 = _mm_add_ps(fix1,tx);
970 fiy1 = _mm_add_ps(fiy1,ty);
971 fiz1 = _mm_add_ps(fiz1,tz);
972
973 fjx0 = _mm_add_ps(fjx0,tx);
974 fjy0 = _mm_add_ps(fjy0,ty);
975 fjz0 = _mm_add_ps(fjz0,tz);
976
977 /**************************
978 * CALCULATE INTERACTIONS *
979 **************************/
980
981 /* Compute parameters for interactions between i and j atoms */
982 qq20 = _mm_mul_ps(iq2,jq0);
983
984 /* REACTION-FIELD ELECTROSTATICS */
985 felec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
986
987 fscal = felec;
988
989 /* Calculate temporary vectorial force */
990 tx = _mm_mul_ps(fscal,dx20);
991 ty = _mm_mul_ps(fscal,dy20);
992 tz = _mm_mul_ps(fscal,dz20);
993
994 /* Update vectorial force */
995 fix2 = _mm_add_ps(fix2,tx);
996 fiy2 = _mm_add_ps(fiy2,ty);
997 fiz2 = _mm_add_ps(fiz2,tz);
998
999 fjx0 = _mm_add_ps(fjx0,tx);
1000 fjy0 = _mm_add_ps(fjy0,ty);
1001 fjz0 = _mm_add_ps(fjz0,tz);
1002
1003 /**************************
1004 * CALCULATE INTERACTIONS *
1005 **************************/
1006
1007 /* Compute parameters for interactions between i and j atoms */
1008 qq30 = _mm_mul_ps(iq3,jq0);
1009
1010 /* REACTION-FIELD ELECTROSTATICS */
1011 felec = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1012
1013 fscal = felec;
1014
1015 /* Calculate temporary vectorial force */
1016 tx = _mm_mul_ps(fscal,dx30);
1017 ty = _mm_mul_ps(fscal,dy30);
1018 tz = _mm_mul_ps(fscal,dz30);
1019
1020 /* Update vectorial force */
1021 fix3 = _mm_add_ps(fix3,tx);
1022 fiy3 = _mm_add_ps(fiy3,ty);
1023 fiz3 = _mm_add_ps(fiz3,tz);
1024
1025 fjx0 = _mm_add_ps(fjx0,tx);
1026 fjy0 = _mm_add_ps(fjy0,ty);
1027 fjz0 = _mm_add_ps(fjz0,tz);
1028
1029 fjptrA = f+j_coord_offsetA;
1030 fjptrB = f+j_coord_offsetB;
1031 fjptrC = f+j_coord_offsetC;
1032 fjptrD = f+j_coord_offsetD;
1033
1034 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1035
1036 /* Inner loop uses 129 flops */
1037 }
1038
1039 if(jidx<j_index_end)
1040 {
1041
1042 /* Get j neighbor index, and coordinate index */
1043 jnrlistA = jjnr[jidx];
1044 jnrlistB = jjnr[jidx+1];
1045 jnrlistC = jjnr[jidx+2];
1046 jnrlistD = jjnr[jidx+3];
1047 /* Sign of each element will be negative for non-real atoms.
1048 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1049 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1050 */
1051 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1052 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
1053 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
1054 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
1055 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
1056 j_coord_offsetA = DIM3*jnrA;
1057 j_coord_offsetB = DIM3*jnrB;
1058 j_coord_offsetC = DIM3*jnrC;
1059 j_coord_offsetD = DIM3*jnrD;
1060
1061 /* load j atom coordinates */
1062 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1063 x+j_coord_offsetC,x+j_coord_offsetD,
1064 &jx0,&jy0,&jz0);
1065
1066 /* Calculate displacement vector */
1067 dx00 = _mm_sub_ps(ix0,jx0);
1068 dy00 = _mm_sub_ps(iy0,jy0);
1069 dz00 = _mm_sub_ps(iz0,jz0);
1070 dx10 = _mm_sub_ps(ix1,jx0);
1071 dy10 = _mm_sub_ps(iy1,jy0);
1072 dz10 = _mm_sub_ps(iz1,jz0);
1073 dx20 = _mm_sub_ps(ix2,jx0);
1074 dy20 = _mm_sub_ps(iy2,jy0);
1075 dz20 = _mm_sub_ps(iz2,jz0);
1076 dx30 = _mm_sub_ps(ix3,jx0);
1077 dy30 = _mm_sub_ps(iy3,jy0);
1078 dz30 = _mm_sub_ps(iz3,jz0);
1079
1080 /* Calculate squared distance and things based on it */
1081 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1082 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1083 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1084 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1085
1086 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
1087 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
1088 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
1089 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
1090
1091 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
1092 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
1093 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
1094
1095 /* Load parameters for j particles */
1096 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1097 charge+jnrC+0,charge+jnrD+0);
1098 vdwjidx0A = 2*vdwtype[jnrA+0];
1099 vdwjidx0B = 2*vdwtype[jnrB+0];
1100 vdwjidx0C = 2*vdwtype[jnrC+0];
1101 vdwjidx0D = 2*vdwtype[jnrD+0];
1102
1103 fjx0 = _mm_setzero_ps();
1104 fjy0 = _mm_setzero_ps();
1105 fjz0 = _mm_setzero_ps();
1106
1107 /**************************
1108 * CALCULATE INTERACTIONS *
1109 **************************/
1110
1111 r00 = _mm_mul_ps(rsq00,rinv00);
1112 r00 = _mm_andnot_ps(dummy_mask,r00);
1113
1114 /* Compute parameters for interactions between i and j atoms */
1115 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1116 vdwparam+vdwioffset0+vdwjidx0B,
1117 vdwparam+vdwioffset0+vdwjidx0C,
1118 vdwparam+vdwioffset0+vdwjidx0D,
1119 &c6_00,&c12_00);
1120
1121 /* Calculate table index by multiplying r with table scale and truncate to integer */
1122 rt = _mm_mul_ps(r00,vftabscale);
1123 vfitab = _mm_cvttps_epi32(rt);
1124 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1125 vfitab = _mm_slli_epi32(vfitab,3);
1126
1127 /* CUBIC SPLINE TABLE DISPERSION */
1128 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
1129 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
1130 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
1131 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
1132 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
1133 Heps = _mm_mul_ps(vfeps,H);
1134 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1135 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1136 fvdw6 = _mm_mul_ps(c6_00,FF);
1137
1138 /* CUBIC SPLINE TABLE REPULSION */
1139 vfitab = _mm_add_epi32(vfitab,ifour);
1140 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
1141 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
1142 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
1143 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
1144 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
1145 Heps = _mm_mul_ps(vfeps,H);
1146 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
1147 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
1148 fvdw12 = _mm_mul_ps(c12_00,FF);
1149 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
1150
1151 fscal = fvdw;
1152
1153 fscal = _mm_andnot_ps(dummy_mask,fscal);
1154
1155 /* Calculate temporary vectorial force */
1156 tx = _mm_mul_ps(fscal,dx00);
1157 ty = _mm_mul_ps(fscal,dy00);
1158 tz = _mm_mul_ps(fscal,dz00);
1159
1160 /* Update vectorial force */
1161 fix0 = _mm_add_ps(fix0,tx);
1162 fiy0 = _mm_add_ps(fiy0,ty);
1163 fiz0 = _mm_add_ps(fiz0,tz);
1164
1165 fjx0 = _mm_add_ps(fjx0,tx);
1166 fjy0 = _mm_add_ps(fjy0,ty);
1167 fjz0 = _mm_add_ps(fjz0,tz);
1168
1169 /**************************
1170 * CALCULATE INTERACTIONS *
1171 **************************/
1172
1173 /* Compute parameters for interactions between i and j atoms */
1174 qq10 = _mm_mul_ps(iq1,jq0);
1175
1176 /* REACTION-FIELD ELECTROSTATICS */
1177 felec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1178
1179 fscal = felec;
1180
1181 fscal = _mm_andnot_ps(dummy_mask,fscal);
1182
1183 /* Calculate temporary vectorial force */
1184 tx = _mm_mul_ps(fscal,dx10);
1185 ty = _mm_mul_ps(fscal,dy10);
1186 tz = _mm_mul_ps(fscal,dz10);
1187
1188 /* Update vectorial force */
1189 fix1 = _mm_add_ps(fix1,tx);
1190 fiy1 = _mm_add_ps(fiy1,ty);
1191 fiz1 = _mm_add_ps(fiz1,tz);
1192
1193 fjx0 = _mm_add_ps(fjx0,tx);
1194 fjy0 = _mm_add_ps(fjy0,ty);
1195 fjz0 = _mm_add_ps(fjz0,tz);
1196
1197 /**************************
1198 * CALCULATE INTERACTIONS *
1199 **************************/
1200
1201 /* Compute parameters for interactions between i and j atoms */
1202 qq20 = _mm_mul_ps(iq2,jq0);
1203
1204 /* REACTION-FIELD ELECTROSTATICS */
1205 felec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1206
1207 fscal = felec;
1208
1209 fscal = _mm_andnot_ps(dummy_mask,fscal);
1210
1211 /* Calculate temporary vectorial force */
1212 tx = _mm_mul_ps(fscal,dx20);
1213 ty = _mm_mul_ps(fscal,dy20);
1214 tz = _mm_mul_ps(fscal,dz20);
1215
1216 /* Update vectorial force */
1217 fix2 = _mm_add_ps(fix2,tx);
1218 fiy2 = _mm_add_ps(fiy2,ty);
1219 fiz2 = _mm_add_ps(fiz2,tz);
1220
1221 fjx0 = _mm_add_ps(fjx0,tx);
1222 fjy0 = _mm_add_ps(fjy0,ty);
1223 fjz0 = _mm_add_ps(fjz0,tz);
1224
1225 /**************************
1226 * CALCULATE INTERACTIONS *
1227 **************************/
1228
1229 /* Compute parameters for interactions between i and j atoms */
1230 qq30 = _mm_mul_ps(iq3,jq0);
1231
1232 /* REACTION-FIELD ELECTROSTATICS */
1233 felec = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1234
1235 fscal = felec;
1236
1237 fscal = _mm_andnot_ps(dummy_mask,fscal);
1238
1239 /* Calculate temporary vectorial force */
1240 tx = _mm_mul_ps(fscal,dx30);
1241 ty = _mm_mul_ps(fscal,dy30);
1242 tz = _mm_mul_ps(fscal,dz30);
1243
1244 /* Update vectorial force */
1245 fix3 = _mm_add_ps(fix3,tx);
1246 fiy3 = _mm_add_ps(fiy3,ty);
1247 fiz3 = _mm_add_ps(fiz3,tz);
1248
1249 fjx0 = _mm_add_ps(fjx0,tx);
1250 fjy0 = _mm_add_ps(fjy0,ty);
1251 fjz0 = _mm_add_ps(fjz0,tz);
1252
1253 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1254 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1255 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1256 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1257
1258 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1259
1260 /* Inner loop uses 130 flops */
1261 }
1262
1263 /* End of innermost loop */
1264
1265 gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1266 f+i_coord_offset,fshift+i_shift_offset);
1267
1268 /* Increment number of inner iterations */
1269 inneriter += j_index_end - j_index_start;
1270
1271 /* Outer loop uses 24 flops */
1272 }
1273
1274 /* Increment number of outer iterations */
1275 outeriter += nri;
1276
1277 /* Update outer/inner flops */
1278
1279 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*130)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_F] += outeriter*24 + inneriter
*130
;
1280}