Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecRFCut_VdwBhamSh_GeomW3W3_c.c
Location:line 709, column 5
Description:Value stored to 'rvdw' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwBhamSh_GeomW3W3_VF_c
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: Buckingham
53 * Geometry: Water3-Water3
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecRFCut_VdwBhamSh_GeomW3W3_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 int vdwjidx1;
81 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
82 int vdwjidx2;
83 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
84 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
85 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
86 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
87 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
88 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
89 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
90 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
91 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
92 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
93 real velec,felec,velecsum,facel,crf,krf,krf2;
94 real *charge;
95 int nvdwtype;
96 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
97 int *vdwtype;
98 real *vdwparam;
99
100 x = xx[0];
101 f = ff[0];
102
103 nri = nlist->nri;
104 iinr = nlist->iinr;
105 jindex = nlist->jindex;
106 jjnr = nlist->jjnr;
107 shiftidx = nlist->shift;
108 gid = nlist->gid;
109 shiftvec = fr->shift_vec[0];
110 fshift = fr->fshift[0];
111 facel = fr->epsfac;
112 charge = mdatoms->chargeA;
113 krf = fr->ic->k_rf;
114 krf2 = krf*2.0;
115 crf = fr->ic->c_rf;
116 nvdwtype = fr->ntype;
117 vdwparam = fr->nbfp;
118 vdwtype = mdatoms->typeA;
119
120 /* Setup water-specific parameters */
121 inr = nlist->iinr[0];
122 iq0 = facel*charge[inr+0];
123 iq1 = facel*charge[inr+1];
124 iq2 = facel*charge[inr+2];
125 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
126
127 jq0 = charge[inr+0];
128 jq1 = charge[inr+1];
129 jq2 = charge[inr+2];
130 vdwjidx0 = 3*vdwtype[inr+0];
131 qq00 = iq0*jq0;
132 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
133 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
134 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
135 qq01 = iq0*jq1;
136 qq02 = iq0*jq2;
137 qq10 = iq1*jq0;
138 qq11 = iq1*jq1;
139 qq12 = iq1*jq2;
140 qq20 = iq2*jq0;
141 qq21 = iq2*jq1;
142 qq22 = iq2*jq2;
143
144 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
145 rcutoff = fr->rcoulomb;
146 rcutoff2 = rcutoff*rcutoff;
147
148 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
149 rvdw = fr->rvdw;
150
151 outeriter = 0;
152 inneriter = 0;
153
154 /* Start outer loop over neighborlists */
155 for(iidx=0; iidx<nri; iidx++)
156 {
157 /* Load shift vector for this list */
158 i_shift_offset = DIM3*shiftidx[iidx];
159 shX = shiftvec[i_shift_offset+XX0];
160 shY = shiftvec[i_shift_offset+YY1];
161 shZ = shiftvec[i_shift_offset+ZZ2];
162
163 /* Load limits for loop over neighbors */
164 j_index_start = jindex[iidx];
165 j_index_end = jindex[iidx+1];
166
167 /* Get outer coordinate index */
168 inr = iinr[iidx];
169 i_coord_offset = DIM3*inr;
170
171 /* Load i particle coords and add shift vector */
172 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
173 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
174 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
175 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
176 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
177 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
178 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
179 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
180 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
181
182 fix0 = 0.0;
183 fiy0 = 0.0;
184 fiz0 = 0.0;
185 fix1 = 0.0;
186 fiy1 = 0.0;
187 fiz1 = 0.0;
188 fix2 = 0.0;
189 fiy2 = 0.0;
190 fiz2 = 0.0;
191
192 /* Reset potential sums */
193 velecsum = 0.0;
194 vvdwsum = 0.0;
195
196 /* Start inner kernel loop */
197 for(jidx=j_index_start; jidx<j_index_end; jidx++)
198 {
199 /* Get j neighbor index, and coordinate index */
200 jnr = jjnr[jidx];
201 j_coord_offset = DIM3*jnr;
202
203 /* load j atom coordinates */
204 jx0 = x[j_coord_offset+DIM3*0+XX0];
205 jy0 = x[j_coord_offset+DIM3*0+YY1];
206 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
207 jx1 = x[j_coord_offset+DIM3*1+XX0];
208 jy1 = x[j_coord_offset+DIM3*1+YY1];
209 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
210 jx2 = x[j_coord_offset+DIM3*2+XX0];
211 jy2 = x[j_coord_offset+DIM3*2+YY1];
212 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
213
214 /* Calculate displacement vector */
215 dx00 = ix0 - jx0;
216 dy00 = iy0 - jy0;
217 dz00 = iz0 - jz0;
218 dx01 = ix0 - jx1;
219 dy01 = iy0 - jy1;
220 dz01 = iz0 - jz1;
221 dx02 = ix0 - jx2;
222 dy02 = iy0 - jy2;
223 dz02 = iz0 - jz2;
224 dx10 = ix1 - jx0;
225 dy10 = iy1 - jy0;
226 dz10 = iz1 - jz0;
227 dx11 = ix1 - jx1;
228 dy11 = iy1 - jy1;
229 dz11 = iz1 - jz1;
230 dx12 = ix1 - jx2;
231 dy12 = iy1 - jy2;
232 dz12 = iz1 - jz2;
233 dx20 = ix2 - jx0;
234 dy20 = iy2 - jy0;
235 dz20 = iz2 - jz0;
236 dx21 = ix2 - jx1;
237 dy21 = iy2 - jy1;
238 dz21 = iz2 - jz1;
239 dx22 = ix2 - jx2;
240 dy22 = iy2 - jy2;
241 dz22 = iz2 - jz2;
242
243 /* Calculate squared distance and things based on it */
244 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
245 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
246 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
247 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
248 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
249 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
250 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
251 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
252 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
253
254 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
255 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
256 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
257 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
258 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
259 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
260 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
261 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
262 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
263
264 rinvsq00 = rinv00*rinv00;
265 rinvsq01 = rinv01*rinv01;
266 rinvsq02 = rinv02*rinv02;
267 rinvsq10 = rinv10*rinv10;
268 rinvsq11 = rinv11*rinv11;
269 rinvsq12 = rinv12*rinv12;
270 rinvsq20 = rinv20*rinv20;
271 rinvsq21 = rinv21*rinv21;
272 rinvsq22 = rinv22*rinv22;
273
274 /**************************
275 * CALCULATE INTERACTIONS *
276 **************************/
277
278 if (rsq00<rcutoff2)
279 {
280
281 r00 = rsq00*rinv00;
282
283 /* REACTION-FIELD ELECTROSTATICS */
284 velec = qq00*(rinv00+krf*rsq00-crf);
285 felec = qq00*(rinv00*rinvsq00-krf2);
286
287 /* BUCKINGHAM DISPERSION/REPULSION */
288 rinvsix = rinvsq00*rinvsq00*rinvsq00;
289 vvdw6 = c6_00*rinvsix;
290 br = cexp2_00*r00;
291 vvdwexp = cexp1_00*exp(-br);
292 vvdw = (vvdwexp-cexp1_00*exp(-cexp2_00*rvdw)) - (vvdw6 - c6_00*sh_vdw_invrcut6)*(1.0/6.0);
293 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
294
295 /* Update potential sums from outer loop */
296 velecsum += velec;
297 vvdwsum += vvdw;
298
299 fscal = felec+fvdw;
300
301 /* Calculate temporary vectorial force */
302 tx = fscal*dx00;
303 ty = fscal*dy00;
304 tz = fscal*dz00;
305
306 /* Update vectorial force */
307 fix0 += tx;
308 fiy0 += ty;
309 fiz0 += tz;
310 f[j_coord_offset+DIM3*0+XX0] -= tx;
311 f[j_coord_offset+DIM3*0+YY1] -= ty;
312 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
313
314 }
315
316 /**************************
317 * CALCULATE INTERACTIONS *
318 **************************/
319
320 if (rsq01<rcutoff2)
321 {
322
323 /* REACTION-FIELD ELECTROSTATICS */
324 velec = qq01*(rinv01+krf*rsq01-crf);
325 felec = qq01*(rinv01*rinvsq01-krf2);
326
327 /* Update potential sums from outer loop */
328 velecsum += velec;
329
330 fscal = felec;
331
332 /* Calculate temporary vectorial force */
333 tx = fscal*dx01;
334 ty = fscal*dy01;
335 tz = fscal*dz01;
336
337 /* Update vectorial force */
338 fix0 += tx;
339 fiy0 += ty;
340 fiz0 += tz;
341 f[j_coord_offset+DIM3*1+XX0] -= tx;
342 f[j_coord_offset+DIM3*1+YY1] -= ty;
343 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
344
345 }
346
347 /**************************
348 * CALCULATE INTERACTIONS *
349 **************************/
350
351 if (rsq02<rcutoff2)
352 {
353
354 /* REACTION-FIELD ELECTROSTATICS */
355 velec = qq02*(rinv02+krf*rsq02-crf);
356 felec = qq02*(rinv02*rinvsq02-krf2);
357
358 /* Update potential sums from outer loop */
359 velecsum += velec;
360
361 fscal = felec;
362
363 /* Calculate temporary vectorial force */
364 tx = fscal*dx02;
365 ty = fscal*dy02;
366 tz = fscal*dz02;
367
368 /* Update vectorial force */
369 fix0 += tx;
370 fiy0 += ty;
371 fiz0 += tz;
372 f[j_coord_offset+DIM3*2+XX0] -= tx;
373 f[j_coord_offset+DIM3*2+YY1] -= ty;
374 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
375
376 }
377
378 /**************************
379 * CALCULATE INTERACTIONS *
380 **************************/
381
382 if (rsq10<rcutoff2)
383 {
384
385 /* REACTION-FIELD ELECTROSTATICS */
386 velec = qq10*(rinv10+krf*rsq10-crf);
387 felec = qq10*(rinv10*rinvsq10-krf2);
388
389 /* Update potential sums from outer loop */
390 velecsum += velec;
391
392 fscal = felec;
393
394 /* Calculate temporary vectorial force */
395 tx = fscal*dx10;
396 ty = fscal*dy10;
397 tz = fscal*dz10;
398
399 /* Update vectorial force */
400 fix1 += tx;
401 fiy1 += ty;
402 fiz1 += tz;
403 f[j_coord_offset+DIM3*0+XX0] -= tx;
404 f[j_coord_offset+DIM3*0+YY1] -= ty;
405 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
406
407 }
408
409 /**************************
410 * CALCULATE INTERACTIONS *
411 **************************/
412
413 if (rsq11<rcutoff2)
414 {
415
416 /* REACTION-FIELD ELECTROSTATICS */
417 velec = qq11*(rinv11+krf*rsq11-crf);
418 felec = qq11*(rinv11*rinvsq11-krf2);
419
420 /* Update potential sums from outer loop */
421 velecsum += velec;
422
423 fscal = felec;
424
425 /* Calculate temporary vectorial force */
426 tx = fscal*dx11;
427 ty = fscal*dy11;
428 tz = fscal*dz11;
429
430 /* Update vectorial force */
431 fix1 += tx;
432 fiy1 += ty;
433 fiz1 += tz;
434 f[j_coord_offset+DIM3*1+XX0] -= tx;
435 f[j_coord_offset+DIM3*1+YY1] -= ty;
436 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
437
438 }
439
440 /**************************
441 * CALCULATE INTERACTIONS *
442 **************************/
443
444 if (rsq12<rcutoff2)
445 {
446
447 /* REACTION-FIELD ELECTROSTATICS */
448 velec = qq12*(rinv12+krf*rsq12-crf);
449 felec = qq12*(rinv12*rinvsq12-krf2);
450
451 /* Update potential sums from outer loop */
452 velecsum += velec;
453
454 fscal = felec;
455
456 /* Calculate temporary vectorial force */
457 tx = fscal*dx12;
458 ty = fscal*dy12;
459 tz = fscal*dz12;
460
461 /* Update vectorial force */
462 fix1 += tx;
463 fiy1 += ty;
464 fiz1 += tz;
465 f[j_coord_offset+DIM3*2+XX0] -= tx;
466 f[j_coord_offset+DIM3*2+YY1] -= ty;
467 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
468
469 }
470
471 /**************************
472 * CALCULATE INTERACTIONS *
473 **************************/
474
475 if (rsq20<rcutoff2)
476 {
477
478 /* REACTION-FIELD ELECTROSTATICS */
479 velec = qq20*(rinv20+krf*rsq20-crf);
480 felec = qq20*(rinv20*rinvsq20-krf2);
481
482 /* Update potential sums from outer loop */
483 velecsum += velec;
484
485 fscal = felec;
486
487 /* Calculate temporary vectorial force */
488 tx = fscal*dx20;
489 ty = fscal*dy20;
490 tz = fscal*dz20;
491
492 /* Update vectorial force */
493 fix2 += tx;
494 fiy2 += ty;
495 fiz2 += tz;
496 f[j_coord_offset+DIM3*0+XX0] -= tx;
497 f[j_coord_offset+DIM3*0+YY1] -= ty;
498 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
499
500 }
501
502 /**************************
503 * CALCULATE INTERACTIONS *
504 **************************/
505
506 if (rsq21<rcutoff2)
507 {
508
509 /* REACTION-FIELD ELECTROSTATICS */
510 velec = qq21*(rinv21+krf*rsq21-crf);
511 felec = qq21*(rinv21*rinvsq21-krf2);
512
513 /* Update potential sums from outer loop */
514 velecsum += velec;
515
516 fscal = felec;
517
518 /* Calculate temporary vectorial force */
519 tx = fscal*dx21;
520 ty = fscal*dy21;
521 tz = fscal*dz21;
522
523 /* Update vectorial force */
524 fix2 += tx;
525 fiy2 += ty;
526 fiz2 += tz;
527 f[j_coord_offset+DIM3*1+XX0] -= tx;
528 f[j_coord_offset+DIM3*1+YY1] -= ty;
529 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
530
531 }
532
533 /**************************
534 * CALCULATE INTERACTIONS *
535 **************************/
536
537 if (rsq22<rcutoff2)
538 {
539
540 /* REACTION-FIELD ELECTROSTATICS */
541 velec = qq22*(rinv22+krf*rsq22-crf);
542 felec = qq22*(rinv22*rinvsq22-krf2);
543
544 /* Update potential sums from outer loop */
545 velecsum += velec;
546
547 fscal = felec;
548
549 /* Calculate temporary vectorial force */
550 tx = fscal*dx22;
551 ty = fscal*dy22;
552 tz = fscal*dz22;
553
554 /* Update vectorial force */
555 fix2 += tx;
556 fiy2 += ty;
557 fiz2 += tz;
558 f[j_coord_offset+DIM3*2+XX0] -= tx;
559 f[j_coord_offset+DIM3*2+YY1] -= ty;
560 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
561
562 }
563
564 /* Inner loop uses 349 flops */
565 }
566 /* End of innermost loop */
567
568 tx = ty = tz = 0;
569 f[i_coord_offset+DIM3*0+XX0] += fix0;
570 f[i_coord_offset+DIM3*0+YY1] += fiy0;
571 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
572 tx += fix0;
573 ty += fiy0;
574 tz += fiz0;
575 f[i_coord_offset+DIM3*1+XX0] += fix1;
576 f[i_coord_offset+DIM3*1+YY1] += fiy1;
577 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
578 tx += fix1;
579 ty += fiy1;
580 tz += fiz1;
581 f[i_coord_offset+DIM3*2+XX0] += fix2;
582 f[i_coord_offset+DIM3*2+YY1] += fiy2;
583 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
584 tx += fix2;
585 ty += fiy2;
586 tz += fiz2;
587 fshift[i_shift_offset+XX0] += tx;
588 fshift[i_shift_offset+YY1] += ty;
589 fshift[i_shift_offset+ZZ2] += tz;
590
591 ggid = gid[iidx];
592 /* Update potential energies */
593 kernel_data->energygrp_elec[ggid] += velecsum;
594 kernel_data->energygrp_vdw[ggid] += vvdwsum;
595
596 /* Increment number of inner iterations */
597 inneriter += j_index_end - j_index_start;
598
599 /* Outer loop uses 32 flops */
600 }
601
602 /* Increment number of outer iterations */
603 outeriter += nri;
604
605 /* Update outer/inner flops */
606
607 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*32 + inneriter*349)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_VF] += outeriter*32 +
inneriter*349
;
608}
609/*
610 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwBhamSh_GeomW3W3_F_c
611 * Electrostatics interaction: ReactionField
612 * VdW interaction: Buckingham
613 * Geometry: Water3-Water3
614 * Calculate force/pot: Force
615 */
616void
617nb_kernel_ElecRFCut_VdwBhamSh_GeomW3W3_F_c
618 (t_nblist * gmx_restrict__restrict nlist,
619 rvec * gmx_restrict__restrict xx,
620 rvec * gmx_restrict__restrict ff,
621 t_forcerec * gmx_restrict__restrict fr,
622 t_mdatoms * gmx_restrict__restrict mdatoms,
623 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
624 t_nrnb * gmx_restrict__restrict nrnb)
625{
626 int i_shift_offset,i_coord_offset,j_coord_offset;
627 int j_index_start,j_index_end;
628 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
629 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
630 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
631 real *shiftvec,*fshift,*x,*f;
632 int vdwioffset0;
633 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
634 int vdwioffset1;
635 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
636 int vdwioffset2;
637 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
638 int vdwjidx0;
639 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
640 int vdwjidx1;
641 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
642 int vdwjidx2;
643 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
644 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
645 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
646 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
647 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
648 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
649 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
650 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
651 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
652 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
653 real velec,felec,velecsum,facel,crf,krf,krf2;
654 real *charge;
655 int nvdwtype;
656 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
657 int *vdwtype;
658 real *vdwparam;
659
660 x = xx[0];
661 f = ff[0];
662
663 nri = nlist->nri;
664 iinr = nlist->iinr;
665 jindex = nlist->jindex;
666 jjnr = nlist->jjnr;
667 shiftidx = nlist->shift;
668 gid = nlist->gid;
669 shiftvec = fr->shift_vec[0];
670 fshift = fr->fshift[0];
671 facel = fr->epsfac;
672 charge = mdatoms->chargeA;
673 krf = fr->ic->k_rf;
674 krf2 = krf*2.0;
675 crf = fr->ic->c_rf;
676 nvdwtype = fr->ntype;
677 vdwparam = fr->nbfp;
678 vdwtype = mdatoms->typeA;
679
680 /* Setup water-specific parameters */
681 inr = nlist->iinr[0];
682 iq0 = facel*charge[inr+0];
683 iq1 = facel*charge[inr+1];
684 iq2 = facel*charge[inr+2];
685 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
686
687 jq0 = charge[inr+0];
688 jq1 = charge[inr+1];
689 jq2 = charge[inr+2];
690 vdwjidx0 = 3*vdwtype[inr+0];
691 qq00 = iq0*jq0;
692 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
693 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
694 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
695 qq01 = iq0*jq1;
696 qq02 = iq0*jq2;
697 qq10 = iq1*jq0;
698 qq11 = iq1*jq1;
699 qq12 = iq1*jq2;
700 qq20 = iq2*jq0;
701 qq21 = iq2*jq1;
702 qq22 = iq2*jq2;
703
704 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
705 rcutoff = fr->rcoulomb;
706 rcutoff2 = rcutoff*rcutoff;
707
708 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
709 rvdw = fr->rvdw;
Value stored to 'rvdw' is never read
710
711 outeriter = 0;
712 inneriter = 0;
713
714 /* Start outer loop over neighborlists */
715 for(iidx=0; iidx<nri; iidx++)
716 {
717 /* Load shift vector for this list */
718 i_shift_offset = DIM3*shiftidx[iidx];
719 shX = shiftvec[i_shift_offset+XX0];
720 shY = shiftvec[i_shift_offset+YY1];
721 shZ = shiftvec[i_shift_offset+ZZ2];
722
723 /* Load limits for loop over neighbors */
724 j_index_start = jindex[iidx];
725 j_index_end = jindex[iidx+1];
726
727 /* Get outer coordinate index */
728 inr = iinr[iidx];
729 i_coord_offset = DIM3*inr;
730
731 /* Load i particle coords and add shift vector */
732 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
733 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
734 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
735 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
736 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
737 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
738 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
739 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
740 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
741
742 fix0 = 0.0;
743 fiy0 = 0.0;
744 fiz0 = 0.0;
745 fix1 = 0.0;
746 fiy1 = 0.0;
747 fiz1 = 0.0;
748 fix2 = 0.0;
749 fiy2 = 0.0;
750 fiz2 = 0.0;
751
752 /* Start inner kernel loop */
753 for(jidx=j_index_start; jidx<j_index_end; jidx++)
754 {
755 /* Get j neighbor index, and coordinate index */
756 jnr = jjnr[jidx];
757 j_coord_offset = DIM3*jnr;
758
759 /* load j atom coordinates */
760 jx0 = x[j_coord_offset+DIM3*0+XX0];
761 jy0 = x[j_coord_offset+DIM3*0+YY1];
762 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
763 jx1 = x[j_coord_offset+DIM3*1+XX0];
764 jy1 = x[j_coord_offset+DIM3*1+YY1];
765 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
766 jx2 = x[j_coord_offset+DIM3*2+XX0];
767 jy2 = x[j_coord_offset+DIM3*2+YY1];
768 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
769
770 /* Calculate displacement vector */
771 dx00 = ix0 - jx0;
772 dy00 = iy0 - jy0;
773 dz00 = iz0 - jz0;
774 dx01 = ix0 - jx1;
775 dy01 = iy0 - jy1;
776 dz01 = iz0 - jz1;
777 dx02 = ix0 - jx2;
778 dy02 = iy0 - jy2;
779 dz02 = iz0 - jz2;
780 dx10 = ix1 - jx0;
781 dy10 = iy1 - jy0;
782 dz10 = iz1 - jz0;
783 dx11 = ix1 - jx1;
784 dy11 = iy1 - jy1;
785 dz11 = iz1 - jz1;
786 dx12 = ix1 - jx2;
787 dy12 = iy1 - jy2;
788 dz12 = iz1 - jz2;
789 dx20 = ix2 - jx0;
790 dy20 = iy2 - jy0;
791 dz20 = iz2 - jz0;
792 dx21 = ix2 - jx1;
793 dy21 = iy2 - jy1;
794 dz21 = iz2 - jz1;
795 dx22 = ix2 - jx2;
796 dy22 = iy2 - jy2;
797 dz22 = iz2 - jz2;
798
799 /* Calculate squared distance and things based on it */
800 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
801 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
802 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
803 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
804 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
805 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
806 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
807 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
808 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
809
810 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
811 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
812 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
813 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
814 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
815 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
816 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
817 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
818 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
819
820 rinvsq00 = rinv00*rinv00;
821 rinvsq01 = rinv01*rinv01;
822 rinvsq02 = rinv02*rinv02;
823 rinvsq10 = rinv10*rinv10;
824 rinvsq11 = rinv11*rinv11;
825 rinvsq12 = rinv12*rinv12;
826 rinvsq20 = rinv20*rinv20;
827 rinvsq21 = rinv21*rinv21;
828 rinvsq22 = rinv22*rinv22;
829
830 /**************************
831 * CALCULATE INTERACTIONS *
832 **************************/
833
834 if (rsq00<rcutoff2)
835 {
836
837 r00 = rsq00*rinv00;
838
839 /* REACTION-FIELD ELECTROSTATICS */
840 felec = qq00*(rinv00*rinvsq00-krf2);
841
842 /* BUCKINGHAM DISPERSION/REPULSION */
843 rinvsix = rinvsq00*rinvsq00*rinvsq00;
844 vvdw6 = c6_00*rinvsix;
845 br = cexp2_00*r00;
846 vvdwexp = cexp1_00*exp(-br);
847 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
848
849 fscal = felec+fvdw;
850
851 /* Calculate temporary vectorial force */
852 tx = fscal*dx00;
853 ty = fscal*dy00;
854 tz = fscal*dz00;
855
856 /* Update vectorial force */
857 fix0 += tx;
858 fiy0 += ty;
859 fiz0 += tz;
860 f[j_coord_offset+DIM3*0+XX0] -= tx;
861 f[j_coord_offset+DIM3*0+YY1] -= ty;
862 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
863
864 }
865
866 /**************************
867 * CALCULATE INTERACTIONS *
868 **************************/
869
870 if (rsq01<rcutoff2)
871 {
872
873 /* REACTION-FIELD ELECTROSTATICS */
874 felec = qq01*(rinv01*rinvsq01-krf2);
875
876 fscal = felec;
877
878 /* Calculate temporary vectorial force */
879 tx = fscal*dx01;
880 ty = fscal*dy01;
881 tz = fscal*dz01;
882
883 /* Update vectorial force */
884 fix0 += tx;
885 fiy0 += ty;
886 fiz0 += tz;
887 f[j_coord_offset+DIM3*1+XX0] -= tx;
888 f[j_coord_offset+DIM3*1+YY1] -= ty;
889 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
890
891 }
892
893 /**************************
894 * CALCULATE INTERACTIONS *
895 **************************/
896
897 if (rsq02<rcutoff2)
898 {
899
900 /* REACTION-FIELD ELECTROSTATICS */
901 felec = qq02*(rinv02*rinvsq02-krf2);
902
903 fscal = felec;
904
905 /* Calculate temporary vectorial force */
906 tx = fscal*dx02;
907 ty = fscal*dy02;
908 tz = fscal*dz02;
909
910 /* Update vectorial force */
911 fix0 += tx;
912 fiy0 += ty;
913 fiz0 += tz;
914 f[j_coord_offset+DIM3*2+XX0] -= tx;
915 f[j_coord_offset+DIM3*2+YY1] -= ty;
916 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
917
918 }
919
920 /**************************
921 * CALCULATE INTERACTIONS *
922 **************************/
923
924 if (rsq10<rcutoff2)
925 {
926
927 /* REACTION-FIELD ELECTROSTATICS */
928 felec = qq10*(rinv10*rinvsq10-krf2);
929
930 fscal = felec;
931
932 /* Calculate temporary vectorial force */
933 tx = fscal*dx10;
934 ty = fscal*dy10;
935 tz = fscal*dz10;
936
937 /* Update vectorial force */
938 fix1 += tx;
939 fiy1 += ty;
940 fiz1 += tz;
941 f[j_coord_offset+DIM3*0+XX0] -= tx;
942 f[j_coord_offset+DIM3*0+YY1] -= ty;
943 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
944
945 }
946
947 /**************************
948 * CALCULATE INTERACTIONS *
949 **************************/
950
951 if (rsq11<rcutoff2)
952 {
953
954 /* REACTION-FIELD ELECTROSTATICS */
955 felec = qq11*(rinv11*rinvsq11-krf2);
956
957 fscal = felec;
958
959 /* Calculate temporary vectorial force */
960 tx = fscal*dx11;
961 ty = fscal*dy11;
962 tz = fscal*dz11;
963
964 /* Update vectorial force */
965 fix1 += tx;
966 fiy1 += ty;
967 fiz1 += tz;
968 f[j_coord_offset+DIM3*1+XX0] -= tx;
969 f[j_coord_offset+DIM3*1+YY1] -= ty;
970 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
971
972 }
973
974 /**************************
975 * CALCULATE INTERACTIONS *
976 **************************/
977
978 if (rsq12<rcutoff2)
979 {
980
981 /* REACTION-FIELD ELECTROSTATICS */
982 felec = qq12*(rinv12*rinvsq12-krf2);
983
984 fscal = felec;
985
986 /* Calculate temporary vectorial force */
987 tx = fscal*dx12;
988 ty = fscal*dy12;
989 tz = fscal*dz12;
990
991 /* Update vectorial force */
992 fix1 += tx;
993 fiy1 += ty;
994 fiz1 += tz;
995 f[j_coord_offset+DIM3*2+XX0] -= tx;
996 f[j_coord_offset+DIM3*2+YY1] -= ty;
997 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
998
999 }
1000
1001 /**************************
1002 * CALCULATE INTERACTIONS *
1003 **************************/
1004
1005 if (rsq20<rcutoff2)
1006 {
1007
1008 /* REACTION-FIELD ELECTROSTATICS */
1009 felec = qq20*(rinv20*rinvsq20-krf2);
1010
1011 fscal = felec;
1012
1013 /* Calculate temporary vectorial force */
1014 tx = fscal*dx20;
1015 ty = fscal*dy20;
1016 tz = fscal*dz20;
1017
1018 /* Update vectorial force */
1019 fix2 += tx;
1020 fiy2 += ty;
1021 fiz2 += tz;
1022 f[j_coord_offset+DIM3*0+XX0] -= tx;
1023 f[j_coord_offset+DIM3*0+YY1] -= ty;
1024 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1025
1026 }
1027
1028 /**************************
1029 * CALCULATE INTERACTIONS *
1030 **************************/
1031
1032 if (rsq21<rcutoff2)
1033 {
1034
1035 /* REACTION-FIELD ELECTROSTATICS */
1036 felec = qq21*(rinv21*rinvsq21-krf2);
1037
1038 fscal = felec;
1039
1040 /* Calculate temporary vectorial force */
1041 tx = fscal*dx21;
1042 ty = fscal*dy21;
1043 tz = fscal*dz21;
1044
1045 /* Update vectorial force */
1046 fix2 += tx;
1047 fiy2 += ty;
1048 fiz2 += tz;
1049 f[j_coord_offset+DIM3*1+XX0] -= tx;
1050 f[j_coord_offset+DIM3*1+YY1] -= ty;
1051 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1052
1053 }
1054
1055 /**************************
1056 * CALCULATE INTERACTIONS *
1057 **************************/
1058
1059 if (rsq22<rcutoff2)
1060 {
1061
1062 /* REACTION-FIELD ELECTROSTATICS */
1063 felec = qq22*(rinv22*rinvsq22-krf2);
1064
1065 fscal = felec;
1066
1067 /* Calculate temporary vectorial force */
1068 tx = fscal*dx22;
1069 ty = fscal*dy22;
1070 tz = fscal*dz22;
1071
1072 /* Update vectorial force */
1073 fix2 += tx;
1074 fiy2 += ty;
1075 fiz2 += tz;
1076 f[j_coord_offset+DIM3*2+XX0] -= tx;
1077 f[j_coord_offset+DIM3*2+YY1] -= ty;
1078 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1079
1080 }
1081
1082 /* Inner loop uses 270 flops */
1083 }
1084 /* End of innermost loop */
1085
1086 tx = ty = tz = 0;
1087 f[i_coord_offset+DIM3*0+XX0] += fix0;
1088 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1089 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1090 tx += fix0;
1091 ty += fiy0;
1092 tz += fiz0;
1093 f[i_coord_offset+DIM3*1+XX0] += fix1;
1094 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1095 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1096 tx += fix1;
1097 ty += fiy1;
1098 tz += fiz1;
1099 f[i_coord_offset+DIM3*2+XX0] += fix2;
1100 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1101 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1102 tx += fix2;
1103 ty += fiy2;
1104 tz += fiz2;
1105 fshift[i_shift_offset+XX0] += tx;
1106 fshift[i_shift_offset+YY1] += ty;
1107 fshift[i_shift_offset+ZZ2] += tz;
1108
1109 /* Increment number of inner iterations */
1110 inneriter += j_index_end - j_index_start;
1111
1112 /* Outer loop uses 30 flops */
1113 }
1114
1115 /* Increment number of outer iterations */
1116 outeriter += nri;
1117
1118 /* Update outer/inner flops */
1119
1120 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*30 + inneriter*270)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_F] += outeriter*30 + inneriter
*270
;
1121}