Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecRFCut_VdwBhamSw_GeomW4W4_c.c
Location:line 746, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwBhamSw_GeomW4W4_VF_c
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: Buckingham
53 * Geometry: Water4-Water4
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecRFCut_VdwBhamSw_GeomW4W4_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwioffset3;
79 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80 int vdwjidx0;
81 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82 int vdwjidx1;
83 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
84 int vdwjidx2;
85 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
86 int vdwjidx3;
87 real jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
88 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
89 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
90 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
91 real dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
92 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
93 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
94 real dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
95 real dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
96 real dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
97 real dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
98 real velec,felec,velecsum,facel,crf,krf,krf2;
99 real *charge;
100 int nvdwtype;
101 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
102 int *vdwtype;
103 real *vdwparam;
104 real rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
105
106 x = xx[0];
107 f = ff[0];
108
109 nri = nlist->nri;
110 iinr = nlist->iinr;
111 jindex = nlist->jindex;
112 jjnr = nlist->jjnr;
113 shiftidx = nlist->shift;
114 gid = nlist->gid;
115 shiftvec = fr->shift_vec[0];
116 fshift = fr->fshift[0];
117 facel = fr->epsfac;
118 charge = mdatoms->chargeA;
119 krf = fr->ic->k_rf;
120 krf2 = krf*2.0;
121 crf = fr->ic->c_rf;
122 nvdwtype = fr->ntype;
123 vdwparam = fr->nbfp;
124 vdwtype = mdatoms->typeA;
125
126 /* Setup water-specific parameters */
127 inr = nlist->iinr[0];
128 iq1 = facel*charge[inr+1];
129 iq2 = facel*charge[inr+2];
130 iq3 = facel*charge[inr+3];
131 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
132
133 jq1 = charge[inr+1];
134 jq2 = charge[inr+2];
135 jq3 = charge[inr+3];
136 vdwjidx0 = 3*vdwtype[inr+0];
137 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
138 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
139 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
140 qq11 = iq1*jq1;
141 qq12 = iq1*jq2;
142 qq13 = iq1*jq3;
143 qq21 = iq2*jq1;
144 qq22 = iq2*jq2;
145 qq23 = iq2*jq3;
146 qq31 = iq3*jq1;
147 qq32 = iq3*jq2;
148 qq33 = iq3*jq3;
149
150 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
151 rcutoff = fr->rcoulomb;
152 rcutoff2 = rcutoff*rcutoff;
153
154 rswitch = fr->rvdw_switch;
155 /* Setup switch parameters */
156 d = rcutoff-rswitch;
157 swV3 = -10.0/(d*d*d);
158 swV4 = 15.0/(d*d*d*d);
159 swV5 = -6.0/(d*d*d*d*d);
160 swF2 = -30.0/(d*d*d);
161 swF3 = 60.0/(d*d*d*d);
162 swF4 = -30.0/(d*d*d*d*d);
163
164 outeriter = 0;
165 inneriter = 0;
166
167 /* Start outer loop over neighborlists */
168 for(iidx=0; iidx<nri; iidx++)
169 {
170 /* Load shift vector for this list */
171 i_shift_offset = DIM3*shiftidx[iidx];
172 shX = shiftvec[i_shift_offset+XX0];
173 shY = shiftvec[i_shift_offset+YY1];
174 shZ = shiftvec[i_shift_offset+ZZ2];
175
176 /* Load limits for loop over neighbors */
177 j_index_start = jindex[iidx];
178 j_index_end = jindex[iidx+1];
179
180 /* Get outer coordinate index */
181 inr = iinr[iidx];
182 i_coord_offset = DIM3*inr;
183
184 /* Load i particle coords and add shift vector */
185 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
186 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
187 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
188 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
189 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
190 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
191 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
192 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
193 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
194 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
195 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
196 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
197
198 fix0 = 0.0;
199 fiy0 = 0.0;
200 fiz0 = 0.0;
201 fix1 = 0.0;
202 fiy1 = 0.0;
203 fiz1 = 0.0;
204 fix2 = 0.0;
205 fiy2 = 0.0;
206 fiz2 = 0.0;
207 fix3 = 0.0;
208 fiy3 = 0.0;
209 fiz3 = 0.0;
210
211 /* Reset potential sums */
212 velecsum = 0.0;
213 vvdwsum = 0.0;
214
215 /* Start inner kernel loop */
216 for(jidx=j_index_start; jidx<j_index_end; jidx++)
217 {
218 /* Get j neighbor index, and coordinate index */
219 jnr = jjnr[jidx];
220 j_coord_offset = DIM3*jnr;
221
222 /* load j atom coordinates */
223 jx0 = x[j_coord_offset+DIM3*0+XX0];
224 jy0 = x[j_coord_offset+DIM3*0+YY1];
225 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
226 jx1 = x[j_coord_offset+DIM3*1+XX0];
227 jy1 = x[j_coord_offset+DIM3*1+YY1];
228 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
229 jx2 = x[j_coord_offset+DIM3*2+XX0];
230 jy2 = x[j_coord_offset+DIM3*2+YY1];
231 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
232 jx3 = x[j_coord_offset+DIM3*3+XX0];
233 jy3 = x[j_coord_offset+DIM3*3+YY1];
234 jz3 = x[j_coord_offset+DIM3*3+ZZ2];
235
236 /* Calculate displacement vector */
237 dx00 = ix0 - jx0;
238 dy00 = iy0 - jy0;
239 dz00 = iz0 - jz0;
240 dx11 = ix1 - jx1;
241 dy11 = iy1 - jy1;
242 dz11 = iz1 - jz1;
243 dx12 = ix1 - jx2;
244 dy12 = iy1 - jy2;
245 dz12 = iz1 - jz2;
246 dx13 = ix1 - jx3;
247 dy13 = iy1 - jy3;
248 dz13 = iz1 - jz3;
249 dx21 = ix2 - jx1;
250 dy21 = iy2 - jy1;
251 dz21 = iz2 - jz1;
252 dx22 = ix2 - jx2;
253 dy22 = iy2 - jy2;
254 dz22 = iz2 - jz2;
255 dx23 = ix2 - jx3;
256 dy23 = iy2 - jy3;
257 dz23 = iz2 - jz3;
258 dx31 = ix3 - jx1;
259 dy31 = iy3 - jy1;
260 dz31 = iz3 - jz1;
261 dx32 = ix3 - jx2;
262 dy32 = iy3 - jy2;
263 dz32 = iz3 - jz2;
264 dx33 = ix3 - jx3;
265 dy33 = iy3 - jy3;
266 dz33 = iz3 - jz3;
267
268 /* Calculate squared distance and things based on it */
269 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
270 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
271 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
272 rsq13 = dx13*dx13+dy13*dy13+dz13*dz13;
273 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
274 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
275 rsq23 = dx23*dx23+dy23*dy23+dz23*dz23;
276 rsq31 = dx31*dx31+dy31*dy31+dz31*dz31;
277 rsq32 = dx32*dx32+dy32*dy32+dz32*dz32;
278 rsq33 = dx33*dx33+dy33*dy33+dz33*dz33;
279
280 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
281 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
282 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
283 rinv13 = gmx_invsqrt(rsq13)gmx_software_invsqrt(rsq13);
284 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
285 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
286 rinv23 = gmx_invsqrt(rsq23)gmx_software_invsqrt(rsq23);
287 rinv31 = gmx_invsqrt(rsq31)gmx_software_invsqrt(rsq31);
288 rinv32 = gmx_invsqrt(rsq32)gmx_software_invsqrt(rsq32);
289 rinv33 = gmx_invsqrt(rsq33)gmx_software_invsqrt(rsq33);
290
291 rinvsq00 = rinv00*rinv00;
292 rinvsq11 = rinv11*rinv11;
293 rinvsq12 = rinv12*rinv12;
294 rinvsq13 = rinv13*rinv13;
295 rinvsq21 = rinv21*rinv21;
296 rinvsq22 = rinv22*rinv22;
297 rinvsq23 = rinv23*rinv23;
298 rinvsq31 = rinv31*rinv31;
299 rinvsq32 = rinv32*rinv32;
300 rinvsq33 = rinv33*rinv33;
301
302 /**************************
303 * CALCULATE INTERACTIONS *
304 **************************/
305
306 if (rsq00<rcutoff2)
307 {
308
309 r00 = rsq00*rinv00;
310
311 /* BUCKINGHAM DISPERSION/REPULSION */
312 rinvsix = rinvsq00*rinvsq00*rinvsq00;
313 vvdw6 = c6_00*rinvsix;
314 br = cexp2_00*r00;
315 vvdwexp = cexp1_00*exp(-br);
316 vvdw = vvdwexp - vvdw6*(1.0/6.0);
317 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
318
319 d = r00-rswitch;
320 d = (d>0.0) ? d : 0.0;
321 d2 = d*d;
322 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
323
324 dsw = d2*(swF2+d*(swF3+d*swF4));
325
326 /* Evaluate switch function */
327 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
328 fvdw = fvdw*sw - rinv00*vvdw*dsw;
329 vvdw *= sw;
330
331 /* Update potential sums from outer loop */
332 vvdwsum += vvdw;
333
334 fscal = fvdw;
335
336 /* Calculate temporary vectorial force */
337 tx = fscal*dx00;
338 ty = fscal*dy00;
339 tz = fscal*dz00;
340
341 /* Update vectorial force */
342 fix0 += tx;
343 fiy0 += ty;
344 fiz0 += tz;
345 f[j_coord_offset+DIM3*0+XX0] -= tx;
346 f[j_coord_offset+DIM3*0+YY1] -= ty;
347 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
348
349 }
350
351 /**************************
352 * CALCULATE INTERACTIONS *
353 **************************/
354
355 if (rsq11<rcutoff2)
356 {
357
358 /* REACTION-FIELD ELECTROSTATICS */
359 velec = qq11*(rinv11+krf*rsq11-crf);
360 felec = qq11*(rinv11*rinvsq11-krf2);
361
362 /* Update potential sums from outer loop */
363 velecsum += velec;
364
365 fscal = felec;
366
367 /* Calculate temporary vectorial force */
368 tx = fscal*dx11;
369 ty = fscal*dy11;
370 tz = fscal*dz11;
371
372 /* Update vectorial force */
373 fix1 += tx;
374 fiy1 += ty;
375 fiz1 += tz;
376 f[j_coord_offset+DIM3*1+XX0] -= tx;
377 f[j_coord_offset+DIM3*1+YY1] -= ty;
378 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
379
380 }
381
382 /**************************
383 * CALCULATE INTERACTIONS *
384 **************************/
385
386 if (rsq12<rcutoff2)
387 {
388
389 /* REACTION-FIELD ELECTROSTATICS */
390 velec = qq12*(rinv12+krf*rsq12-crf);
391 felec = qq12*(rinv12*rinvsq12-krf2);
392
393 /* Update potential sums from outer loop */
394 velecsum += velec;
395
396 fscal = felec;
397
398 /* Calculate temporary vectorial force */
399 tx = fscal*dx12;
400 ty = fscal*dy12;
401 tz = fscal*dz12;
402
403 /* Update vectorial force */
404 fix1 += tx;
405 fiy1 += ty;
406 fiz1 += tz;
407 f[j_coord_offset+DIM3*2+XX0] -= tx;
408 f[j_coord_offset+DIM3*2+YY1] -= ty;
409 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
410
411 }
412
413 /**************************
414 * CALCULATE INTERACTIONS *
415 **************************/
416
417 if (rsq13<rcutoff2)
418 {
419
420 /* REACTION-FIELD ELECTROSTATICS */
421 velec = qq13*(rinv13+krf*rsq13-crf);
422 felec = qq13*(rinv13*rinvsq13-krf2);
423
424 /* Update potential sums from outer loop */
425 velecsum += velec;
426
427 fscal = felec;
428
429 /* Calculate temporary vectorial force */
430 tx = fscal*dx13;
431 ty = fscal*dy13;
432 tz = fscal*dz13;
433
434 /* Update vectorial force */
435 fix1 += tx;
436 fiy1 += ty;
437 fiz1 += tz;
438 f[j_coord_offset+DIM3*3+XX0] -= tx;
439 f[j_coord_offset+DIM3*3+YY1] -= ty;
440 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
441
442 }
443
444 /**************************
445 * CALCULATE INTERACTIONS *
446 **************************/
447
448 if (rsq21<rcutoff2)
449 {
450
451 /* REACTION-FIELD ELECTROSTATICS */
452 velec = qq21*(rinv21+krf*rsq21-crf);
453 felec = qq21*(rinv21*rinvsq21-krf2);
454
455 /* Update potential sums from outer loop */
456 velecsum += velec;
457
458 fscal = felec;
459
460 /* Calculate temporary vectorial force */
461 tx = fscal*dx21;
462 ty = fscal*dy21;
463 tz = fscal*dz21;
464
465 /* Update vectorial force */
466 fix2 += tx;
467 fiy2 += ty;
468 fiz2 += tz;
469 f[j_coord_offset+DIM3*1+XX0] -= tx;
470 f[j_coord_offset+DIM3*1+YY1] -= ty;
471 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
472
473 }
474
475 /**************************
476 * CALCULATE INTERACTIONS *
477 **************************/
478
479 if (rsq22<rcutoff2)
480 {
481
482 /* REACTION-FIELD ELECTROSTATICS */
483 velec = qq22*(rinv22+krf*rsq22-crf);
484 felec = qq22*(rinv22*rinvsq22-krf2);
485
486 /* Update potential sums from outer loop */
487 velecsum += velec;
488
489 fscal = felec;
490
491 /* Calculate temporary vectorial force */
492 tx = fscal*dx22;
493 ty = fscal*dy22;
494 tz = fscal*dz22;
495
496 /* Update vectorial force */
497 fix2 += tx;
498 fiy2 += ty;
499 fiz2 += tz;
500 f[j_coord_offset+DIM3*2+XX0] -= tx;
501 f[j_coord_offset+DIM3*2+YY1] -= ty;
502 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
503
504 }
505
506 /**************************
507 * CALCULATE INTERACTIONS *
508 **************************/
509
510 if (rsq23<rcutoff2)
511 {
512
513 /* REACTION-FIELD ELECTROSTATICS */
514 velec = qq23*(rinv23+krf*rsq23-crf);
515 felec = qq23*(rinv23*rinvsq23-krf2);
516
517 /* Update potential sums from outer loop */
518 velecsum += velec;
519
520 fscal = felec;
521
522 /* Calculate temporary vectorial force */
523 tx = fscal*dx23;
524 ty = fscal*dy23;
525 tz = fscal*dz23;
526
527 /* Update vectorial force */
528 fix2 += tx;
529 fiy2 += ty;
530 fiz2 += tz;
531 f[j_coord_offset+DIM3*3+XX0] -= tx;
532 f[j_coord_offset+DIM3*3+YY1] -= ty;
533 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
534
535 }
536
537 /**************************
538 * CALCULATE INTERACTIONS *
539 **************************/
540
541 if (rsq31<rcutoff2)
542 {
543
544 /* REACTION-FIELD ELECTROSTATICS */
545 velec = qq31*(rinv31+krf*rsq31-crf);
546 felec = qq31*(rinv31*rinvsq31-krf2);
547
548 /* Update potential sums from outer loop */
549 velecsum += velec;
550
551 fscal = felec;
552
553 /* Calculate temporary vectorial force */
554 tx = fscal*dx31;
555 ty = fscal*dy31;
556 tz = fscal*dz31;
557
558 /* Update vectorial force */
559 fix3 += tx;
560 fiy3 += ty;
561 fiz3 += tz;
562 f[j_coord_offset+DIM3*1+XX0] -= tx;
563 f[j_coord_offset+DIM3*1+YY1] -= ty;
564 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
565
566 }
567
568 /**************************
569 * CALCULATE INTERACTIONS *
570 **************************/
571
572 if (rsq32<rcutoff2)
573 {
574
575 /* REACTION-FIELD ELECTROSTATICS */
576 velec = qq32*(rinv32+krf*rsq32-crf);
577 felec = qq32*(rinv32*rinvsq32-krf2);
578
579 /* Update potential sums from outer loop */
580 velecsum += velec;
581
582 fscal = felec;
583
584 /* Calculate temporary vectorial force */
585 tx = fscal*dx32;
586 ty = fscal*dy32;
587 tz = fscal*dz32;
588
589 /* Update vectorial force */
590 fix3 += tx;
591 fiy3 += ty;
592 fiz3 += tz;
593 f[j_coord_offset+DIM3*2+XX0] -= tx;
594 f[j_coord_offset+DIM3*2+YY1] -= ty;
595 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
596
597 }
598
599 /**************************
600 * CALCULATE INTERACTIONS *
601 **************************/
602
603 if (rsq33<rcutoff2)
604 {
605
606 /* REACTION-FIELD ELECTROSTATICS */
607 velec = qq33*(rinv33+krf*rsq33-crf);
608 felec = qq33*(rinv33*rinvsq33-krf2);
609
610 /* Update potential sums from outer loop */
611 velecsum += velec;
612
613 fscal = felec;
614
615 /* Calculate temporary vectorial force */
616 tx = fscal*dx33;
617 ty = fscal*dy33;
618 tz = fscal*dz33;
619
620 /* Update vectorial force */
621 fix3 += tx;
622 fiy3 += ty;
623 fiz3 += tz;
624 f[j_coord_offset+DIM3*3+XX0] -= tx;
625 f[j_coord_offset+DIM3*3+YY1] -= ty;
626 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
627
628 }
629
630 /* Inner loop uses 358 flops */
631 }
632 /* End of innermost loop */
633
634 tx = ty = tz = 0;
635 f[i_coord_offset+DIM3*0+XX0] += fix0;
636 f[i_coord_offset+DIM3*0+YY1] += fiy0;
637 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
638 tx += fix0;
639 ty += fiy0;
640 tz += fiz0;
641 f[i_coord_offset+DIM3*1+XX0] += fix1;
642 f[i_coord_offset+DIM3*1+YY1] += fiy1;
643 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
644 tx += fix1;
645 ty += fiy1;
646 tz += fiz1;
647 f[i_coord_offset+DIM3*2+XX0] += fix2;
648 f[i_coord_offset+DIM3*2+YY1] += fiy2;
649 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
650 tx += fix2;
651 ty += fiy2;
652 tz += fiz2;
653 f[i_coord_offset+DIM3*3+XX0] += fix3;
654 f[i_coord_offset+DIM3*3+YY1] += fiy3;
655 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
656 tx += fix3;
657 ty += fiy3;
658 tz += fiz3;
659 fshift[i_shift_offset+XX0] += tx;
660 fshift[i_shift_offset+YY1] += ty;
661 fshift[i_shift_offset+ZZ2] += tz;
662
663 ggid = gid[iidx];
664 /* Update potential energies */
665 kernel_data->energygrp_elec[ggid] += velecsum;
666 kernel_data->energygrp_vdw[ggid] += vvdwsum;
667
668 /* Increment number of inner iterations */
669 inneriter += j_index_end - j_index_start;
670
671 /* Outer loop uses 41 flops */
672 }
673
674 /* Increment number of outer iterations */
675 outeriter += nri;
676
677 /* Update outer/inner flops */
678
679 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*41 + inneriter*358)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4W4_VF] += outeriter*41 +
inneriter*358
;
680}
681/*
682 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwBhamSw_GeomW4W4_F_c
683 * Electrostatics interaction: ReactionField
684 * VdW interaction: Buckingham
685 * Geometry: Water4-Water4
686 * Calculate force/pot: Force
687 */
688void
689nb_kernel_ElecRFCut_VdwBhamSw_GeomW4W4_F_c
690 (t_nblist * gmx_restrict__restrict nlist,
691 rvec * gmx_restrict__restrict xx,
692 rvec * gmx_restrict__restrict ff,
693 t_forcerec * gmx_restrict__restrict fr,
694 t_mdatoms * gmx_restrict__restrict mdatoms,
695 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
696 t_nrnb * gmx_restrict__restrict nrnb)
697{
698 int i_shift_offset,i_coord_offset,j_coord_offset;
699 int j_index_start,j_index_end;
700 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
701 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
702 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
703 real *shiftvec,*fshift,*x,*f;
704 int vdwioffset0;
705 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
706 int vdwioffset1;
707 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
708 int vdwioffset2;
709 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
710 int vdwioffset3;
711 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
712 int vdwjidx0;
713 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
714 int vdwjidx1;
715 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
716 int vdwjidx2;
717 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
718 int vdwjidx3;
719 real jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
720 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
721 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
722 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
723 real dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
724 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
725 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
726 real dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
727 real dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
728 real dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
729 real dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
730 real velec,felec,velecsum,facel,crf,krf,krf2;
731 real *charge;
732 int nvdwtype;
733 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
734 int *vdwtype;
735 real *vdwparam;
736 real rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
737
738 x = xx[0];
739 f = ff[0];
740
741 nri = nlist->nri;
742 iinr = nlist->iinr;
743 jindex = nlist->jindex;
744 jjnr = nlist->jjnr;
745 shiftidx = nlist->shift;
746 gid = nlist->gid;
Value stored to 'gid' is never read
747 shiftvec = fr->shift_vec[0];
748 fshift = fr->fshift[0];
749 facel = fr->epsfac;
750 charge = mdatoms->chargeA;
751 krf = fr->ic->k_rf;
752 krf2 = krf*2.0;
753 crf = fr->ic->c_rf;
754 nvdwtype = fr->ntype;
755 vdwparam = fr->nbfp;
756 vdwtype = mdatoms->typeA;
757
758 /* Setup water-specific parameters */
759 inr = nlist->iinr[0];
760 iq1 = facel*charge[inr+1];
761 iq2 = facel*charge[inr+2];
762 iq3 = facel*charge[inr+3];
763 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
764
765 jq1 = charge[inr+1];
766 jq2 = charge[inr+2];
767 jq3 = charge[inr+3];
768 vdwjidx0 = 3*vdwtype[inr+0];
769 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
770 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
771 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
772 qq11 = iq1*jq1;
773 qq12 = iq1*jq2;
774 qq13 = iq1*jq3;
775 qq21 = iq2*jq1;
776 qq22 = iq2*jq2;
777 qq23 = iq2*jq3;
778 qq31 = iq3*jq1;
779 qq32 = iq3*jq2;
780 qq33 = iq3*jq3;
781
782 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
783 rcutoff = fr->rcoulomb;
784 rcutoff2 = rcutoff*rcutoff;
785
786 rswitch = fr->rvdw_switch;
787 /* Setup switch parameters */
788 d = rcutoff-rswitch;
789 swV3 = -10.0/(d*d*d);
790 swV4 = 15.0/(d*d*d*d);
791 swV5 = -6.0/(d*d*d*d*d);
792 swF2 = -30.0/(d*d*d);
793 swF3 = 60.0/(d*d*d*d);
794 swF4 = -30.0/(d*d*d*d*d);
795
796 outeriter = 0;
797 inneriter = 0;
798
799 /* Start outer loop over neighborlists */
800 for(iidx=0; iidx<nri; iidx++)
801 {
802 /* Load shift vector for this list */
803 i_shift_offset = DIM3*shiftidx[iidx];
804 shX = shiftvec[i_shift_offset+XX0];
805 shY = shiftvec[i_shift_offset+YY1];
806 shZ = shiftvec[i_shift_offset+ZZ2];
807
808 /* Load limits for loop over neighbors */
809 j_index_start = jindex[iidx];
810 j_index_end = jindex[iidx+1];
811
812 /* Get outer coordinate index */
813 inr = iinr[iidx];
814 i_coord_offset = DIM3*inr;
815
816 /* Load i particle coords and add shift vector */
817 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
818 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
819 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
820 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
821 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
822 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
823 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
824 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
825 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
826 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
827 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
828 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
829
830 fix0 = 0.0;
831 fiy0 = 0.0;
832 fiz0 = 0.0;
833 fix1 = 0.0;
834 fiy1 = 0.0;
835 fiz1 = 0.0;
836 fix2 = 0.0;
837 fiy2 = 0.0;
838 fiz2 = 0.0;
839 fix3 = 0.0;
840 fiy3 = 0.0;
841 fiz3 = 0.0;
842
843 /* Start inner kernel loop */
844 for(jidx=j_index_start; jidx<j_index_end; jidx++)
845 {
846 /* Get j neighbor index, and coordinate index */
847 jnr = jjnr[jidx];
848 j_coord_offset = DIM3*jnr;
849
850 /* load j atom coordinates */
851 jx0 = x[j_coord_offset+DIM3*0+XX0];
852 jy0 = x[j_coord_offset+DIM3*0+YY1];
853 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
854 jx1 = x[j_coord_offset+DIM3*1+XX0];
855 jy1 = x[j_coord_offset+DIM3*1+YY1];
856 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
857 jx2 = x[j_coord_offset+DIM3*2+XX0];
858 jy2 = x[j_coord_offset+DIM3*2+YY1];
859 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
860 jx3 = x[j_coord_offset+DIM3*3+XX0];
861 jy3 = x[j_coord_offset+DIM3*3+YY1];
862 jz3 = x[j_coord_offset+DIM3*3+ZZ2];
863
864 /* Calculate displacement vector */
865 dx00 = ix0 - jx0;
866 dy00 = iy0 - jy0;
867 dz00 = iz0 - jz0;
868 dx11 = ix1 - jx1;
869 dy11 = iy1 - jy1;
870 dz11 = iz1 - jz1;
871 dx12 = ix1 - jx2;
872 dy12 = iy1 - jy2;
873 dz12 = iz1 - jz2;
874 dx13 = ix1 - jx3;
875 dy13 = iy1 - jy3;
876 dz13 = iz1 - jz3;
877 dx21 = ix2 - jx1;
878 dy21 = iy2 - jy1;
879 dz21 = iz2 - jz1;
880 dx22 = ix2 - jx2;
881 dy22 = iy2 - jy2;
882 dz22 = iz2 - jz2;
883 dx23 = ix2 - jx3;
884 dy23 = iy2 - jy3;
885 dz23 = iz2 - jz3;
886 dx31 = ix3 - jx1;
887 dy31 = iy3 - jy1;
888 dz31 = iz3 - jz1;
889 dx32 = ix3 - jx2;
890 dy32 = iy3 - jy2;
891 dz32 = iz3 - jz2;
892 dx33 = ix3 - jx3;
893 dy33 = iy3 - jy3;
894 dz33 = iz3 - jz3;
895
896 /* Calculate squared distance and things based on it */
897 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
898 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
899 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
900 rsq13 = dx13*dx13+dy13*dy13+dz13*dz13;
901 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
902 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
903 rsq23 = dx23*dx23+dy23*dy23+dz23*dz23;
904 rsq31 = dx31*dx31+dy31*dy31+dz31*dz31;
905 rsq32 = dx32*dx32+dy32*dy32+dz32*dz32;
906 rsq33 = dx33*dx33+dy33*dy33+dz33*dz33;
907
908 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
909 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
910 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
911 rinv13 = gmx_invsqrt(rsq13)gmx_software_invsqrt(rsq13);
912 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
913 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
914 rinv23 = gmx_invsqrt(rsq23)gmx_software_invsqrt(rsq23);
915 rinv31 = gmx_invsqrt(rsq31)gmx_software_invsqrt(rsq31);
916 rinv32 = gmx_invsqrt(rsq32)gmx_software_invsqrt(rsq32);
917 rinv33 = gmx_invsqrt(rsq33)gmx_software_invsqrt(rsq33);
918
919 rinvsq00 = rinv00*rinv00;
920 rinvsq11 = rinv11*rinv11;
921 rinvsq12 = rinv12*rinv12;
922 rinvsq13 = rinv13*rinv13;
923 rinvsq21 = rinv21*rinv21;
924 rinvsq22 = rinv22*rinv22;
925 rinvsq23 = rinv23*rinv23;
926 rinvsq31 = rinv31*rinv31;
927 rinvsq32 = rinv32*rinv32;
928 rinvsq33 = rinv33*rinv33;
929
930 /**************************
931 * CALCULATE INTERACTIONS *
932 **************************/
933
934 if (rsq00<rcutoff2)
935 {
936
937 r00 = rsq00*rinv00;
938
939 /* BUCKINGHAM DISPERSION/REPULSION */
940 rinvsix = rinvsq00*rinvsq00*rinvsq00;
941 vvdw6 = c6_00*rinvsix;
942 br = cexp2_00*r00;
943 vvdwexp = cexp1_00*exp(-br);
944 vvdw = vvdwexp - vvdw6*(1.0/6.0);
945 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
946
947 d = r00-rswitch;
948 d = (d>0.0) ? d : 0.0;
949 d2 = d*d;
950 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
951
952 dsw = d2*(swF2+d*(swF3+d*swF4));
953
954 /* Evaluate switch function */
955 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
956 fvdw = fvdw*sw - rinv00*vvdw*dsw;
957
958 fscal = fvdw;
959
960 /* Calculate temporary vectorial force */
961 tx = fscal*dx00;
962 ty = fscal*dy00;
963 tz = fscal*dz00;
964
965 /* Update vectorial force */
966 fix0 += tx;
967 fiy0 += ty;
968 fiz0 += tz;
969 f[j_coord_offset+DIM3*0+XX0] -= tx;
970 f[j_coord_offset+DIM3*0+YY1] -= ty;
971 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
972
973 }
974
975 /**************************
976 * CALCULATE INTERACTIONS *
977 **************************/
978
979 if (rsq11<rcutoff2)
980 {
981
982 /* REACTION-FIELD ELECTROSTATICS */
983 felec = qq11*(rinv11*rinvsq11-krf2);
984
985 fscal = felec;
986
987 /* Calculate temporary vectorial force */
988 tx = fscal*dx11;
989 ty = fscal*dy11;
990 tz = fscal*dz11;
991
992 /* Update vectorial force */
993 fix1 += tx;
994 fiy1 += ty;
995 fiz1 += tz;
996 f[j_coord_offset+DIM3*1+XX0] -= tx;
997 f[j_coord_offset+DIM3*1+YY1] -= ty;
998 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
999
1000 }
1001
1002 /**************************
1003 * CALCULATE INTERACTIONS *
1004 **************************/
1005
1006 if (rsq12<rcutoff2)
1007 {
1008
1009 /* REACTION-FIELD ELECTROSTATICS */
1010 felec = qq12*(rinv12*rinvsq12-krf2);
1011
1012 fscal = felec;
1013
1014 /* Calculate temporary vectorial force */
1015 tx = fscal*dx12;
1016 ty = fscal*dy12;
1017 tz = fscal*dz12;
1018
1019 /* Update vectorial force */
1020 fix1 += tx;
1021 fiy1 += ty;
1022 fiz1 += tz;
1023 f[j_coord_offset+DIM3*2+XX0] -= tx;
1024 f[j_coord_offset+DIM3*2+YY1] -= ty;
1025 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1026
1027 }
1028
1029 /**************************
1030 * CALCULATE INTERACTIONS *
1031 **************************/
1032
1033 if (rsq13<rcutoff2)
1034 {
1035
1036 /* REACTION-FIELD ELECTROSTATICS */
1037 felec = qq13*(rinv13*rinvsq13-krf2);
1038
1039 fscal = felec;
1040
1041 /* Calculate temporary vectorial force */
1042 tx = fscal*dx13;
1043 ty = fscal*dy13;
1044 tz = fscal*dz13;
1045
1046 /* Update vectorial force */
1047 fix1 += tx;
1048 fiy1 += ty;
1049 fiz1 += tz;
1050 f[j_coord_offset+DIM3*3+XX0] -= tx;
1051 f[j_coord_offset+DIM3*3+YY1] -= ty;
1052 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1053
1054 }
1055
1056 /**************************
1057 * CALCULATE INTERACTIONS *
1058 **************************/
1059
1060 if (rsq21<rcutoff2)
1061 {
1062
1063 /* REACTION-FIELD ELECTROSTATICS */
1064 felec = qq21*(rinv21*rinvsq21-krf2);
1065
1066 fscal = felec;
1067
1068 /* Calculate temporary vectorial force */
1069 tx = fscal*dx21;
1070 ty = fscal*dy21;
1071 tz = fscal*dz21;
1072
1073 /* Update vectorial force */
1074 fix2 += tx;
1075 fiy2 += ty;
1076 fiz2 += tz;
1077 f[j_coord_offset+DIM3*1+XX0] -= tx;
1078 f[j_coord_offset+DIM3*1+YY1] -= ty;
1079 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1080
1081 }
1082
1083 /**************************
1084 * CALCULATE INTERACTIONS *
1085 **************************/
1086
1087 if (rsq22<rcutoff2)
1088 {
1089
1090 /* REACTION-FIELD ELECTROSTATICS */
1091 felec = qq22*(rinv22*rinvsq22-krf2);
1092
1093 fscal = felec;
1094
1095 /* Calculate temporary vectorial force */
1096 tx = fscal*dx22;
1097 ty = fscal*dy22;
1098 tz = fscal*dz22;
1099
1100 /* Update vectorial force */
1101 fix2 += tx;
1102 fiy2 += ty;
1103 fiz2 += tz;
1104 f[j_coord_offset+DIM3*2+XX0] -= tx;
1105 f[j_coord_offset+DIM3*2+YY1] -= ty;
1106 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1107
1108 }
1109
1110 /**************************
1111 * CALCULATE INTERACTIONS *
1112 **************************/
1113
1114 if (rsq23<rcutoff2)
1115 {
1116
1117 /* REACTION-FIELD ELECTROSTATICS */
1118 felec = qq23*(rinv23*rinvsq23-krf2);
1119
1120 fscal = felec;
1121
1122 /* Calculate temporary vectorial force */
1123 tx = fscal*dx23;
1124 ty = fscal*dy23;
1125 tz = fscal*dz23;
1126
1127 /* Update vectorial force */
1128 fix2 += tx;
1129 fiy2 += ty;
1130 fiz2 += tz;
1131 f[j_coord_offset+DIM3*3+XX0] -= tx;
1132 f[j_coord_offset+DIM3*3+YY1] -= ty;
1133 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1134
1135 }
1136
1137 /**************************
1138 * CALCULATE INTERACTIONS *
1139 **************************/
1140
1141 if (rsq31<rcutoff2)
1142 {
1143
1144 /* REACTION-FIELD ELECTROSTATICS */
1145 felec = qq31*(rinv31*rinvsq31-krf2);
1146
1147 fscal = felec;
1148
1149 /* Calculate temporary vectorial force */
1150 tx = fscal*dx31;
1151 ty = fscal*dy31;
1152 tz = fscal*dz31;
1153
1154 /* Update vectorial force */
1155 fix3 += tx;
1156 fiy3 += ty;
1157 fiz3 += tz;
1158 f[j_coord_offset+DIM3*1+XX0] -= tx;
1159 f[j_coord_offset+DIM3*1+YY1] -= ty;
1160 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1161
1162 }
1163
1164 /**************************
1165 * CALCULATE INTERACTIONS *
1166 **************************/
1167
1168 if (rsq32<rcutoff2)
1169 {
1170
1171 /* REACTION-FIELD ELECTROSTATICS */
1172 felec = qq32*(rinv32*rinvsq32-krf2);
1173
1174 fscal = felec;
1175
1176 /* Calculate temporary vectorial force */
1177 tx = fscal*dx32;
1178 ty = fscal*dy32;
1179 tz = fscal*dz32;
1180
1181 /* Update vectorial force */
1182 fix3 += tx;
1183 fiy3 += ty;
1184 fiz3 += tz;
1185 f[j_coord_offset+DIM3*2+XX0] -= tx;
1186 f[j_coord_offset+DIM3*2+YY1] -= ty;
1187 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1188
1189 }
1190
1191 /**************************
1192 * CALCULATE INTERACTIONS *
1193 **************************/
1194
1195 if (rsq33<rcutoff2)
1196 {
1197
1198 /* REACTION-FIELD ELECTROSTATICS */
1199 felec = qq33*(rinv33*rinvsq33-krf2);
1200
1201 fscal = felec;
1202
1203 /* Calculate temporary vectorial force */
1204 tx = fscal*dx33;
1205 ty = fscal*dy33;
1206 tz = fscal*dz33;
1207
1208 /* Update vectorial force */
1209 fix3 += tx;
1210 fiy3 += ty;
1211 fiz3 += tz;
1212 f[j_coord_offset+DIM3*3+XX0] -= tx;
1213 f[j_coord_offset+DIM3*3+YY1] -= ty;
1214 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1215
1216 }
1217
1218 /* Inner loop uses 311 flops */
1219 }
1220 /* End of innermost loop */
1221
1222 tx = ty = tz = 0;
1223 f[i_coord_offset+DIM3*0+XX0] += fix0;
1224 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1225 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1226 tx += fix0;
1227 ty += fiy0;
1228 tz += fiz0;
1229 f[i_coord_offset+DIM3*1+XX0] += fix1;
1230 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1231 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1232 tx += fix1;
1233 ty += fiy1;
1234 tz += fiz1;
1235 f[i_coord_offset+DIM3*2+XX0] += fix2;
1236 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1237 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1238 tx += fix2;
1239 ty += fiy2;
1240 tz += fiz2;
1241 f[i_coord_offset+DIM3*3+XX0] += fix3;
1242 f[i_coord_offset+DIM3*3+YY1] += fiy3;
1243 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
1244 tx += fix3;
1245 ty += fiy3;
1246 tz += fiz3;
1247 fshift[i_shift_offset+XX0] += tx;
1248 fshift[i_shift_offset+YY1] += ty;
1249 fshift[i_shift_offset+ZZ2] += tz;
1250
1251 /* Increment number of inner iterations */
1252 inneriter += j_index_end - j_index_start;
1253
1254 /* Outer loop uses 39 flops */
1255 }
1256
1257 /* Increment number of outer iterations */
1258 outeriter += nri;
1259
1260 /* Update outer/inner flops */
1261
1262 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*39 + inneriter*311)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4W4_F] += outeriter*39 + inneriter
*311
;
1263}