Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_c.c
Location:line 484, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_c
51 * Electrostatics interaction: CubicSplineTable
52 * VdW interaction: LennardJones
53 * Geometry: Water4-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwioffset3;
79 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80 int vdwjidx0;
81 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
83 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
84 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
85 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
86 real velec,felec,velecsum,facel,crf,krf,krf2;
87 real *charge;
88 int nvdwtype;
89 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
90 int *vdwtype;
91 real *vdwparam;
92 int vfitab;
93 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
94 real *vftab;
95
96 x = xx[0];
97 f = ff[0];
98
99 nri = nlist->nri;
100 iinr = nlist->iinr;
101 jindex = nlist->jindex;
102 jjnr = nlist->jjnr;
103 shiftidx = nlist->shift;
104 gid = nlist->gid;
105 shiftvec = fr->shift_vec[0];
106 fshift = fr->fshift[0];
107 facel = fr->epsfac;
108 charge = mdatoms->chargeA;
109 nvdwtype = fr->ntype;
110 vdwparam = fr->nbfp;
111 vdwtype = mdatoms->typeA;
112
113 vftab = kernel_data->table_elec->data;
114 vftabscale = kernel_data->table_elec->scale;
115
116 /* Setup water-specific parameters */
117 inr = nlist->iinr[0];
118 iq1 = facel*charge[inr+1];
119 iq2 = facel*charge[inr+2];
120 iq3 = facel*charge[inr+3];
121 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
122
123 outeriter = 0;
124 inneriter = 0;
125
126 /* Start outer loop over neighborlists */
127 for(iidx=0; iidx<nri; iidx++)
128 {
129 /* Load shift vector for this list */
130 i_shift_offset = DIM3*shiftidx[iidx];
131 shX = shiftvec[i_shift_offset+XX0];
132 shY = shiftvec[i_shift_offset+YY1];
133 shZ = shiftvec[i_shift_offset+ZZ2];
134
135 /* Load limits for loop over neighbors */
136 j_index_start = jindex[iidx];
137 j_index_end = jindex[iidx+1];
138
139 /* Get outer coordinate index */
140 inr = iinr[iidx];
141 i_coord_offset = DIM3*inr;
142
143 /* Load i particle coords and add shift vector */
144 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
145 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
146 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
147 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
148 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
149 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
150 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
151 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
152 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
153 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
154 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
155 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
156
157 fix0 = 0.0;
158 fiy0 = 0.0;
159 fiz0 = 0.0;
160 fix1 = 0.0;
161 fiy1 = 0.0;
162 fiz1 = 0.0;
163 fix2 = 0.0;
164 fiy2 = 0.0;
165 fiz2 = 0.0;
166 fix3 = 0.0;
167 fiy3 = 0.0;
168 fiz3 = 0.0;
169
170 /* Reset potential sums */
171 velecsum = 0.0;
172 vvdwsum = 0.0;
173
174 /* Start inner kernel loop */
175 for(jidx=j_index_start; jidx<j_index_end; jidx++)
176 {
177 /* Get j neighbor index, and coordinate index */
178 jnr = jjnr[jidx];
179 j_coord_offset = DIM3*jnr;
180
181 /* load j atom coordinates */
182 jx0 = x[j_coord_offset+DIM3*0+XX0];
183 jy0 = x[j_coord_offset+DIM3*0+YY1];
184 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
185
186 /* Calculate displacement vector */
187 dx00 = ix0 - jx0;
188 dy00 = iy0 - jy0;
189 dz00 = iz0 - jz0;
190 dx10 = ix1 - jx0;
191 dy10 = iy1 - jy0;
192 dz10 = iz1 - jz0;
193 dx20 = ix2 - jx0;
194 dy20 = iy2 - jy0;
195 dz20 = iz2 - jz0;
196 dx30 = ix3 - jx0;
197 dy30 = iy3 - jy0;
198 dz30 = iz3 - jz0;
199
200 /* Calculate squared distance and things based on it */
201 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
202 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
203 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
204 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
205
206 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
207 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
208 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
209
210 rinvsq00 = 1.0/rsq00;
211
212 /* Load parameters for j particles */
213 jq0 = charge[jnr+0];
214 vdwjidx0 = 2*vdwtype[jnr+0];
215
216 /**************************
217 * CALCULATE INTERACTIONS *
218 **************************/
219
220 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
221 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
222
223 /* LENNARD-JONES DISPERSION/REPULSION */
224
225 rinvsix = rinvsq00*rinvsq00*rinvsq00;
226 vvdw6 = c6_00*rinvsix;
227 vvdw12 = c12_00*rinvsix*rinvsix;
228 vvdw = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
229 fvdw = (vvdw12-vvdw6)*rinvsq00;
230
231 /* Update potential sums from outer loop */
232 vvdwsum += vvdw;
233
234 fscal = fvdw;
235
236 /* Calculate temporary vectorial force */
237 tx = fscal*dx00;
238 ty = fscal*dy00;
239 tz = fscal*dz00;
240
241 /* Update vectorial force */
242 fix0 += tx;
243 fiy0 += ty;
244 fiz0 += tz;
245 f[j_coord_offset+DIM3*0+XX0] -= tx;
246 f[j_coord_offset+DIM3*0+YY1] -= ty;
247 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
248
249 /**************************
250 * CALCULATE INTERACTIONS *
251 **************************/
252
253 r10 = rsq10*rinv10;
254
255 qq10 = iq1*jq0;
256
257 /* Calculate table index by multiplying r with table scale and truncate to integer */
258 rt = r10*vftabscale;
259 vfitab = rt;
260 vfeps = rt-vfitab;
261 vfitab = 1*4*vfitab;
262
263 /* CUBIC SPLINE TABLE ELECTROSTATICS */
264 Y = vftab[vfitab];
265 F = vftab[vfitab+1];
266 Geps = vfeps*vftab[vfitab+2];
267 Heps2 = vfeps*vfeps*vftab[vfitab+3];
268 Fp = F+Geps+Heps2;
269 VV = Y+vfeps*Fp;
270 velec = qq10*VV;
271 FF = Fp+Geps+2.0*Heps2;
272 felec = -qq10*FF*vftabscale*rinv10;
273
274 /* Update potential sums from outer loop */
275 velecsum += velec;
276
277 fscal = felec;
278
279 /* Calculate temporary vectorial force */
280 tx = fscal*dx10;
281 ty = fscal*dy10;
282 tz = fscal*dz10;
283
284 /* Update vectorial force */
285 fix1 += tx;
286 fiy1 += ty;
287 fiz1 += tz;
288 f[j_coord_offset+DIM3*0+XX0] -= tx;
289 f[j_coord_offset+DIM3*0+YY1] -= ty;
290 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
291
292 /**************************
293 * CALCULATE INTERACTIONS *
294 **************************/
295
296 r20 = rsq20*rinv20;
297
298 qq20 = iq2*jq0;
299
300 /* Calculate table index by multiplying r with table scale and truncate to integer */
301 rt = r20*vftabscale;
302 vfitab = rt;
303 vfeps = rt-vfitab;
304 vfitab = 1*4*vfitab;
305
306 /* CUBIC SPLINE TABLE ELECTROSTATICS */
307 Y = vftab[vfitab];
308 F = vftab[vfitab+1];
309 Geps = vfeps*vftab[vfitab+2];
310 Heps2 = vfeps*vfeps*vftab[vfitab+3];
311 Fp = F+Geps+Heps2;
312 VV = Y+vfeps*Fp;
313 velec = qq20*VV;
314 FF = Fp+Geps+2.0*Heps2;
315 felec = -qq20*FF*vftabscale*rinv20;
316
317 /* Update potential sums from outer loop */
318 velecsum += velec;
319
320 fscal = felec;
321
322 /* Calculate temporary vectorial force */
323 tx = fscal*dx20;
324 ty = fscal*dy20;
325 tz = fscal*dz20;
326
327 /* Update vectorial force */
328 fix2 += tx;
329 fiy2 += ty;
330 fiz2 += tz;
331 f[j_coord_offset+DIM3*0+XX0] -= tx;
332 f[j_coord_offset+DIM3*0+YY1] -= ty;
333 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
334
335 /**************************
336 * CALCULATE INTERACTIONS *
337 **************************/
338
339 r30 = rsq30*rinv30;
340
341 qq30 = iq3*jq0;
342
343 /* Calculate table index by multiplying r with table scale and truncate to integer */
344 rt = r30*vftabscale;
345 vfitab = rt;
346 vfeps = rt-vfitab;
347 vfitab = 1*4*vfitab;
348
349 /* CUBIC SPLINE TABLE ELECTROSTATICS */
350 Y = vftab[vfitab];
351 F = vftab[vfitab+1];
352 Geps = vfeps*vftab[vfitab+2];
353 Heps2 = vfeps*vfeps*vftab[vfitab+3];
354 Fp = F+Geps+Heps2;
355 VV = Y+vfeps*Fp;
356 velec = qq30*VV;
357 FF = Fp+Geps+2.0*Heps2;
358 felec = -qq30*FF*vftabscale*rinv30;
359
360 /* Update potential sums from outer loop */
361 velecsum += velec;
362
363 fscal = felec;
364
365 /* Calculate temporary vectorial force */
366 tx = fscal*dx30;
367 ty = fscal*dy30;
368 tz = fscal*dz30;
369
370 /* Update vectorial force */
371 fix3 += tx;
372 fiy3 += ty;
373 fiz3 += tz;
374 f[j_coord_offset+DIM3*0+XX0] -= tx;
375 f[j_coord_offset+DIM3*0+YY1] -= ty;
376 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
377
378 /* Inner loop uses 158 flops */
379 }
380 /* End of innermost loop */
381
382 tx = ty = tz = 0;
383 f[i_coord_offset+DIM3*0+XX0] += fix0;
384 f[i_coord_offset+DIM3*0+YY1] += fiy0;
385 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
386 tx += fix0;
387 ty += fiy0;
388 tz += fiz0;
389 f[i_coord_offset+DIM3*1+XX0] += fix1;
390 f[i_coord_offset+DIM3*1+YY1] += fiy1;
391 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
392 tx += fix1;
393 ty += fiy1;
394 tz += fiz1;
395 f[i_coord_offset+DIM3*2+XX0] += fix2;
396 f[i_coord_offset+DIM3*2+YY1] += fiy2;
397 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
398 tx += fix2;
399 ty += fiy2;
400 tz += fiz2;
401 f[i_coord_offset+DIM3*3+XX0] += fix3;
402 f[i_coord_offset+DIM3*3+YY1] += fiy3;
403 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
404 tx += fix3;
405 ty += fiy3;
406 tz += fiz3;
407 fshift[i_shift_offset+XX0] += tx;
408 fshift[i_shift_offset+YY1] += ty;
409 fshift[i_shift_offset+ZZ2] += tz;
410
411 ggid = gid[iidx];
412 /* Update potential energies */
413 kernel_data->energygrp_elec[ggid] += velecsum;
414 kernel_data->energygrp_vdw[ggid] += vvdwsum;
415
416 /* Increment number of inner iterations */
417 inneriter += j_index_end - j_index_start;
418
419 /* Outer loop uses 41 flops */
420 }
421
422 /* Increment number of outer iterations */
423 outeriter += nri;
424
425 /* Update outer/inner flops */
426
427 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*158)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_VF] += outeriter*41 + inneriter
*158
;
428}
429/*
430 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_c
431 * Electrostatics interaction: CubicSplineTable
432 * VdW interaction: LennardJones
433 * Geometry: Water4-Particle
434 * Calculate force/pot: Force
435 */
436void
437nb_kernel_ElecCSTab_VdwLJ_GeomW4P1_F_c
438 (t_nblist * gmx_restrict__restrict nlist,
439 rvec * gmx_restrict__restrict xx,
440 rvec * gmx_restrict__restrict ff,
441 t_forcerec * gmx_restrict__restrict fr,
442 t_mdatoms * gmx_restrict__restrict mdatoms,
443 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
444 t_nrnb * gmx_restrict__restrict nrnb)
445{
446 int i_shift_offset,i_coord_offset,j_coord_offset;
447 int j_index_start,j_index_end;
448 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
449 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
450 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
451 real *shiftvec,*fshift,*x,*f;
452 int vdwioffset0;
453 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
454 int vdwioffset1;
455 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
456 int vdwioffset2;
457 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
458 int vdwioffset3;
459 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
460 int vdwjidx0;
461 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
462 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
463 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
464 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
465 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
466 real velec,felec,velecsum,facel,crf,krf,krf2;
467 real *charge;
468 int nvdwtype;
469 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
470 int *vdwtype;
471 real *vdwparam;
472 int vfitab;
473 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
474 real *vftab;
475
476 x = xx[0];
477 f = ff[0];
478
479 nri = nlist->nri;
480 iinr = nlist->iinr;
481 jindex = nlist->jindex;
482 jjnr = nlist->jjnr;
483 shiftidx = nlist->shift;
484 gid = nlist->gid;
Value stored to 'gid' is never read
485 shiftvec = fr->shift_vec[0];
486 fshift = fr->fshift[0];
487 facel = fr->epsfac;
488 charge = mdatoms->chargeA;
489 nvdwtype = fr->ntype;
490 vdwparam = fr->nbfp;
491 vdwtype = mdatoms->typeA;
492
493 vftab = kernel_data->table_elec->data;
494 vftabscale = kernel_data->table_elec->scale;
495
496 /* Setup water-specific parameters */
497 inr = nlist->iinr[0];
498 iq1 = facel*charge[inr+1];
499 iq2 = facel*charge[inr+2];
500 iq3 = facel*charge[inr+3];
501 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
502
503 outeriter = 0;
504 inneriter = 0;
505
506 /* Start outer loop over neighborlists */
507 for(iidx=0; iidx<nri; iidx++)
508 {
509 /* Load shift vector for this list */
510 i_shift_offset = DIM3*shiftidx[iidx];
511 shX = shiftvec[i_shift_offset+XX0];
512 shY = shiftvec[i_shift_offset+YY1];
513 shZ = shiftvec[i_shift_offset+ZZ2];
514
515 /* Load limits for loop over neighbors */
516 j_index_start = jindex[iidx];
517 j_index_end = jindex[iidx+1];
518
519 /* Get outer coordinate index */
520 inr = iinr[iidx];
521 i_coord_offset = DIM3*inr;
522
523 /* Load i particle coords and add shift vector */
524 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
525 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
526 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
527 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
528 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
529 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
530 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
531 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
532 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
533 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
534 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
535 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
536
537 fix0 = 0.0;
538 fiy0 = 0.0;
539 fiz0 = 0.0;
540 fix1 = 0.0;
541 fiy1 = 0.0;
542 fiz1 = 0.0;
543 fix2 = 0.0;
544 fiy2 = 0.0;
545 fiz2 = 0.0;
546 fix3 = 0.0;
547 fiy3 = 0.0;
548 fiz3 = 0.0;
549
550 /* Start inner kernel loop */
551 for(jidx=j_index_start; jidx<j_index_end; jidx++)
552 {
553 /* Get j neighbor index, and coordinate index */
554 jnr = jjnr[jidx];
555 j_coord_offset = DIM3*jnr;
556
557 /* load j atom coordinates */
558 jx0 = x[j_coord_offset+DIM3*0+XX0];
559 jy0 = x[j_coord_offset+DIM3*0+YY1];
560 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
561
562 /* Calculate displacement vector */
563 dx00 = ix0 - jx0;
564 dy00 = iy0 - jy0;
565 dz00 = iz0 - jz0;
566 dx10 = ix1 - jx0;
567 dy10 = iy1 - jy0;
568 dz10 = iz1 - jz0;
569 dx20 = ix2 - jx0;
570 dy20 = iy2 - jy0;
571 dz20 = iz2 - jz0;
572 dx30 = ix3 - jx0;
573 dy30 = iy3 - jy0;
574 dz30 = iz3 - jz0;
575
576 /* Calculate squared distance and things based on it */
577 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
578 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
579 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
580 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
581
582 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
583 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
584 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
585
586 rinvsq00 = 1.0/rsq00;
587
588 /* Load parameters for j particles */
589 jq0 = charge[jnr+0];
590 vdwjidx0 = 2*vdwtype[jnr+0];
591
592 /**************************
593 * CALCULATE INTERACTIONS *
594 **************************/
595
596 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
597 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
598
599 /* LENNARD-JONES DISPERSION/REPULSION */
600
601 rinvsix = rinvsq00*rinvsq00*rinvsq00;
602 fvdw = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
603
604 fscal = fvdw;
605
606 /* Calculate temporary vectorial force */
607 tx = fscal*dx00;
608 ty = fscal*dy00;
609 tz = fscal*dz00;
610
611 /* Update vectorial force */
612 fix0 += tx;
613 fiy0 += ty;
614 fiz0 += tz;
615 f[j_coord_offset+DIM3*0+XX0] -= tx;
616 f[j_coord_offset+DIM3*0+YY1] -= ty;
617 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
618
619 /**************************
620 * CALCULATE INTERACTIONS *
621 **************************/
622
623 r10 = rsq10*rinv10;
624
625 qq10 = iq1*jq0;
626
627 /* Calculate table index by multiplying r with table scale and truncate to integer */
628 rt = r10*vftabscale;
629 vfitab = rt;
630 vfeps = rt-vfitab;
631 vfitab = 1*4*vfitab;
632
633 /* CUBIC SPLINE TABLE ELECTROSTATICS */
634 F = vftab[vfitab+1];
635 Geps = vfeps*vftab[vfitab+2];
636 Heps2 = vfeps*vfeps*vftab[vfitab+3];
637 Fp = F+Geps+Heps2;
638 FF = Fp+Geps+2.0*Heps2;
639 felec = -qq10*FF*vftabscale*rinv10;
640
641 fscal = felec;
642
643 /* Calculate temporary vectorial force */
644 tx = fscal*dx10;
645 ty = fscal*dy10;
646 tz = fscal*dz10;
647
648 /* Update vectorial force */
649 fix1 += tx;
650 fiy1 += ty;
651 fiz1 += tz;
652 f[j_coord_offset+DIM3*0+XX0] -= tx;
653 f[j_coord_offset+DIM3*0+YY1] -= ty;
654 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
655
656 /**************************
657 * CALCULATE INTERACTIONS *
658 **************************/
659
660 r20 = rsq20*rinv20;
661
662 qq20 = iq2*jq0;
663
664 /* Calculate table index by multiplying r with table scale and truncate to integer */
665 rt = r20*vftabscale;
666 vfitab = rt;
667 vfeps = rt-vfitab;
668 vfitab = 1*4*vfitab;
669
670 /* CUBIC SPLINE TABLE ELECTROSTATICS */
671 F = vftab[vfitab+1];
672 Geps = vfeps*vftab[vfitab+2];
673 Heps2 = vfeps*vfeps*vftab[vfitab+3];
674 Fp = F+Geps+Heps2;
675 FF = Fp+Geps+2.0*Heps2;
676 felec = -qq20*FF*vftabscale*rinv20;
677
678 fscal = felec;
679
680 /* Calculate temporary vectorial force */
681 tx = fscal*dx20;
682 ty = fscal*dy20;
683 tz = fscal*dz20;
684
685 /* Update vectorial force */
686 fix2 += tx;
687 fiy2 += ty;
688 fiz2 += tz;
689 f[j_coord_offset+DIM3*0+XX0] -= tx;
690 f[j_coord_offset+DIM3*0+YY1] -= ty;
691 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
692
693 /**************************
694 * CALCULATE INTERACTIONS *
695 **************************/
696
697 r30 = rsq30*rinv30;
698
699 qq30 = iq3*jq0;
700
701 /* Calculate table index by multiplying r with table scale and truncate to integer */
702 rt = r30*vftabscale;
703 vfitab = rt;
704 vfeps = rt-vfitab;
705 vfitab = 1*4*vfitab;
706
707 /* CUBIC SPLINE TABLE ELECTROSTATICS */
708 F = vftab[vfitab+1];
709 Geps = vfeps*vftab[vfitab+2];
710 Heps2 = vfeps*vfeps*vftab[vfitab+3];
711 Fp = F+Geps+Heps2;
712 FF = Fp+Geps+2.0*Heps2;
713 felec = -qq30*FF*vftabscale*rinv30;
714
715 fscal = felec;
716
717 /* Calculate temporary vectorial force */
718 tx = fscal*dx30;
719 ty = fscal*dy30;
720 tz = fscal*dz30;
721
722 /* Update vectorial force */
723 fix3 += tx;
724 fiy3 += ty;
725 fiz3 += tz;
726 f[j_coord_offset+DIM3*0+XX0] -= tx;
727 f[j_coord_offset+DIM3*0+YY1] -= ty;
728 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
729
730 /* Inner loop uses 141 flops */
731 }
732 /* End of innermost loop */
733
734 tx = ty = tz = 0;
735 f[i_coord_offset+DIM3*0+XX0] += fix0;
736 f[i_coord_offset+DIM3*0+YY1] += fiy0;
737 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
738 tx += fix0;
739 ty += fiy0;
740 tz += fiz0;
741 f[i_coord_offset+DIM3*1+XX0] += fix1;
742 f[i_coord_offset+DIM3*1+YY1] += fiy1;
743 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
744 tx += fix1;
745 ty += fiy1;
746 tz += fiz1;
747 f[i_coord_offset+DIM3*2+XX0] += fix2;
748 f[i_coord_offset+DIM3*2+YY1] += fiy2;
749 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
750 tx += fix2;
751 ty += fiy2;
752 tz += fiz2;
753 f[i_coord_offset+DIM3*3+XX0] += fix3;
754 f[i_coord_offset+DIM3*3+YY1] += fiy3;
755 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
756 tx += fix3;
757 ty += fiy3;
758 tz += fiz3;
759 fshift[i_shift_offset+XX0] += tx;
760 fshift[i_shift_offset+YY1] += ty;
761 fshift[i_shift_offset+ZZ2] += tz;
762
763 /* Increment number of inner iterations */
764 inneriter += j_index_end - j_index_start;
765
766 /* Outer loop uses 39 flops */
767 }
768
769 /* Increment number of outer iterations */
770 outeriter += nri;
771
772 /* Update outer/inner flops */
773
774 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*141)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_F] += outeriter*39 + inneriter
*141
;
775}