Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEw_VdwLJ_GeomW3P1_c.c
Location:line 110, column 5
Description:Value stored to 'sh_ewald' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: LennardJones
53 * Geometry: Water3-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEw_VdwLJ_GeomW3P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83 real velec,felec,velecsum,facel,crf,krf,krf2;
84 real *charge;
85 int nvdwtype;
86 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
87 int *vdwtype;
88 real *vdwparam;
89 int ewitab;
90 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
91 real *ewtab;
92
93 x = xx[0];
94 f = ff[0];
95
96 nri = nlist->nri;
97 iinr = nlist->iinr;
98 jindex = nlist->jindex;
99 jjnr = nlist->jjnr;
100 shiftidx = nlist->shift;
101 gid = nlist->gid;
102 shiftvec = fr->shift_vec[0];
103 fshift = fr->fshift[0];
104 facel = fr->epsfac;
105 charge = mdatoms->chargeA;
106 nvdwtype = fr->ntype;
107 vdwparam = fr->nbfp;
108 vdwtype = mdatoms->typeA;
109
110 sh_ewald = fr->ic->sh_ewald;
Value stored to 'sh_ewald' is never read
111 ewtab = fr->ic->tabq_coul_FDV0;
112 ewtabscale = fr->ic->tabq_scale;
113 ewtabhalfspace = 0.5/ewtabscale;
114
115 /* Setup water-specific parameters */
116 inr = nlist->iinr[0];
117 iq0 = facel*charge[inr+0];
118 iq1 = facel*charge[inr+1];
119 iq2 = facel*charge[inr+2];
120 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
121
122 outeriter = 0;
123 inneriter = 0;
124
125 /* Start outer loop over neighborlists */
126 for(iidx=0; iidx<nri; iidx++)
127 {
128 /* Load shift vector for this list */
129 i_shift_offset = DIM3*shiftidx[iidx];
130 shX = shiftvec[i_shift_offset+XX0];
131 shY = shiftvec[i_shift_offset+YY1];
132 shZ = shiftvec[i_shift_offset+ZZ2];
133
134 /* Load limits for loop over neighbors */
135 j_index_start = jindex[iidx];
136 j_index_end = jindex[iidx+1];
137
138 /* Get outer coordinate index */
139 inr = iinr[iidx];
140 i_coord_offset = DIM3*inr;
141
142 /* Load i particle coords and add shift vector */
143 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
144 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
145 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
146 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
147 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
148 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
149 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
150 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
151 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
152
153 fix0 = 0.0;
154 fiy0 = 0.0;
155 fiz0 = 0.0;
156 fix1 = 0.0;
157 fiy1 = 0.0;
158 fiz1 = 0.0;
159 fix2 = 0.0;
160 fiy2 = 0.0;
161 fiz2 = 0.0;
162
163 /* Reset potential sums */
164 velecsum = 0.0;
165 vvdwsum = 0.0;
166
167 /* Start inner kernel loop */
168 for(jidx=j_index_start; jidx<j_index_end; jidx++)
169 {
170 /* Get j neighbor index, and coordinate index */
171 jnr = jjnr[jidx];
172 j_coord_offset = DIM3*jnr;
173
174 /* load j atom coordinates */
175 jx0 = x[j_coord_offset+DIM3*0+XX0];
176 jy0 = x[j_coord_offset+DIM3*0+YY1];
177 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
178
179 /* Calculate displacement vector */
180 dx00 = ix0 - jx0;
181 dy00 = iy0 - jy0;
182 dz00 = iz0 - jz0;
183 dx10 = ix1 - jx0;
184 dy10 = iy1 - jy0;
185 dz10 = iz1 - jz0;
186 dx20 = ix2 - jx0;
187 dy20 = iy2 - jy0;
188 dz20 = iz2 - jz0;
189
190 /* Calculate squared distance and things based on it */
191 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
192 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
193 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
194
195 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
196 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
197 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
198
199 rinvsq00 = rinv00*rinv00;
200 rinvsq10 = rinv10*rinv10;
201 rinvsq20 = rinv20*rinv20;
202
203 /* Load parameters for j particles */
204 jq0 = charge[jnr+0];
205 vdwjidx0 = 2*vdwtype[jnr+0];
206
207 /**************************
208 * CALCULATE INTERACTIONS *
209 **************************/
210
211 r00 = rsq00*rinv00;
212
213 qq00 = iq0*jq0;
214 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
215 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
216
217 /* EWALD ELECTROSTATICS */
218
219 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
220 ewrt = r00*ewtabscale;
221 ewitab = ewrt;
222 eweps = ewrt-ewitab;
223 ewitab = 4*ewitab;
224 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
225 velec = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
226 felec = qq00*rinv00*(rinvsq00-felec);
227
228 /* LENNARD-JONES DISPERSION/REPULSION */
229
230 rinvsix = rinvsq00*rinvsq00*rinvsq00;
231 vvdw6 = c6_00*rinvsix;
232 vvdw12 = c12_00*rinvsix*rinvsix;
233 vvdw = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
234 fvdw = (vvdw12-vvdw6)*rinvsq00;
235
236 /* Update potential sums from outer loop */
237 velecsum += velec;
238 vvdwsum += vvdw;
239
240 fscal = felec+fvdw;
241
242 /* Calculate temporary vectorial force */
243 tx = fscal*dx00;
244 ty = fscal*dy00;
245 tz = fscal*dz00;
246
247 /* Update vectorial force */
248 fix0 += tx;
249 fiy0 += ty;
250 fiz0 += tz;
251 f[j_coord_offset+DIM3*0+XX0] -= tx;
252 f[j_coord_offset+DIM3*0+YY1] -= ty;
253 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
254
255 /**************************
256 * CALCULATE INTERACTIONS *
257 **************************/
258
259 r10 = rsq10*rinv10;
260
261 qq10 = iq1*jq0;
262
263 /* EWALD ELECTROSTATICS */
264
265 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
266 ewrt = r10*ewtabscale;
267 ewitab = ewrt;
268 eweps = ewrt-ewitab;
269 ewitab = 4*ewitab;
270 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
271 velec = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
272 felec = qq10*rinv10*(rinvsq10-felec);
273
274 /* Update potential sums from outer loop */
275 velecsum += velec;
276
277 fscal = felec;
278
279 /* Calculate temporary vectorial force */
280 tx = fscal*dx10;
281 ty = fscal*dy10;
282 tz = fscal*dz10;
283
284 /* Update vectorial force */
285 fix1 += tx;
286 fiy1 += ty;
287 fiz1 += tz;
288 f[j_coord_offset+DIM3*0+XX0] -= tx;
289 f[j_coord_offset+DIM3*0+YY1] -= ty;
290 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
291
292 /**************************
293 * CALCULATE INTERACTIONS *
294 **************************/
295
296 r20 = rsq20*rinv20;
297
298 qq20 = iq2*jq0;
299
300 /* EWALD ELECTROSTATICS */
301
302 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
303 ewrt = r20*ewtabscale;
304 ewitab = ewrt;
305 eweps = ewrt-ewitab;
306 ewitab = 4*ewitab;
307 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
308 velec = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
309 felec = qq20*rinv20*(rinvsq20-felec);
310
311 /* Update potential sums from outer loop */
312 velecsum += velec;
313
314 fscal = felec;
315
316 /* Calculate temporary vectorial force */
317 tx = fscal*dx20;
318 ty = fscal*dy20;
319 tz = fscal*dz20;
320
321 /* Update vectorial force */
322 fix2 += tx;
323 fiy2 += ty;
324 fiz2 += tz;
325 f[j_coord_offset+DIM3*0+XX0] -= tx;
326 f[j_coord_offset+DIM3*0+YY1] -= ty;
327 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
328
329 /* Inner loop uses 135 flops */
330 }
331 /* End of innermost loop */
332
333 tx = ty = tz = 0;
334 f[i_coord_offset+DIM3*0+XX0] += fix0;
335 f[i_coord_offset+DIM3*0+YY1] += fiy0;
336 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
337 tx += fix0;
338 ty += fiy0;
339 tz += fiz0;
340 f[i_coord_offset+DIM3*1+XX0] += fix1;
341 f[i_coord_offset+DIM3*1+YY1] += fiy1;
342 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
343 tx += fix1;
344 ty += fiy1;
345 tz += fiz1;
346 f[i_coord_offset+DIM3*2+XX0] += fix2;
347 f[i_coord_offset+DIM3*2+YY1] += fiy2;
348 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
349 tx += fix2;
350 ty += fiy2;
351 tz += fiz2;
352 fshift[i_shift_offset+XX0] += tx;
353 fshift[i_shift_offset+YY1] += ty;
354 fshift[i_shift_offset+ZZ2] += tz;
355
356 ggid = gid[iidx];
357 /* Update potential energies */
358 kernel_data->energygrp_elec[ggid] += velecsum;
359 kernel_data->energygrp_vdw[ggid] += vvdwsum;
360
361 /* Increment number of inner iterations */
362 inneriter += j_index_end - j_index_start;
363
364 /* Outer loop uses 32 flops */
365 }
366
367 /* Increment number of outer iterations */
368 outeriter += nri;
369
370 /* Update outer/inner flops */
371
372 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*135)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_VF] += outeriter*32 + inneriter
*135
;
373}
374/*
375 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_c
376 * Electrostatics interaction: Ewald
377 * VdW interaction: LennardJones
378 * Geometry: Water3-Particle
379 * Calculate force/pot: Force
380 */
381void
382nb_kernel_ElecEw_VdwLJ_GeomW3P1_F_c
383 (t_nblist * gmx_restrict__restrict nlist,
384 rvec * gmx_restrict__restrict xx,
385 rvec * gmx_restrict__restrict ff,
386 t_forcerec * gmx_restrict__restrict fr,
387 t_mdatoms * gmx_restrict__restrict mdatoms,
388 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
389 t_nrnb * gmx_restrict__restrict nrnb)
390{
391 int i_shift_offset,i_coord_offset,j_coord_offset;
392 int j_index_start,j_index_end;
393 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
394 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
395 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
396 real *shiftvec,*fshift,*x,*f;
397 int vdwioffset0;
398 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
399 int vdwioffset1;
400 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
401 int vdwioffset2;
402 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
403 int vdwjidx0;
404 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
405 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
406 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
407 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
408 real velec,felec,velecsum,facel,crf,krf,krf2;
409 real *charge;
410 int nvdwtype;
411 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
412 int *vdwtype;
413 real *vdwparam;
414 int ewitab;
415 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
416 real *ewtab;
417
418 x = xx[0];
419 f = ff[0];
420
421 nri = nlist->nri;
422 iinr = nlist->iinr;
423 jindex = nlist->jindex;
424 jjnr = nlist->jjnr;
425 shiftidx = nlist->shift;
426 gid = nlist->gid;
427 shiftvec = fr->shift_vec[0];
428 fshift = fr->fshift[0];
429 facel = fr->epsfac;
430 charge = mdatoms->chargeA;
431 nvdwtype = fr->ntype;
432 vdwparam = fr->nbfp;
433 vdwtype = mdatoms->typeA;
434
435 sh_ewald = fr->ic->sh_ewald;
436 ewtab = fr->ic->tabq_coul_F;
437 ewtabscale = fr->ic->tabq_scale;
438 ewtabhalfspace = 0.5/ewtabscale;
439
440 /* Setup water-specific parameters */
441 inr = nlist->iinr[0];
442 iq0 = facel*charge[inr+0];
443 iq1 = facel*charge[inr+1];
444 iq2 = facel*charge[inr+2];
445 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
446
447 outeriter = 0;
448 inneriter = 0;
449
450 /* Start outer loop over neighborlists */
451 for(iidx=0; iidx<nri; iidx++)
452 {
453 /* Load shift vector for this list */
454 i_shift_offset = DIM3*shiftidx[iidx];
455 shX = shiftvec[i_shift_offset+XX0];
456 shY = shiftvec[i_shift_offset+YY1];
457 shZ = shiftvec[i_shift_offset+ZZ2];
458
459 /* Load limits for loop over neighbors */
460 j_index_start = jindex[iidx];
461 j_index_end = jindex[iidx+1];
462
463 /* Get outer coordinate index */
464 inr = iinr[iidx];
465 i_coord_offset = DIM3*inr;
466
467 /* Load i particle coords and add shift vector */
468 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
469 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
470 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
471 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
472 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
473 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
474 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
475 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
476 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
477
478 fix0 = 0.0;
479 fiy0 = 0.0;
480 fiz0 = 0.0;
481 fix1 = 0.0;
482 fiy1 = 0.0;
483 fiz1 = 0.0;
484 fix2 = 0.0;
485 fiy2 = 0.0;
486 fiz2 = 0.0;
487
488 /* Start inner kernel loop */
489 for(jidx=j_index_start; jidx<j_index_end; jidx++)
490 {
491 /* Get j neighbor index, and coordinate index */
492 jnr = jjnr[jidx];
493 j_coord_offset = DIM3*jnr;
494
495 /* load j atom coordinates */
496 jx0 = x[j_coord_offset+DIM3*0+XX0];
497 jy0 = x[j_coord_offset+DIM3*0+YY1];
498 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
499
500 /* Calculate displacement vector */
501 dx00 = ix0 - jx0;
502 dy00 = iy0 - jy0;
503 dz00 = iz0 - jz0;
504 dx10 = ix1 - jx0;
505 dy10 = iy1 - jy0;
506 dz10 = iz1 - jz0;
507 dx20 = ix2 - jx0;
508 dy20 = iy2 - jy0;
509 dz20 = iz2 - jz0;
510
511 /* Calculate squared distance and things based on it */
512 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
513 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
514 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
515
516 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
517 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
518 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
519
520 rinvsq00 = rinv00*rinv00;
521 rinvsq10 = rinv10*rinv10;
522 rinvsq20 = rinv20*rinv20;
523
524 /* Load parameters for j particles */
525 jq0 = charge[jnr+0];
526 vdwjidx0 = 2*vdwtype[jnr+0];
527
528 /**************************
529 * CALCULATE INTERACTIONS *
530 **************************/
531
532 r00 = rsq00*rinv00;
533
534 qq00 = iq0*jq0;
535 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
536 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
537
538 /* EWALD ELECTROSTATICS */
539
540 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
541 ewrt = r00*ewtabscale;
542 ewitab = ewrt;
543 eweps = ewrt-ewitab;
544 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
545 felec = qq00*rinv00*(rinvsq00-felec);
546
547 /* LENNARD-JONES DISPERSION/REPULSION */
548
549 rinvsix = rinvsq00*rinvsq00*rinvsq00;
550 fvdw = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
551
552 fscal = felec+fvdw;
553
554 /* Calculate temporary vectorial force */
555 tx = fscal*dx00;
556 ty = fscal*dy00;
557 tz = fscal*dz00;
558
559 /* Update vectorial force */
560 fix0 += tx;
561 fiy0 += ty;
562 fiz0 += tz;
563 f[j_coord_offset+DIM3*0+XX0] -= tx;
564 f[j_coord_offset+DIM3*0+YY1] -= ty;
565 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
566
567 /**************************
568 * CALCULATE INTERACTIONS *
569 **************************/
570
571 r10 = rsq10*rinv10;
572
573 qq10 = iq1*jq0;
574
575 /* EWALD ELECTROSTATICS */
576
577 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
578 ewrt = r10*ewtabscale;
579 ewitab = ewrt;
580 eweps = ewrt-ewitab;
581 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
582 felec = qq10*rinv10*(rinvsq10-felec);
583
584 fscal = felec;
585
586 /* Calculate temporary vectorial force */
587 tx = fscal*dx10;
588 ty = fscal*dy10;
589 tz = fscal*dz10;
590
591 /* Update vectorial force */
592 fix1 += tx;
593 fiy1 += ty;
594 fiz1 += tz;
595 f[j_coord_offset+DIM3*0+XX0] -= tx;
596 f[j_coord_offset+DIM3*0+YY1] -= ty;
597 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
598
599 /**************************
600 * CALCULATE INTERACTIONS *
601 **************************/
602
603 r20 = rsq20*rinv20;
604
605 qq20 = iq2*jq0;
606
607 /* EWALD ELECTROSTATICS */
608
609 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
610 ewrt = r20*ewtabscale;
611 ewitab = ewrt;
612 eweps = ewrt-ewitab;
613 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
614 felec = qq20*rinv20*(rinvsq20-felec);
615
616 fscal = felec;
617
618 /* Calculate temporary vectorial force */
619 tx = fscal*dx20;
620 ty = fscal*dy20;
621 tz = fscal*dz20;
622
623 /* Update vectorial force */
624 fix2 += tx;
625 fiy2 += ty;
626 fiz2 += tz;
627 f[j_coord_offset+DIM3*0+XX0] -= tx;
628 f[j_coord_offset+DIM3*0+YY1] -= ty;
629 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
630
631 /* Inner loop uses 109 flops */
632 }
633 /* End of innermost loop */
634
635 tx = ty = tz = 0;
636 f[i_coord_offset+DIM3*0+XX0] += fix0;
637 f[i_coord_offset+DIM3*0+YY1] += fiy0;
638 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
639 tx += fix0;
640 ty += fiy0;
641 tz += fiz0;
642 f[i_coord_offset+DIM3*1+XX0] += fix1;
643 f[i_coord_offset+DIM3*1+YY1] += fiy1;
644 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
645 tx += fix1;
646 ty += fiy1;
647 tz += fiz1;
648 f[i_coord_offset+DIM3*2+XX0] += fix2;
649 f[i_coord_offset+DIM3*2+YY1] += fiy2;
650 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
651 tx += fix2;
652 ty += fiy2;
653 tz += fiz2;
654 fshift[i_shift_offset+XX0] += tx;
655 fshift[i_shift_offset+YY1] += ty;
656 fshift[i_shift_offset+ZZ2] += tz;
657
658 /* Increment number of inner iterations */
659 inneriter += j_index_end - j_index_start;
660
661 /* Outer loop uses 30 flops */
662 }
663
664 /* Increment number of outer iterations */
665 outeriter += nri;
666
667 /* Update outer/inner flops */
668
669 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*109)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_F] += outeriter*30 + inneriter
*109
;
670}