Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_c.c
Location:line 111, column 5
Description:Value stored to 'sh_ewald' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: LennardJones
53 * Geometry: Water3-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83 real velec,felec,velecsum,facel,crf,krf,krf2;
84 real *charge;
85 int nvdwtype;
86 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
87 int *vdwtype;
88 real *vdwparam;
89 int ewitab;
90 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
91 real *ewtab;
92 real rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
93
94 x = xx[0];
95 f = ff[0];
96
97 nri = nlist->nri;
98 iinr = nlist->iinr;
99 jindex = nlist->jindex;
100 jjnr = nlist->jjnr;
101 shiftidx = nlist->shift;
102 gid = nlist->gid;
103 shiftvec = fr->shift_vec[0];
104 fshift = fr->fshift[0];
105 facel = fr->epsfac;
106 charge = mdatoms->chargeA;
107 nvdwtype = fr->ntype;
108 vdwparam = fr->nbfp;
109 vdwtype = mdatoms->typeA;
110
111 sh_ewald = fr->ic->sh_ewald;
Value stored to 'sh_ewald' is never read
112 ewtab = fr->ic->tabq_coul_FDV0;
113 ewtabscale = fr->ic->tabq_scale;
114 ewtabhalfspace = 0.5/ewtabscale;
115
116 /* Setup water-specific parameters */
117 inr = nlist->iinr[0];
118 iq0 = facel*charge[inr+0];
119 iq1 = facel*charge[inr+1];
120 iq2 = facel*charge[inr+2];
121 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
122
123 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
124 rcutoff = fr->rcoulomb;
125 rcutoff2 = rcutoff*rcutoff;
126
127 rswitch = fr->rcoulomb_switch;
128 /* Setup switch parameters */
129 d = rcutoff-rswitch;
130 swV3 = -10.0/(d*d*d);
131 swV4 = 15.0/(d*d*d*d);
132 swV5 = -6.0/(d*d*d*d*d);
133 swF2 = -30.0/(d*d*d);
134 swF3 = 60.0/(d*d*d*d);
135 swF4 = -30.0/(d*d*d*d*d);
136
137 outeriter = 0;
138 inneriter = 0;
139
140 /* Start outer loop over neighborlists */
141 for(iidx=0; iidx<nri; iidx++)
142 {
143 /* Load shift vector for this list */
144 i_shift_offset = DIM3*shiftidx[iidx];
145 shX = shiftvec[i_shift_offset+XX0];
146 shY = shiftvec[i_shift_offset+YY1];
147 shZ = shiftvec[i_shift_offset+ZZ2];
148
149 /* Load limits for loop over neighbors */
150 j_index_start = jindex[iidx];
151 j_index_end = jindex[iidx+1];
152
153 /* Get outer coordinate index */
154 inr = iinr[iidx];
155 i_coord_offset = DIM3*inr;
156
157 /* Load i particle coords and add shift vector */
158 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
159 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
160 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
161 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
162 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
163 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
164 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
165 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
166 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
167
168 fix0 = 0.0;
169 fiy0 = 0.0;
170 fiz0 = 0.0;
171 fix1 = 0.0;
172 fiy1 = 0.0;
173 fiz1 = 0.0;
174 fix2 = 0.0;
175 fiy2 = 0.0;
176 fiz2 = 0.0;
177
178 /* Reset potential sums */
179 velecsum = 0.0;
180 vvdwsum = 0.0;
181
182 /* Start inner kernel loop */
183 for(jidx=j_index_start; jidx<j_index_end; jidx++)
184 {
185 /* Get j neighbor index, and coordinate index */
186 jnr = jjnr[jidx];
187 j_coord_offset = DIM3*jnr;
188
189 /* load j atom coordinates */
190 jx0 = x[j_coord_offset+DIM3*0+XX0];
191 jy0 = x[j_coord_offset+DIM3*0+YY1];
192 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
193
194 /* Calculate displacement vector */
195 dx00 = ix0 - jx0;
196 dy00 = iy0 - jy0;
197 dz00 = iz0 - jz0;
198 dx10 = ix1 - jx0;
199 dy10 = iy1 - jy0;
200 dz10 = iz1 - jz0;
201 dx20 = ix2 - jx0;
202 dy20 = iy2 - jy0;
203 dz20 = iz2 - jz0;
204
205 /* Calculate squared distance and things based on it */
206 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
207 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
208 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
209
210 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
211 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
212 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
213
214 rinvsq00 = rinv00*rinv00;
215 rinvsq10 = rinv10*rinv10;
216 rinvsq20 = rinv20*rinv20;
217
218 /* Load parameters for j particles */
219 jq0 = charge[jnr+0];
220 vdwjidx0 = 2*vdwtype[jnr+0];
221
222 /**************************
223 * CALCULATE INTERACTIONS *
224 **************************/
225
226 if (rsq00<rcutoff2)
227 {
228
229 r00 = rsq00*rinv00;
230
231 qq00 = iq0*jq0;
232 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
233 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
234
235 /* EWALD ELECTROSTATICS */
236
237 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
238 ewrt = r00*ewtabscale;
239 ewitab = ewrt;
240 eweps = ewrt-ewitab;
241 ewitab = 4*ewitab;
242 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
243 velec = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
244 felec = qq00*rinv00*(rinvsq00-felec);
245
246 /* LENNARD-JONES DISPERSION/REPULSION */
247
248 rinvsix = rinvsq00*rinvsq00*rinvsq00;
249 vvdw6 = c6_00*rinvsix;
250 vvdw12 = c12_00*rinvsix*rinvsix;
251 vvdw = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
252 fvdw = (vvdw12-vvdw6)*rinvsq00;
253
254 d = r00-rswitch;
255 d = (d>0.0) ? d : 0.0;
256 d2 = d*d;
257 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
258
259 dsw = d2*(swF2+d*(swF3+d*swF4));
260
261 /* Evaluate switch function */
262 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
263 felec = felec*sw - rinv00*velec*dsw;
264 fvdw = fvdw*sw - rinv00*vvdw*dsw;
265 velec *= sw;
266 vvdw *= sw;
267
268 /* Update potential sums from outer loop */
269 velecsum += velec;
270 vvdwsum += vvdw;
271
272 fscal = felec+fvdw;
273
274 /* Calculate temporary vectorial force */
275 tx = fscal*dx00;
276 ty = fscal*dy00;
277 tz = fscal*dz00;
278
279 /* Update vectorial force */
280 fix0 += tx;
281 fiy0 += ty;
282 fiz0 += tz;
283 f[j_coord_offset+DIM3*0+XX0] -= tx;
284 f[j_coord_offset+DIM3*0+YY1] -= ty;
285 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
286
287 }
288
289 /**************************
290 * CALCULATE INTERACTIONS *
291 **************************/
292
293 if (rsq10<rcutoff2)
294 {
295
296 r10 = rsq10*rinv10;
297
298 qq10 = iq1*jq0;
299
300 /* EWALD ELECTROSTATICS */
301
302 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
303 ewrt = r10*ewtabscale;
304 ewitab = ewrt;
305 eweps = ewrt-ewitab;
306 ewitab = 4*ewitab;
307 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
308 velec = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
309 felec = qq10*rinv10*(rinvsq10-felec);
310
311 d = r10-rswitch;
312 d = (d>0.0) ? d : 0.0;
313 d2 = d*d;
314 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
315
316 dsw = d2*(swF2+d*(swF3+d*swF4));
317
318 /* Evaluate switch function */
319 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
320 felec = felec*sw - rinv10*velec*dsw;
321 velec *= sw;
322
323 /* Update potential sums from outer loop */
324 velecsum += velec;
325
326 fscal = felec;
327
328 /* Calculate temporary vectorial force */
329 tx = fscal*dx10;
330 ty = fscal*dy10;
331 tz = fscal*dz10;
332
333 /* Update vectorial force */
334 fix1 += tx;
335 fiy1 += ty;
336 fiz1 += tz;
337 f[j_coord_offset+DIM3*0+XX0] -= tx;
338 f[j_coord_offset+DIM3*0+YY1] -= ty;
339 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
340
341 }
342
343 /**************************
344 * CALCULATE INTERACTIONS *
345 **************************/
346
347 if (rsq20<rcutoff2)
348 {
349
350 r20 = rsq20*rinv20;
351
352 qq20 = iq2*jq0;
353
354 /* EWALD ELECTROSTATICS */
355
356 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
357 ewrt = r20*ewtabscale;
358 ewitab = ewrt;
359 eweps = ewrt-ewitab;
360 ewitab = 4*ewitab;
361 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
362 velec = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
363 felec = qq20*rinv20*(rinvsq20-felec);
364
365 d = r20-rswitch;
366 d = (d>0.0) ? d : 0.0;
367 d2 = d*d;
368 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
369
370 dsw = d2*(swF2+d*(swF3+d*swF4));
371
372 /* Evaluate switch function */
373 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
374 felec = felec*sw - rinv20*velec*dsw;
375 velec *= sw;
376
377 /* Update potential sums from outer loop */
378 velecsum += velec;
379
380 fscal = felec;
381
382 /* Calculate temporary vectorial force */
383 tx = fscal*dx20;
384 ty = fscal*dy20;
385 tz = fscal*dz20;
386
387 /* Update vectorial force */
388 fix2 += tx;
389 fiy2 += ty;
390 fiz2 += tz;
391 f[j_coord_offset+DIM3*0+XX0] -= tx;
392 f[j_coord_offset+DIM3*0+YY1] -= ty;
393 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
394
395 }
396
397 /* Inner loop uses 193 flops */
398 }
399 /* End of innermost loop */
400
401 tx = ty = tz = 0;
402 f[i_coord_offset+DIM3*0+XX0] += fix0;
403 f[i_coord_offset+DIM3*0+YY1] += fiy0;
404 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
405 tx += fix0;
406 ty += fiy0;
407 tz += fiz0;
408 f[i_coord_offset+DIM3*1+XX0] += fix1;
409 f[i_coord_offset+DIM3*1+YY1] += fiy1;
410 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
411 tx += fix1;
412 ty += fiy1;
413 tz += fiz1;
414 f[i_coord_offset+DIM3*2+XX0] += fix2;
415 f[i_coord_offset+DIM3*2+YY1] += fiy2;
416 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
417 tx += fix2;
418 ty += fiy2;
419 tz += fiz2;
420 fshift[i_shift_offset+XX0] += tx;
421 fshift[i_shift_offset+YY1] += ty;
422 fshift[i_shift_offset+ZZ2] += tz;
423
424 ggid = gid[iidx];
425 /* Update potential energies */
426 kernel_data->energygrp_elec[ggid] += velecsum;
427 kernel_data->energygrp_vdw[ggid] += vvdwsum;
428
429 /* Increment number of inner iterations */
430 inneriter += j_index_end - j_index_start;
431
432 /* Outer loop uses 32 flops */
433 }
434
435 /* Increment number of outer iterations */
436 outeriter += nri;
437
438 /* Update outer/inner flops */
439
440 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*193)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_VF] += outeriter*32 + inneriter
*193
;
441}
442/*
443 * Gromacs nonbonded kernel: nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_c
444 * Electrostatics interaction: Ewald
445 * VdW interaction: LennardJones
446 * Geometry: Water3-Particle
447 * Calculate force/pot: Force
448 */
449void
450nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_c
451 (t_nblist * gmx_restrict__restrict nlist,
452 rvec * gmx_restrict__restrict xx,
453 rvec * gmx_restrict__restrict ff,
454 t_forcerec * gmx_restrict__restrict fr,
455 t_mdatoms * gmx_restrict__restrict mdatoms,
456 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
457 t_nrnb * gmx_restrict__restrict nrnb)
458{
459 int i_shift_offset,i_coord_offset,j_coord_offset;
460 int j_index_start,j_index_end;
461 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
462 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
463 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
464 real *shiftvec,*fshift,*x,*f;
465 int vdwioffset0;
466 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
467 int vdwioffset1;
468 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
469 int vdwioffset2;
470 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
471 int vdwjidx0;
472 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
473 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
474 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
475 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
476 real velec,felec,velecsum,facel,crf,krf,krf2;
477 real *charge;
478 int nvdwtype;
479 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
480 int *vdwtype;
481 real *vdwparam;
482 int ewitab;
483 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
484 real *ewtab;
485 real rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
486
487 x = xx[0];
488 f = ff[0];
489
490 nri = nlist->nri;
491 iinr = nlist->iinr;
492 jindex = nlist->jindex;
493 jjnr = nlist->jjnr;
494 shiftidx = nlist->shift;
495 gid = nlist->gid;
496 shiftvec = fr->shift_vec[0];
497 fshift = fr->fshift[0];
498 facel = fr->epsfac;
499 charge = mdatoms->chargeA;
500 nvdwtype = fr->ntype;
501 vdwparam = fr->nbfp;
502 vdwtype = mdatoms->typeA;
503
504 sh_ewald = fr->ic->sh_ewald;
505 ewtab = fr->ic->tabq_coul_FDV0;
506 ewtabscale = fr->ic->tabq_scale;
507 ewtabhalfspace = 0.5/ewtabscale;
508
509 /* Setup water-specific parameters */
510 inr = nlist->iinr[0];
511 iq0 = facel*charge[inr+0];
512 iq1 = facel*charge[inr+1];
513 iq2 = facel*charge[inr+2];
514 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
515
516 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
517 rcutoff = fr->rcoulomb;
518 rcutoff2 = rcutoff*rcutoff;
519
520 rswitch = fr->rcoulomb_switch;
521 /* Setup switch parameters */
522 d = rcutoff-rswitch;
523 swV3 = -10.0/(d*d*d);
524 swV4 = 15.0/(d*d*d*d);
525 swV5 = -6.0/(d*d*d*d*d);
526 swF2 = -30.0/(d*d*d);
527 swF3 = 60.0/(d*d*d*d);
528 swF4 = -30.0/(d*d*d*d*d);
529
530 outeriter = 0;
531 inneriter = 0;
532
533 /* Start outer loop over neighborlists */
534 for(iidx=0; iidx<nri; iidx++)
535 {
536 /* Load shift vector for this list */
537 i_shift_offset = DIM3*shiftidx[iidx];
538 shX = shiftvec[i_shift_offset+XX0];
539 shY = shiftvec[i_shift_offset+YY1];
540 shZ = shiftvec[i_shift_offset+ZZ2];
541
542 /* Load limits for loop over neighbors */
543 j_index_start = jindex[iidx];
544 j_index_end = jindex[iidx+1];
545
546 /* Get outer coordinate index */
547 inr = iinr[iidx];
548 i_coord_offset = DIM3*inr;
549
550 /* Load i particle coords and add shift vector */
551 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
552 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
553 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
554 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
555 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
556 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
557 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
558 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
559 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
560
561 fix0 = 0.0;
562 fiy0 = 0.0;
563 fiz0 = 0.0;
564 fix1 = 0.0;
565 fiy1 = 0.0;
566 fiz1 = 0.0;
567 fix2 = 0.0;
568 fiy2 = 0.0;
569 fiz2 = 0.0;
570
571 /* Start inner kernel loop */
572 for(jidx=j_index_start; jidx<j_index_end; jidx++)
573 {
574 /* Get j neighbor index, and coordinate index */
575 jnr = jjnr[jidx];
576 j_coord_offset = DIM3*jnr;
577
578 /* load j atom coordinates */
579 jx0 = x[j_coord_offset+DIM3*0+XX0];
580 jy0 = x[j_coord_offset+DIM3*0+YY1];
581 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
582
583 /* Calculate displacement vector */
584 dx00 = ix0 - jx0;
585 dy00 = iy0 - jy0;
586 dz00 = iz0 - jz0;
587 dx10 = ix1 - jx0;
588 dy10 = iy1 - jy0;
589 dz10 = iz1 - jz0;
590 dx20 = ix2 - jx0;
591 dy20 = iy2 - jy0;
592 dz20 = iz2 - jz0;
593
594 /* Calculate squared distance and things based on it */
595 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
596 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
597 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
598
599 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
600 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
601 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
602
603 rinvsq00 = rinv00*rinv00;
604 rinvsq10 = rinv10*rinv10;
605 rinvsq20 = rinv20*rinv20;
606
607 /* Load parameters for j particles */
608 jq0 = charge[jnr+0];
609 vdwjidx0 = 2*vdwtype[jnr+0];
610
611 /**************************
612 * CALCULATE INTERACTIONS *
613 **************************/
614
615 if (rsq00<rcutoff2)
616 {
617
618 r00 = rsq00*rinv00;
619
620 qq00 = iq0*jq0;
621 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
622 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
623
624 /* EWALD ELECTROSTATICS */
625
626 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
627 ewrt = r00*ewtabscale;
628 ewitab = ewrt;
629 eweps = ewrt-ewitab;
630 ewitab = 4*ewitab;
631 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
632 velec = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
633 felec = qq00*rinv00*(rinvsq00-felec);
634
635 /* LENNARD-JONES DISPERSION/REPULSION */
636
637 rinvsix = rinvsq00*rinvsq00*rinvsq00;
638 vvdw6 = c6_00*rinvsix;
639 vvdw12 = c12_00*rinvsix*rinvsix;
640 vvdw = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
641 fvdw = (vvdw12-vvdw6)*rinvsq00;
642
643 d = r00-rswitch;
644 d = (d>0.0) ? d : 0.0;
645 d2 = d*d;
646 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
647
648 dsw = d2*(swF2+d*(swF3+d*swF4));
649
650 /* Evaluate switch function */
651 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
652 felec = felec*sw - rinv00*velec*dsw;
653 fvdw = fvdw*sw - rinv00*vvdw*dsw;
654
655 fscal = felec+fvdw;
656
657 /* Calculate temporary vectorial force */
658 tx = fscal*dx00;
659 ty = fscal*dy00;
660 tz = fscal*dz00;
661
662 /* Update vectorial force */
663 fix0 += tx;
664 fiy0 += ty;
665 fiz0 += tz;
666 f[j_coord_offset+DIM3*0+XX0] -= tx;
667 f[j_coord_offset+DIM3*0+YY1] -= ty;
668 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
669
670 }
671
672 /**************************
673 * CALCULATE INTERACTIONS *
674 **************************/
675
676 if (rsq10<rcutoff2)
677 {
678
679 r10 = rsq10*rinv10;
680
681 qq10 = iq1*jq0;
682
683 /* EWALD ELECTROSTATICS */
684
685 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
686 ewrt = r10*ewtabscale;
687 ewitab = ewrt;
688 eweps = ewrt-ewitab;
689 ewitab = 4*ewitab;
690 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
691 velec = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
692 felec = qq10*rinv10*(rinvsq10-felec);
693
694 d = r10-rswitch;
695 d = (d>0.0) ? d : 0.0;
696 d2 = d*d;
697 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
698
699 dsw = d2*(swF2+d*(swF3+d*swF4));
700
701 /* Evaluate switch function */
702 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
703 felec = felec*sw - rinv10*velec*dsw;
704
705 fscal = felec;
706
707 /* Calculate temporary vectorial force */
708 tx = fscal*dx10;
709 ty = fscal*dy10;
710 tz = fscal*dz10;
711
712 /* Update vectorial force */
713 fix1 += tx;
714 fiy1 += ty;
715 fiz1 += tz;
716 f[j_coord_offset+DIM3*0+XX0] -= tx;
717 f[j_coord_offset+DIM3*0+YY1] -= ty;
718 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
719
720 }
721
722 /**************************
723 * CALCULATE INTERACTIONS *
724 **************************/
725
726 if (rsq20<rcutoff2)
727 {
728
729 r20 = rsq20*rinv20;
730
731 qq20 = iq2*jq0;
732
733 /* EWALD ELECTROSTATICS */
734
735 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
736 ewrt = r20*ewtabscale;
737 ewitab = ewrt;
738 eweps = ewrt-ewitab;
739 ewitab = 4*ewitab;
740 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
741 velec = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
742 felec = qq20*rinv20*(rinvsq20-felec);
743
744 d = r20-rswitch;
745 d = (d>0.0) ? d : 0.0;
746 d2 = d*d;
747 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
748
749 dsw = d2*(swF2+d*(swF3+d*swF4));
750
751 /* Evaluate switch function */
752 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
753 felec = felec*sw - rinv20*velec*dsw;
754
755 fscal = felec;
756
757 /* Calculate temporary vectorial force */
758 tx = fscal*dx20;
759 ty = fscal*dy20;
760 tz = fscal*dz20;
761
762 /* Update vectorial force */
763 fix2 += tx;
764 fiy2 += ty;
765 fiz2 += tz;
766 f[j_coord_offset+DIM3*0+XX0] -= tx;
767 f[j_coord_offset+DIM3*0+YY1] -= ty;
768 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
769
770 }
771
772 /* Inner loop uses 185 flops */
773 }
774 /* End of innermost loop */
775
776 tx = ty = tz = 0;
777 f[i_coord_offset+DIM3*0+XX0] += fix0;
778 f[i_coord_offset+DIM3*0+YY1] += fiy0;
779 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
780 tx += fix0;
781 ty += fiy0;
782 tz += fiz0;
783 f[i_coord_offset+DIM3*1+XX0] += fix1;
784 f[i_coord_offset+DIM3*1+YY1] += fiy1;
785 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
786 tx += fix1;
787 ty += fiy1;
788 tz += fiz1;
789 f[i_coord_offset+DIM3*2+XX0] += fix2;
790 f[i_coord_offset+DIM3*2+YY1] += fiy2;
791 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
792 tx += fix2;
793 ty += fiy2;
794 tz += fiz2;
795 fshift[i_shift_offset+XX0] += tx;
796 fshift[i_shift_offset+YY1] += ty;
797 fshift[i_shift_offset+ZZ2] += tz;
798
799 /* Increment number of inner iterations */
800 inneriter += j_index_end - j_index_start;
801
802 /* Outer loop uses 30 flops */
803 }
804
805 /* Increment number of outer iterations */
806 outeriter += nri;
807
808 /* Update outer/inner flops */
809
810 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*185)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_F] += outeriter*30 + inneriter
*185
;
811}