Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecRFCut_VdwBhamSw_GeomW3P1_c.c
Location:line 437, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwBhamSw_GeomW3P1_VF_c
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: Buckingham
53 * Geometry: Water3-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecRFCut_VdwBhamSw_GeomW3P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83 real velec,felec,velecsum,facel,crf,krf,krf2;
84 real *charge;
85 int nvdwtype;
86 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
87 int *vdwtype;
88 real *vdwparam;
89 real rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
90
91 x = xx[0];
92 f = ff[0];
93
94 nri = nlist->nri;
95 iinr = nlist->iinr;
96 jindex = nlist->jindex;
97 jjnr = nlist->jjnr;
98 shiftidx = nlist->shift;
99 gid = nlist->gid;
100 shiftvec = fr->shift_vec[0];
101 fshift = fr->fshift[0];
102 facel = fr->epsfac;
103 charge = mdatoms->chargeA;
104 krf = fr->ic->k_rf;
105 krf2 = krf*2.0;
106 crf = fr->ic->c_rf;
107 nvdwtype = fr->ntype;
108 vdwparam = fr->nbfp;
109 vdwtype = mdatoms->typeA;
110
111 /* Setup water-specific parameters */
112 inr = nlist->iinr[0];
113 iq0 = facel*charge[inr+0];
114 iq1 = facel*charge[inr+1];
115 iq2 = facel*charge[inr+2];
116 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
117
118 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
119 rcutoff = fr->rcoulomb;
120 rcutoff2 = rcutoff*rcutoff;
121
122 rswitch = fr->rvdw_switch;
123 /* Setup switch parameters */
124 d = rcutoff-rswitch;
125 swV3 = -10.0/(d*d*d);
126 swV4 = 15.0/(d*d*d*d);
127 swV5 = -6.0/(d*d*d*d*d);
128 swF2 = -30.0/(d*d*d);
129 swF3 = 60.0/(d*d*d*d);
130 swF4 = -30.0/(d*d*d*d*d);
131
132 outeriter = 0;
133 inneriter = 0;
134
135 /* Start outer loop over neighborlists */
136 for(iidx=0; iidx<nri; iidx++)
137 {
138 /* Load shift vector for this list */
139 i_shift_offset = DIM3*shiftidx[iidx];
140 shX = shiftvec[i_shift_offset+XX0];
141 shY = shiftvec[i_shift_offset+YY1];
142 shZ = shiftvec[i_shift_offset+ZZ2];
143
144 /* Load limits for loop over neighbors */
145 j_index_start = jindex[iidx];
146 j_index_end = jindex[iidx+1];
147
148 /* Get outer coordinate index */
149 inr = iinr[iidx];
150 i_coord_offset = DIM3*inr;
151
152 /* Load i particle coords and add shift vector */
153 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
154 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
155 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
156 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
157 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
158 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
159 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
160 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
161 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
162
163 fix0 = 0.0;
164 fiy0 = 0.0;
165 fiz0 = 0.0;
166 fix1 = 0.0;
167 fiy1 = 0.0;
168 fiz1 = 0.0;
169 fix2 = 0.0;
170 fiy2 = 0.0;
171 fiz2 = 0.0;
172
173 /* Reset potential sums */
174 velecsum = 0.0;
175 vvdwsum = 0.0;
176
177 /* Start inner kernel loop */
178 for(jidx=j_index_start; jidx<j_index_end; jidx++)
179 {
180 /* Get j neighbor index, and coordinate index */
181 jnr = jjnr[jidx];
182 j_coord_offset = DIM3*jnr;
183
184 /* load j atom coordinates */
185 jx0 = x[j_coord_offset+DIM3*0+XX0];
186 jy0 = x[j_coord_offset+DIM3*0+YY1];
187 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
188
189 /* Calculate displacement vector */
190 dx00 = ix0 - jx0;
191 dy00 = iy0 - jy0;
192 dz00 = iz0 - jz0;
193 dx10 = ix1 - jx0;
194 dy10 = iy1 - jy0;
195 dz10 = iz1 - jz0;
196 dx20 = ix2 - jx0;
197 dy20 = iy2 - jy0;
198 dz20 = iz2 - jz0;
199
200 /* Calculate squared distance and things based on it */
201 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
202 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
203 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
204
205 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
206 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
207 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
208
209 rinvsq00 = rinv00*rinv00;
210 rinvsq10 = rinv10*rinv10;
211 rinvsq20 = rinv20*rinv20;
212
213 /* Load parameters for j particles */
214 jq0 = charge[jnr+0];
215 vdwjidx0 = 3*vdwtype[jnr+0];
216
217 /**************************
218 * CALCULATE INTERACTIONS *
219 **************************/
220
221 if (rsq00<rcutoff2)
222 {
223
224 r00 = rsq00*rinv00;
225
226 qq00 = iq0*jq0;
227 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
228 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
229 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
230
231 /* REACTION-FIELD ELECTROSTATICS */
232 velec = qq00*(rinv00+krf*rsq00-crf);
233 felec = qq00*(rinv00*rinvsq00-krf2);
234
235 /* BUCKINGHAM DISPERSION/REPULSION */
236 rinvsix = rinvsq00*rinvsq00*rinvsq00;
237 vvdw6 = c6_00*rinvsix;
238 br = cexp2_00*r00;
239 vvdwexp = cexp1_00*exp(-br);
240 vvdw = vvdwexp - vvdw6*(1.0/6.0);
241 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
242
243 d = r00-rswitch;
244 d = (d>0.0) ? d : 0.0;
245 d2 = d*d;
246 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
247
248 dsw = d2*(swF2+d*(swF3+d*swF4));
249
250 /* Evaluate switch function */
251 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
252 fvdw = fvdw*sw - rinv00*vvdw*dsw;
253 vvdw *= sw;
254
255 /* Update potential sums from outer loop */
256 velecsum += velec;
257 vvdwsum += vvdw;
258
259 fscal = felec+fvdw;
260
261 /* Calculate temporary vectorial force */
262 tx = fscal*dx00;
263 ty = fscal*dy00;
264 tz = fscal*dz00;
265
266 /* Update vectorial force */
267 fix0 += tx;
268 fiy0 += ty;
269 fiz0 += tz;
270 f[j_coord_offset+DIM3*0+XX0] -= tx;
271 f[j_coord_offset+DIM3*0+YY1] -= ty;
272 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
273
274 }
275
276 /**************************
277 * CALCULATE INTERACTIONS *
278 **************************/
279
280 if (rsq10<rcutoff2)
281 {
282
283 qq10 = iq1*jq0;
284
285 /* REACTION-FIELD ELECTROSTATICS */
286 velec = qq10*(rinv10+krf*rsq10-crf);
287 felec = qq10*(rinv10*rinvsq10-krf2);
288
289 /* Update potential sums from outer loop */
290 velecsum += velec;
291
292 fscal = felec;
293
294 /* Calculate temporary vectorial force */
295 tx = fscal*dx10;
296 ty = fscal*dy10;
297 tz = fscal*dz10;
298
299 /* Update vectorial force */
300 fix1 += tx;
301 fiy1 += ty;
302 fiz1 += tz;
303 f[j_coord_offset+DIM3*0+XX0] -= tx;
304 f[j_coord_offset+DIM3*0+YY1] -= ty;
305 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
306
307 }
308
309 /**************************
310 * CALCULATE INTERACTIONS *
311 **************************/
312
313 if (rsq20<rcutoff2)
314 {
315
316 qq20 = iq2*jq0;
317
318 /* REACTION-FIELD ELECTROSTATICS */
319 velec = qq20*(rinv20+krf*rsq20-crf);
320 felec = qq20*(rinv20*rinvsq20-krf2);
321
322 /* Update potential sums from outer loop */
323 velecsum += velec;
324
325 fscal = felec;
326
327 /* Calculate temporary vectorial force */
328 tx = fscal*dx20;
329 ty = fscal*dy20;
330 tz = fscal*dz20;
331
332 /* Update vectorial force */
333 fix2 += tx;
334 fiy2 += ty;
335 fiz2 += tz;
336 f[j_coord_offset+DIM3*0+XX0] -= tx;
337 f[j_coord_offset+DIM3*0+YY1] -= ty;
338 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
339
340 }
341
342 /* Inner loop uses 153 flops */
343 }
344 /* End of innermost loop */
345
346 tx = ty = tz = 0;
347 f[i_coord_offset+DIM3*0+XX0] += fix0;
348 f[i_coord_offset+DIM3*0+YY1] += fiy0;
349 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
350 tx += fix0;
351 ty += fiy0;
352 tz += fiz0;
353 f[i_coord_offset+DIM3*1+XX0] += fix1;
354 f[i_coord_offset+DIM3*1+YY1] += fiy1;
355 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
356 tx += fix1;
357 ty += fiy1;
358 tz += fiz1;
359 f[i_coord_offset+DIM3*2+XX0] += fix2;
360 f[i_coord_offset+DIM3*2+YY1] += fiy2;
361 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
362 tx += fix2;
363 ty += fiy2;
364 tz += fiz2;
365 fshift[i_shift_offset+XX0] += tx;
366 fshift[i_shift_offset+YY1] += ty;
367 fshift[i_shift_offset+ZZ2] += tz;
368
369 ggid = gid[iidx];
370 /* Update potential energies */
371 kernel_data->energygrp_elec[ggid] += velecsum;
372 kernel_data->energygrp_vdw[ggid] += vvdwsum;
373
374 /* Increment number of inner iterations */
375 inneriter += j_index_end - j_index_start;
376
377 /* Outer loop uses 32 flops */
378 }
379
380 /* Increment number of outer iterations */
381 outeriter += nri;
382
383 /* Update outer/inner flops */
384
385 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*153)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_VF] += outeriter*32 + inneriter
*153
;
386}
387/*
388 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwBhamSw_GeomW3P1_F_c
389 * Electrostatics interaction: ReactionField
390 * VdW interaction: Buckingham
391 * Geometry: Water3-Particle
392 * Calculate force/pot: Force
393 */
394void
395nb_kernel_ElecRFCut_VdwBhamSw_GeomW3P1_F_c
396 (t_nblist * gmx_restrict__restrict nlist,
397 rvec * gmx_restrict__restrict xx,
398 rvec * gmx_restrict__restrict ff,
399 t_forcerec * gmx_restrict__restrict fr,
400 t_mdatoms * gmx_restrict__restrict mdatoms,
401 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
402 t_nrnb * gmx_restrict__restrict nrnb)
403{
404 int i_shift_offset,i_coord_offset,j_coord_offset;
405 int j_index_start,j_index_end;
406 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
407 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
408 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
409 real *shiftvec,*fshift,*x,*f;
410 int vdwioffset0;
411 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
412 int vdwioffset1;
413 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
414 int vdwioffset2;
415 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
416 int vdwjidx0;
417 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
418 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
419 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
420 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
421 real velec,felec,velecsum,facel,crf,krf,krf2;
422 real *charge;
423 int nvdwtype;
424 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
425 int *vdwtype;
426 real *vdwparam;
427 real rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
428
429 x = xx[0];
430 f = ff[0];
431
432 nri = nlist->nri;
433 iinr = nlist->iinr;
434 jindex = nlist->jindex;
435 jjnr = nlist->jjnr;
436 shiftidx = nlist->shift;
437 gid = nlist->gid;
Value stored to 'gid' is never read
438 shiftvec = fr->shift_vec[0];
439 fshift = fr->fshift[0];
440 facel = fr->epsfac;
441 charge = mdatoms->chargeA;
442 krf = fr->ic->k_rf;
443 krf2 = krf*2.0;
444 crf = fr->ic->c_rf;
445 nvdwtype = fr->ntype;
446 vdwparam = fr->nbfp;
447 vdwtype = mdatoms->typeA;
448
449 /* Setup water-specific parameters */
450 inr = nlist->iinr[0];
451 iq0 = facel*charge[inr+0];
452 iq1 = facel*charge[inr+1];
453 iq2 = facel*charge[inr+2];
454 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
455
456 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
457 rcutoff = fr->rcoulomb;
458 rcutoff2 = rcutoff*rcutoff;
459
460 rswitch = fr->rvdw_switch;
461 /* Setup switch parameters */
462 d = rcutoff-rswitch;
463 swV3 = -10.0/(d*d*d);
464 swV4 = 15.0/(d*d*d*d);
465 swV5 = -6.0/(d*d*d*d*d);
466 swF2 = -30.0/(d*d*d);
467 swF3 = 60.0/(d*d*d*d);
468 swF4 = -30.0/(d*d*d*d*d);
469
470 outeriter = 0;
471 inneriter = 0;
472
473 /* Start outer loop over neighborlists */
474 for(iidx=0; iidx<nri; iidx++)
475 {
476 /* Load shift vector for this list */
477 i_shift_offset = DIM3*shiftidx[iidx];
478 shX = shiftvec[i_shift_offset+XX0];
479 shY = shiftvec[i_shift_offset+YY1];
480 shZ = shiftvec[i_shift_offset+ZZ2];
481
482 /* Load limits for loop over neighbors */
483 j_index_start = jindex[iidx];
484 j_index_end = jindex[iidx+1];
485
486 /* Get outer coordinate index */
487 inr = iinr[iidx];
488 i_coord_offset = DIM3*inr;
489
490 /* Load i particle coords and add shift vector */
491 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
492 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
493 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
494 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
495 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
496 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
497 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
498 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
499 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
500
501 fix0 = 0.0;
502 fiy0 = 0.0;
503 fiz0 = 0.0;
504 fix1 = 0.0;
505 fiy1 = 0.0;
506 fiz1 = 0.0;
507 fix2 = 0.0;
508 fiy2 = 0.0;
509 fiz2 = 0.0;
510
511 /* Start inner kernel loop */
512 for(jidx=j_index_start; jidx<j_index_end; jidx++)
513 {
514 /* Get j neighbor index, and coordinate index */
515 jnr = jjnr[jidx];
516 j_coord_offset = DIM3*jnr;
517
518 /* load j atom coordinates */
519 jx0 = x[j_coord_offset+DIM3*0+XX0];
520 jy0 = x[j_coord_offset+DIM3*0+YY1];
521 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
522
523 /* Calculate displacement vector */
524 dx00 = ix0 - jx0;
525 dy00 = iy0 - jy0;
526 dz00 = iz0 - jz0;
527 dx10 = ix1 - jx0;
528 dy10 = iy1 - jy0;
529 dz10 = iz1 - jz0;
530 dx20 = ix2 - jx0;
531 dy20 = iy2 - jy0;
532 dz20 = iz2 - jz0;
533
534 /* Calculate squared distance and things based on it */
535 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
536 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
537 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
538
539 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
540 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
541 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
542
543 rinvsq00 = rinv00*rinv00;
544 rinvsq10 = rinv10*rinv10;
545 rinvsq20 = rinv20*rinv20;
546
547 /* Load parameters for j particles */
548 jq0 = charge[jnr+0];
549 vdwjidx0 = 3*vdwtype[jnr+0];
550
551 /**************************
552 * CALCULATE INTERACTIONS *
553 **************************/
554
555 if (rsq00<rcutoff2)
556 {
557
558 r00 = rsq00*rinv00;
559
560 qq00 = iq0*jq0;
561 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
562 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
563 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
564
565 /* REACTION-FIELD ELECTROSTATICS */
566 felec = qq00*(rinv00*rinvsq00-krf2);
567
568 /* BUCKINGHAM DISPERSION/REPULSION */
569 rinvsix = rinvsq00*rinvsq00*rinvsq00;
570 vvdw6 = c6_00*rinvsix;
571 br = cexp2_00*r00;
572 vvdwexp = cexp1_00*exp(-br);
573 vvdw = vvdwexp - vvdw6*(1.0/6.0);
574 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
575
576 d = r00-rswitch;
577 d = (d>0.0) ? d : 0.0;
578 d2 = d*d;
579 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
580
581 dsw = d2*(swF2+d*(swF3+d*swF4));
582
583 /* Evaluate switch function */
584 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
585 fvdw = fvdw*sw - rinv00*vvdw*dsw;
586
587 fscal = felec+fvdw;
588
589 /* Calculate temporary vectorial force */
590 tx = fscal*dx00;
591 ty = fscal*dy00;
592 tz = fscal*dz00;
593
594 /* Update vectorial force */
595 fix0 += tx;
596 fiy0 += ty;
597 fiz0 += tz;
598 f[j_coord_offset+DIM3*0+XX0] -= tx;
599 f[j_coord_offset+DIM3*0+YY1] -= ty;
600 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
601
602 }
603
604 /**************************
605 * CALCULATE INTERACTIONS *
606 **************************/
607
608 if (rsq10<rcutoff2)
609 {
610
611 qq10 = iq1*jq0;
612
613 /* REACTION-FIELD ELECTROSTATICS */
614 felec = qq10*(rinv10*rinvsq10-krf2);
615
616 fscal = felec;
617
618 /* Calculate temporary vectorial force */
619 tx = fscal*dx10;
620 ty = fscal*dy10;
621 tz = fscal*dz10;
622
623 /* Update vectorial force */
624 fix1 += tx;
625 fiy1 += ty;
626 fiz1 += tz;
627 f[j_coord_offset+DIM3*0+XX0] -= tx;
628 f[j_coord_offset+DIM3*0+YY1] -= ty;
629 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
630
631 }
632
633 /**************************
634 * CALCULATE INTERACTIONS *
635 **************************/
636
637 if (rsq20<rcutoff2)
638 {
639
640 qq20 = iq2*jq0;
641
642 /* REACTION-FIELD ELECTROSTATICS */
643 felec = qq20*(rinv20*rinvsq20-krf2);
644
645 fscal = felec;
646
647 /* Calculate temporary vectorial force */
648 tx = fscal*dx20;
649 ty = fscal*dy20;
650 tz = fscal*dz20;
651
652 /* Update vectorial force */
653 fix2 += tx;
654 fiy2 += ty;
655 fiz2 += tz;
656 f[j_coord_offset+DIM3*0+XX0] -= tx;
657 f[j_coord_offset+DIM3*0+YY1] -= ty;
658 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
659
660 }
661
662 /* Inner loop uses 136 flops */
663 }
664 /* End of innermost loop */
665
666 tx = ty = tz = 0;
667 f[i_coord_offset+DIM3*0+XX0] += fix0;
668 f[i_coord_offset+DIM3*0+YY1] += fiy0;
669 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
670 tx += fix0;
671 ty += fiy0;
672 tz += fiz0;
673 f[i_coord_offset+DIM3*1+XX0] += fix1;
674 f[i_coord_offset+DIM3*1+YY1] += fiy1;
675 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
676 tx += fix1;
677 ty += fiy1;
678 tz += fiz1;
679 f[i_coord_offset+DIM3*2+XX0] += fix2;
680 f[i_coord_offset+DIM3*2+YY1] += fiy2;
681 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
682 tx += fix2;
683 ty += fiy2;
684 tz += fiz2;
685 fshift[i_shift_offset+XX0] += tx;
686 fshift[i_shift_offset+YY1] += ty;
687 fshift[i_shift_offset+ZZ2] += tz;
688
689 /* Increment number of inner iterations */
690 inneriter += j_index_end - j_index_start;
691
692 /* Outer loop uses 30 flops */
693 }
694
695 /* Increment number of outer iterations */
696 outeriter += nri;
697
698 /* Update outer/inner flops */
699
700 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*136)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_F] += outeriter*30 + inneriter
*136
;
701}