Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecEw_VdwLJ_GeomP1P1_sse4_1_single.c
Location:line 130, column 5
Description:Value stored to 'j_coord_offsetB' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_sse4_1_single
54 * Electrostatics interaction: Ewald
55 * VdW interaction: LennardJones
56 * Geometry: Particle-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
91 real *charge;
92 int nvdwtype;
93 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94 int *vdwtype;
95 real *vdwparam;
96 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
97 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
98 __m128i ewitab;
99 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
100 real *ewtab;
101 __m128 dummy_mask,cutoff_mask;
102 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
103 __m128 one = _mm_set1_ps(1.0);
104 __m128 two = _mm_set1_ps(2.0);
105 x = xx[0];
106 f = ff[0];
107
108 nri = nlist->nri;
109 iinr = nlist->iinr;
110 jindex = nlist->jindex;
111 jjnr = nlist->jjnr;
112 shiftidx = nlist->shift;
113 gid = nlist->gid;
114 shiftvec = fr->shift_vec[0];
115 fshift = fr->fshift[0];
116 facel = _mm_set1_ps(fr->epsfac);
117 charge = mdatoms->chargeA;
118 nvdwtype = fr->ntype;
119 vdwparam = fr->nbfp;
120 vdwtype = mdatoms->typeA;
121
122 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
123 ewtab = fr->ic->tabq_coul_FDV0;
124 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
125 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
126
127 /* Avoid stupid compiler warnings */
128 jnrA = jnrB = jnrC = jnrD = 0;
129 j_coord_offsetA = 0;
130 j_coord_offsetB = 0;
Value stored to 'j_coord_offsetB' is never read
131 j_coord_offsetC = 0;
132 j_coord_offsetD = 0;
133
134 outeriter = 0;
135 inneriter = 0;
136
137 for(iidx=0;iidx<4*DIM3;iidx++)
138 {
139 scratch[iidx] = 0.0;
140 }
141
142 /* Start outer loop over neighborlists */
143 for(iidx=0; iidx<nri; iidx++)
144 {
145 /* Load shift vector for this list */
146 i_shift_offset = DIM3*shiftidx[iidx];
147
148 /* Load limits for loop over neighbors */
149 j_index_start = jindex[iidx];
150 j_index_end = jindex[iidx+1];
151
152 /* Get outer coordinate index */
153 inr = iinr[iidx];
154 i_coord_offset = DIM3*inr;
155
156 /* Load i particle coords and add shift vector */
157 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
158
159 fix0 = _mm_setzero_ps();
160 fiy0 = _mm_setzero_ps();
161 fiz0 = _mm_setzero_ps();
162
163 /* Load parameters for i particles */
164 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
165 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
166
167 /* Reset potential sums */
168 velecsum = _mm_setzero_ps();
169 vvdwsum = _mm_setzero_ps();
170
171 /* Start inner kernel loop */
172 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
173 {
174
175 /* Get j neighbor index, and coordinate index */
176 jnrA = jjnr[jidx];
177 jnrB = jjnr[jidx+1];
178 jnrC = jjnr[jidx+2];
179 jnrD = jjnr[jidx+3];
180 j_coord_offsetA = DIM3*jnrA;
181 j_coord_offsetB = DIM3*jnrB;
182 j_coord_offsetC = DIM3*jnrC;
183 j_coord_offsetD = DIM3*jnrD;
184
185 /* load j atom coordinates */
186 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
187 x+j_coord_offsetC,x+j_coord_offsetD,
188 &jx0,&jy0,&jz0);
189
190 /* Calculate displacement vector */
191 dx00 = _mm_sub_ps(ix0,jx0);
192 dy00 = _mm_sub_ps(iy0,jy0);
193 dz00 = _mm_sub_ps(iz0,jz0);
194
195 /* Calculate squared distance and things based on it */
196 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
197
198 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
199
200 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
201
202 /* Load parameters for j particles */
203 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
204 charge+jnrC+0,charge+jnrD+0);
205 vdwjidx0A = 2*vdwtype[jnrA+0];
206 vdwjidx0B = 2*vdwtype[jnrB+0];
207 vdwjidx0C = 2*vdwtype[jnrC+0];
208 vdwjidx0D = 2*vdwtype[jnrD+0];
209
210 /**************************
211 * CALCULATE INTERACTIONS *
212 **************************/
213
214 r00 = _mm_mul_ps(rsq00,rinv00);
215
216 /* Compute parameters for interactions between i and j atoms */
217 qq00 = _mm_mul_ps(iq0,jq0);
218 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
219 vdwparam+vdwioffset0+vdwjidx0B,
220 vdwparam+vdwioffset0+vdwjidx0C,
221 vdwparam+vdwioffset0+vdwjidx0D,
222 &c6_00,&c12_00);
223
224 /* EWALD ELECTROSTATICS */
225
226 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
227 ewrt = _mm_mul_ps(r00,ewtabscale);
228 ewitab = _mm_cvttps_epi32(ewrt);
229 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
230 ewitab = _mm_slli_epi32(ewitab,2);
231 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
232 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
233 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
234 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
235 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
236 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
237 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
238 velec = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
239 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
240
241 /* LENNARD-JONES DISPERSION/REPULSION */
242
243 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
244 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
245 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
246 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
247 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
248
249 /* Update potential sum for this i atom from the interaction with this j atom. */
250 velecsum = _mm_add_ps(velecsum,velec);
251 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
252
253 fscal = _mm_add_ps(felec,fvdw);
254
255 /* Calculate temporary vectorial force */
256 tx = _mm_mul_ps(fscal,dx00);
257 ty = _mm_mul_ps(fscal,dy00);
258 tz = _mm_mul_ps(fscal,dz00);
259
260 /* Update vectorial force */
261 fix0 = _mm_add_ps(fix0,tx);
262 fiy0 = _mm_add_ps(fiy0,ty);
263 fiz0 = _mm_add_ps(fiz0,tz);
264
265 fjptrA = f+j_coord_offsetA;
266 fjptrB = f+j_coord_offsetB;
267 fjptrC = f+j_coord_offsetC;
268 fjptrD = f+j_coord_offsetD;
269 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
270
271 /* Inner loop uses 53 flops */
272 }
273
274 if(jidx<j_index_end)
275 {
276
277 /* Get j neighbor index, and coordinate index */
278 jnrlistA = jjnr[jidx];
279 jnrlistB = jjnr[jidx+1];
280 jnrlistC = jjnr[jidx+2];
281 jnrlistD = jjnr[jidx+3];
282 /* Sign of each element will be negative for non-real atoms.
283 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
284 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
285 */
286 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
287 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
288 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
289 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
290 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
291 j_coord_offsetA = DIM3*jnrA;
292 j_coord_offsetB = DIM3*jnrB;
293 j_coord_offsetC = DIM3*jnrC;
294 j_coord_offsetD = DIM3*jnrD;
295
296 /* load j atom coordinates */
297 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
298 x+j_coord_offsetC,x+j_coord_offsetD,
299 &jx0,&jy0,&jz0);
300
301 /* Calculate displacement vector */
302 dx00 = _mm_sub_ps(ix0,jx0);
303 dy00 = _mm_sub_ps(iy0,jy0);
304 dz00 = _mm_sub_ps(iz0,jz0);
305
306 /* Calculate squared distance and things based on it */
307 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
308
309 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
310
311 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
312
313 /* Load parameters for j particles */
314 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
315 charge+jnrC+0,charge+jnrD+0);
316 vdwjidx0A = 2*vdwtype[jnrA+0];
317 vdwjidx0B = 2*vdwtype[jnrB+0];
318 vdwjidx0C = 2*vdwtype[jnrC+0];
319 vdwjidx0D = 2*vdwtype[jnrD+0];
320
321 /**************************
322 * CALCULATE INTERACTIONS *
323 **************************/
324
325 r00 = _mm_mul_ps(rsq00,rinv00);
326 r00 = _mm_andnot_ps(dummy_mask,r00);
327
328 /* Compute parameters for interactions between i and j atoms */
329 qq00 = _mm_mul_ps(iq0,jq0);
330 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
331 vdwparam+vdwioffset0+vdwjidx0B,
332 vdwparam+vdwioffset0+vdwjidx0C,
333 vdwparam+vdwioffset0+vdwjidx0D,
334 &c6_00,&c12_00);
335
336 /* EWALD ELECTROSTATICS */
337
338 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
339 ewrt = _mm_mul_ps(r00,ewtabscale);
340 ewitab = _mm_cvttps_epi32(ewrt);
341 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
342 ewitab = _mm_slli_epi32(ewitab,2);
343 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
344 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
345 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
346 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
347 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
348 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
349 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
350 velec = _mm_mul_ps(qq00,_mm_sub_ps(rinv00,velec));
351 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
352
353 /* LENNARD-JONES DISPERSION/REPULSION */
354
355 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
356 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
357 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
358 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
359 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
360
361 /* Update potential sum for this i atom from the interaction with this j atom. */
362 velec = _mm_andnot_ps(dummy_mask,velec);
363 velecsum = _mm_add_ps(velecsum,velec);
364 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
365 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
366
367 fscal = _mm_add_ps(felec,fvdw);
368
369 fscal = _mm_andnot_ps(dummy_mask,fscal);
370
371 /* Calculate temporary vectorial force */
372 tx = _mm_mul_ps(fscal,dx00);
373 ty = _mm_mul_ps(fscal,dy00);
374 tz = _mm_mul_ps(fscal,dz00);
375
376 /* Update vectorial force */
377 fix0 = _mm_add_ps(fix0,tx);
378 fiy0 = _mm_add_ps(fiy0,ty);
379 fiz0 = _mm_add_ps(fiz0,tz);
380
381 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
382 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
383 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
384 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
385 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
386
387 /* Inner loop uses 54 flops */
388 }
389
390 /* End of innermost loop */
391
392 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
393 f+i_coord_offset,fshift+i_shift_offset);
394
395 ggid = gid[iidx];
396 /* Update potential energies */
397 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
398 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
399
400 /* Increment number of inner iterations */
401 inneriter += j_index_end - j_index_start;
402
403 /* Outer loop uses 9 flops */
404 }
405
406 /* Increment number of outer iterations */
407 outeriter += nri;
408
409 /* Update outer/inner flops */
410
411 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*54)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_VF] += outeriter*9 + inneriter
*54
;
412}
413/*
414 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_sse4_1_single
415 * Electrostatics interaction: Ewald
416 * VdW interaction: LennardJones
417 * Geometry: Particle-Particle
418 * Calculate force/pot: Force
419 */
420void
421nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_sse4_1_single
422 (t_nblist * gmx_restrict nlist,
423 rvec * gmx_restrict xx,
424 rvec * gmx_restrict ff,
425 t_forcerec * gmx_restrict fr,
426 t_mdatoms * gmx_restrict mdatoms,
427 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
428 t_nrnb * gmx_restrict nrnb)
429{
430 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
431 * just 0 for non-waters.
432 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
433 * jnr indices corresponding to data put in the four positions in the SIMD register.
434 */
435 int i_shift_offset,i_coord_offset,outeriter,inneriter;
436 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
437 int jnrA,jnrB,jnrC,jnrD;
438 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
439 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
440 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
441 real rcutoff_scalar;
442 real *shiftvec,*fshift,*x,*f;
443 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
444 real scratch[4*DIM3];
445 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
446 int vdwioffset0;
447 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
448 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
449 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
450 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
451 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
452 real *charge;
453 int nvdwtype;
454 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
455 int *vdwtype;
456 real *vdwparam;
457 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
458 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
459 __m128i ewitab;
460 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
461 real *ewtab;
462 __m128 dummy_mask,cutoff_mask;
463 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
464 __m128 one = _mm_set1_ps(1.0);
465 __m128 two = _mm_set1_ps(2.0);
466 x = xx[0];
467 f = ff[0];
468
469 nri = nlist->nri;
470 iinr = nlist->iinr;
471 jindex = nlist->jindex;
472 jjnr = nlist->jjnr;
473 shiftidx = nlist->shift;
474 gid = nlist->gid;
475 shiftvec = fr->shift_vec[0];
476 fshift = fr->fshift[0];
477 facel = _mm_set1_ps(fr->epsfac);
478 charge = mdatoms->chargeA;
479 nvdwtype = fr->ntype;
480 vdwparam = fr->nbfp;
481 vdwtype = mdatoms->typeA;
482
483 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
484 ewtab = fr->ic->tabq_coul_F;
485 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
486 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
487
488 /* Avoid stupid compiler warnings */
489 jnrA = jnrB = jnrC = jnrD = 0;
490 j_coord_offsetA = 0;
491 j_coord_offsetB = 0;
492 j_coord_offsetC = 0;
493 j_coord_offsetD = 0;
494
495 outeriter = 0;
496 inneriter = 0;
497
498 for(iidx=0;iidx<4*DIM3;iidx++)
499 {
500 scratch[iidx] = 0.0;
501 }
502
503 /* Start outer loop over neighborlists */
504 for(iidx=0; iidx<nri; iidx++)
505 {
506 /* Load shift vector for this list */
507 i_shift_offset = DIM3*shiftidx[iidx];
508
509 /* Load limits for loop over neighbors */
510 j_index_start = jindex[iidx];
511 j_index_end = jindex[iidx+1];
512
513 /* Get outer coordinate index */
514 inr = iinr[iidx];
515 i_coord_offset = DIM3*inr;
516
517 /* Load i particle coords and add shift vector */
518 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
519
520 fix0 = _mm_setzero_ps();
521 fiy0 = _mm_setzero_ps();
522 fiz0 = _mm_setzero_ps();
523
524 /* Load parameters for i particles */
525 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
526 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
527
528 /* Start inner kernel loop */
529 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
530 {
531
532 /* Get j neighbor index, and coordinate index */
533 jnrA = jjnr[jidx];
534 jnrB = jjnr[jidx+1];
535 jnrC = jjnr[jidx+2];
536 jnrD = jjnr[jidx+3];
537 j_coord_offsetA = DIM3*jnrA;
538 j_coord_offsetB = DIM3*jnrB;
539 j_coord_offsetC = DIM3*jnrC;
540 j_coord_offsetD = DIM3*jnrD;
541
542 /* load j atom coordinates */
543 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
544 x+j_coord_offsetC,x+j_coord_offsetD,
545 &jx0,&jy0,&jz0);
546
547 /* Calculate displacement vector */
548 dx00 = _mm_sub_ps(ix0,jx0);
549 dy00 = _mm_sub_ps(iy0,jy0);
550 dz00 = _mm_sub_ps(iz0,jz0);
551
552 /* Calculate squared distance and things based on it */
553 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
554
555 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
556
557 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
558
559 /* Load parameters for j particles */
560 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
561 charge+jnrC+0,charge+jnrD+0);
562 vdwjidx0A = 2*vdwtype[jnrA+0];
563 vdwjidx0B = 2*vdwtype[jnrB+0];
564 vdwjidx0C = 2*vdwtype[jnrC+0];
565 vdwjidx0D = 2*vdwtype[jnrD+0];
566
567 /**************************
568 * CALCULATE INTERACTIONS *
569 **************************/
570
571 r00 = _mm_mul_ps(rsq00,rinv00);
572
573 /* Compute parameters for interactions between i and j atoms */
574 qq00 = _mm_mul_ps(iq0,jq0);
575 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
576 vdwparam+vdwioffset0+vdwjidx0B,
577 vdwparam+vdwioffset0+vdwjidx0C,
578 vdwparam+vdwioffset0+vdwjidx0D,
579 &c6_00,&c12_00);
580
581 /* EWALD ELECTROSTATICS */
582
583 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
584 ewrt = _mm_mul_ps(r00,ewtabscale);
585 ewitab = _mm_cvttps_epi32(ewrt);
586 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
587 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
588 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
589 &ewtabF,&ewtabFn);
590 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
591 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
592
593 /* LENNARD-JONES DISPERSION/REPULSION */
594
595 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
596 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
597
598 fscal = _mm_add_ps(felec,fvdw);
599
600 /* Calculate temporary vectorial force */
601 tx = _mm_mul_ps(fscal,dx00);
602 ty = _mm_mul_ps(fscal,dy00);
603 tz = _mm_mul_ps(fscal,dz00);
604
605 /* Update vectorial force */
606 fix0 = _mm_add_ps(fix0,tx);
607 fiy0 = _mm_add_ps(fiy0,ty);
608 fiz0 = _mm_add_ps(fiz0,tz);
609
610 fjptrA = f+j_coord_offsetA;
611 fjptrB = f+j_coord_offsetB;
612 fjptrC = f+j_coord_offsetC;
613 fjptrD = f+j_coord_offsetD;
614 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
615
616 /* Inner loop uses 43 flops */
617 }
618
619 if(jidx<j_index_end)
620 {
621
622 /* Get j neighbor index, and coordinate index */
623 jnrlistA = jjnr[jidx];
624 jnrlistB = jjnr[jidx+1];
625 jnrlistC = jjnr[jidx+2];
626 jnrlistD = jjnr[jidx+3];
627 /* Sign of each element will be negative for non-real atoms.
628 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
629 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
630 */
631 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
632 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
633 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
634 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
635 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
636 j_coord_offsetA = DIM3*jnrA;
637 j_coord_offsetB = DIM3*jnrB;
638 j_coord_offsetC = DIM3*jnrC;
639 j_coord_offsetD = DIM3*jnrD;
640
641 /* load j atom coordinates */
642 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
643 x+j_coord_offsetC,x+j_coord_offsetD,
644 &jx0,&jy0,&jz0);
645
646 /* Calculate displacement vector */
647 dx00 = _mm_sub_ps(ix0,jx0);
648 dy00 = _mm_sub_ps(iy0,jy0);
649 dz00 = _mm_sub_ps(iz0,jz0);
650
651 /* Calculate squared distance and things based on it */
652 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
653
654 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
655
656 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
657
658 /* Load parameters for j particles */
659 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
660 charge+jnrC+0,charge+jnrD+0);
661 vdwjidx0A = 2*vdwtype[jnrA+0];
662 vdwjidx0B = 2*vdwtype[jnrB+0];
663 vdwjidx0C = 2*vdwtype[jnrC+0];
664 vdwjidx0D = 2*vdwtype[jnrD+0];
665
666 /**************************
667 * CALCULATE INTERACTIONS *
668 **************************/
669
670 r00 = _mm_mul_ps(rsq00,rinv00);
671 r00 = _mm_andnot_ps(dummy_mask,r00);
672
673 /* Compute parameters for interactions between i and j atoms */
674 qq00 = _mm_mul_ps(iq0,jq0);
675 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
676 vdwparam+vdwioffset0+vdwjidx0B,
677 vdwparam+vdwioffset0+vdwjidx0C,
678 vdwparam+vdwioffset0+vdwjidx0D,
679 &c6_00,&c12_00);
680
681 /* EWALD ELECTROSTATICS */
682
683 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
684 ewrt = _mm_mul_ps(r00,ewtabscale);
685 ewitab = _mm_cvttps_epi32(ewrt);
686 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
687 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
688 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
689 &ewtabF,&ewtabFn);
690 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
691 felec = _mm_mul_ps(_mm_mul_ps(qq00,rinv00),_mm_sub_ps(rinvsq00,felec));
692
693 /* LENNARD-JONES DISPERSION/REPULSION */
694
695 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
696 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
697
698 fscal = _mm_add_ps(felec,fvdw);
699
700 fscal = _mm_andnot_ps(dummy_mask,fscal);
701
702 /* Calculate temporary vectorial force */
703 tx = _mm_mul_ps(fscal,dx00);
704 ty = _mm_mul_ps(fscal,dy00);
705 tz = _mm_mul_ps(fscal,dz00);
706
707 /* Update vectorial force */
708 fix0 = _mm_add_ps(fix0,tx);
709 fiy0 = _mm_add_ps(fiy0,ty);
710 fiz0 = _mm_add_ps(fiz0,tz);
711
712 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
713 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
714 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
715 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
716 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
717
718 /* Inner loop uses 44 flops */
719 }
720
721 /* End of innermost loop */
722
723 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
724 f+i_coord_offset,fshift+i_shift_offset);
725
726 /* Increment number of inner iterations */
727 inneriter += j_index_end - j_index_start;
728
729 /* Outer loop uses 7 flops */
730 }
731
732 /* Increment number of outer iterations */
733 outeriter += nri;
734
735 /* Update outer/inner flops */
736
737 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*44)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_F] += outeriter*7 + inneriter
*44
;
738}