Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEw_VdwNone_GeomW4W4_c.c
Location:line 682, column 5
Description:Value stored to 'sh_ewald' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwNone_GeomW4W4_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: None
53 * Geometry: Water4-Water4
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEw_VdwNone_GeomW4W4_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset1;
73 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74 int vdwioffset2;
75 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76 int vdwioffset3;
77 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
78 int vdwjidx1;
79 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
80 int vdwjidx2;
81 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
82 int vdwjidx3;
83 real jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
84 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
85 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
86 real dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
87 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
88 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
89 real dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
90 real dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
91 real dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
92 real dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
93 real velec,felec,velecsum,facel,crf,krf,krf2;
94 real *charge;
95 int ewitab;
96 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
97 real *ewtab;
98
99 x = xx[0];
100 f = ff[0];
101
102 nri = nlist->nri;
103 iinr = nlist->iinr;
104 jindex = nlist->jindex;
105 jjnr = nlist->jjnr;
106 shiftidx = nlist->shift;
107 gid = nlist->gid;
108 shiftvec = fr->shift_vec[0];
109 fshift = fr->fshift[0];
110 facel = fr->epsfac;
111 charge = mdatoms->chargeA;
112
113 sh_ewald = fr->ic->sh_ewald;
114 ewtab = fr->ic->tabq_coul_FDV0;
115 ewtabscale = fr->ic->tabq_scale;
116 ewtabhalfspace = 0.5/ewtabscale;
117
118 /* Setup water-specific parameters */
119 inr = nlist->iinr[0];
120 iq1 = facel*charge[inr+1];
121 iq2 = facel*charge[inr+2];
122 iq3 = facel*charge[inr+3];
123
124 jq1 = charge[inr+1];
125 jq2 = charge[inr+2];
126 jq3 = charge[inr+3];
127 qq11 = iq1*jq1;
128 qq12 = iq1*jq2;
129 qq13 = iq1*jq3;
130 qq21 = iq2*jq1;
131 qq22 = iq2*jq2;
132 qq23 = iq2*jq3;
133 qq31 = iq3*jq1;
134 qq32 = iq3*jq2;
135 qq33 = iq3*jq3;
136
137 outeriter = 0;
138 inneriter = 0;
139
140 /* Start outer loop over neighborlists */
141 for(iidx=0; iidx<nri; iidx++)
142 {
143 /* Load shift vector for this list */
144 i_shift_offset = DIM3*shiftidx[iidx];
145 shX = shiftvec[i_shift_offset+XX0];
146 shY = shiftvec[i_shift_offset+YY1];
147 shZ = shiftvec[i_shift_offset+ZZ2];
148
149 /* Load limits for loop over neighbors */
150 j_index_start = jindex[iidx];
151 j_index_end = jindex[iidx+1];
152
153 /* Get outer coordinate index */
154 inr = iinr[iidx];
155 i_coord_offset = DIM3*inr;
156
157 /* Load i particle coords and add shift vector */
158 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
159 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
160 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
161 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
162 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
163 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
164 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
165 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
166 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
167
168 fix1 = 0.0;
169 fiy1 = 0.0;
170 fiz1 = 0.0;
171 fix2 = 0.0;
172 fiy2 = 0.0;
173 fiz2 = 0.0;
174 fix3 = 0.0;
175 fiy3 = 0.0;
176 fiz3 = 0.0;
177
178 /* Reset potential sums */
179 velecsum = 0.0;
180
181 /* Start inner kernel loop */
182 for(jidx=j_index_start; jidx<j_index_end; jidx++)
183 {
184 /* Get j neighbor index, and coordinate index */
185 jnr = jjnr[jidx];
186 j_coord_offset = DIM3*jnr;
187
188 /* load j atom coordinates */
189 jx1 = x[j_coord_offset+DIM3*1+XX0];
190 jy1 = x[j_coord_offset+DIM3*1+YY1];
191 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
192 jx2 = x[j_coord_offset+DIM3*2+XX0];
193 jy2 = x[j_coord_offset+DIM3*2+YY1];
194 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
195 jx3 = x[j_coord_offset+DIM3*3+XX0];
196 jy3 = x[j_coord_offset+DIM3*3+YY1];
197 jz3 = x[j_coord_offset+DIM3*3+ZZ2];
198
199 /* Calculate displacement vector */
200 dx11 = ix1 - jx1;
201 dy11 = iy1 - jy1;
202 dz11 = iz1 - jz1;
203 dx12 = ix1 - jx2;
204 dy12 = iy1 - jy2;
205 dz12 = iz1 - jz2;
206 dx13 = ix1 - jx3;
207 dy13 = iy1 - jy3;
208 dz13 = iz1 - jz3;
209 dx21 = ix2 - jx1;
210 dy21 = iy2 - jy1;
211 dz21 = iz2 - jz1;
212 dx22 = ix2 - jx2;
213 dy22 = iy2 - jy2;
214 dz22 = iz2 - jz2;
215 dx23 = ix2 - jx3;
216 dy23 = iy2 - jy3;
217 dz23 = iz2 - jz3;
218 dx31 = ix3 - jx1;
219 dy31 = iy3 - jy1;
220 dz31 = iz3 - jz1;
221 dx32 = ix3 - jx2;
222 dy32 = iy3 - jy2;
223 dz32 = iz3 - jz2;
224 dx33 = ix3 - jx3;
225 dy33 = iy3 - jy3;
226 dz33 = iz3 - jz3;
227
228 /* Calculate squared distance and things based on it */
229 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
230 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
231 rsq13 = dx13*dx13+dy13*dy13+dz13*dz13;
232 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
233 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
234 rsq23 = dx23*dx23+dy23*dy23+dz23*dz23;
235 rsq31 = dx31*dx31+dy31*dy31+dz31*dz31;
236 rsq32 = dx32*dx32+dy32*dy32+dz32*dz32;
237 rsq33 = dx33*dx33+dy33*dy33+dz33*dz33;
238
239 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
240 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
241 rinv13 = gmx_invsqrt(rsq13)gmx_software_invsqrt(rsq13);
242 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
243 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
244 rinv23 = gmx_invsqrt(rsq23)gmx_software_invsqrt(rsq23);
245 rinv31 = gmx_invsqrt(rsq31)gmx_software_invsqrt(rsq31);
246 rinv32 = gmx_invsqrt(rsq32)gmx_software_invsqrt(rsq32);
247 rinv33 = gmx_invsqrt(rsq33)gmx_software_invsqrt(rsq33);
248
249 rinvsq11 = rinv11*rinv11;
250 rinvsq12 = rinv12*rinv12;
251 rinvsq13 = rinv13*rinv13;
252 rinvsq21 = rinv21*rinv21;
253 rinvsq22 = rinv22*rinv22;
254 rinvsq23 = rinv23*rinv23;
255 rinvsq31 = rinv31*rinv31;
256 rinvsq32 = rinv32*rinv32;
257 rinvsq33 = rinv33*rinv33;
258
259 /**************************
260 * CALCULATE INTERACTIONS *
261 **************************/
262
263 r11 = rsq11*rinv11;
264
265 /* EWALD ELECTROSTATICS */
266
267 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
268 ewrt = r11*ewtabscale;
269 ewitab = ewrt;
270 eweps = ewrt-ewitab;
271 ewitab = 4*ewitab;
272 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
273 velec = qq11*(rinv11-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
274 felec = qq11*rinv11*(rinvsq11-felec);
275
276 /* Update potential sums from outer loop */
277 velecsum += velec;
278
279 fscal = felec;
280
281 /* Calculate temporary vectorial force */
282 tx = fscal*dx11;
283 ty = fscal*dy11;
284 tz = fscal*dz11;
285
286 /* Update vectorial force */
287 fix1 += tx;
288 fiy1 += ty;
289 fiz1 += tz;
290 f[j_coord_offset+DIM3*1+XX0] -= tx;
291 f[j_coord_offset+DIM3*1+YY1] -= ty;
292 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
293
294 /**************************
295 * CALCULATE INTERACTIONS *
296 **************************/
297
298 r12 = rsq12*rinv12;
299
300 /* EWALD ELECTROSTATICS */
301
302 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
303 ewrt = r12*ewtabscale;
304 ewitab = ewrt;
305 eweps = ewrt-ewitab;
306 ewitab = 4*ewitab;
307 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
308 velec = qq12*(rinv12-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
309 felec = qq12*rinv12*(rinvsq12-felec);
310
311 /* Update potential sums from outer loop */
312 velecsum += velec;
313
314 fscal = felec;
315
316 /* Calculate temporary vectorial force */
317 tx = fscal*dx12;
318 ty = fscal*dy12;
319 tz = fscal*dz12;
320
321 /* Update vectorial force */
322 fix1 += tx;
323 fiy1 += ty;
324 fiz1 += tz;
325 f[j_coord_offset+DIM3*2+XX0] -= tx;
326 f[j_coord_offset+DIM3*2+YY1] -= ty;
327 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
328
329 /**************************
330 * CALCULATE INTERACTIONS *
331 **************************/
332
333 r13 = rsq13*rinv13;
334
335 /* EWALD ELECTROSTATICS */
336
337 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
338 ewrt = r13*ewtabscale;
339 ewitab = ewrt;
340 eweps = ewrt-ewitab;
341 ewitab = 4*ewitab;
342 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
343 velec = qq13*(rinv13-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
344 felec = qq13*rinv13*(rinvsq13-felec);
345
346 /* Update potential sums from outer loop */
347 velecsum += velec;
348
349 fscal = felec;
350
351 /* Calculate temporary vectorial force */
352 tx = fscal*dx13;
353 ty = fscal*dy13;
354 tz = fscal*dz13;
355
356 /* Update vectorial force */
357 fix1 += tx;
358 fiy1 += ty;
359 fiz1 += tz;
360 f[j_coord_offset+DIM3*3+XX0] -= tx;
361 f[j_coord_offset+DIM3*3+YY1] -= ty;
362 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
363
364 /**************************
365 * CALCULATE INTERACTIONS *
366 **************************/
367
368 r21 = rsq21*rinv21;
369
370 /* EWALD ELECTROSTATICS */
371
372 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
373 ewrt = r21*ewtabscale;
374 ewitab = ewrt;
375 eweps = ewrt-ewitab;
376 ewitab = 4*ewitab;
377 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
378 velec = qq21*(rinv21-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
379 felec = qq21*rinv21*(rinvsq21-felec);
380
381 /* Update potential sums from outer loop */
382 velecsum += velec;
383
384 fscal = felec;
385
386 /* Calculate temporary vectorial force */
387 tx = fscal*dx21;
388 ty = fscal*dy21;
389 tz = fscal*dz21;
390
391 /* Update vectorial force */
392 fix2 += tx;
393 fiy2 += ty;
394 fiz2 += tz;
395 f[j_coord_offset+DIM3*1+XX0] -= tx;
396 f[j_coord_offset+DIM3*1+YY1] -= ty;
397 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
398
399 /**************************
400 * CALCULATE INTERACTIONS *
401 **************************/
402
403 r22 = rsq22*rinv22;
404
405 /* EWALD ELECTROSTATICS */
406
407 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
408 ewrt = r22*ewtabscale;
409 ewitab = ewrt;
410 eweps = ewrt-ewitab;
411 ewitab = 4*ewitab;
412 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
413 velec = qq22*(rinv22-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
414 felec = qq22*rinv22*(rinvsq22-felec);
415
416 /* Update potential sums from outer loop */
417 velecsum += velec;
418
419 fscal = felec;
420
421 /* Calculate temporary vectorial force */
422 tx = fscal*dx22;
423 ty = fscal*dy22;
424 tz = fscal*dz22;
425
426 /* Update vectorial force */
427 fix2 += tx;
428 fiy2 += ty;
429 fiz2 += tz;
430 f[j_coord_offset+DIM3*2+XX0] -= tx;
431 f[j_coord_offset+DIM3*2+YY1] -= ty;
432 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
433
434 /**************************
435 * CALCULATE INTERACTIONS *
436 **************************/
437
438 r23 = rsq23*rinv23;
439
440 /* EWALD ELECTROSTATICS */
441
442 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
443 ewrt = r23*ewtabscale;
444 ewitab = ewrt;
445 eweps = ewrt-ewitab;
446 ewitab = 4*ewitab;
447 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
448 velec = qq23*(rinv23-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
449 felec = qq23*rinv23*(rinvsq23-felec);
450
451 /* Update potential sums from outer loop */
452 velecsum += velec;
453
454 fscal = felec;
455
456 /* Calculate temporary vectorial force */
457 tx = fscal*dx23;
458 ty = fscal*dy23;
459 tz = fscal*dz23;
460
461 /* Update vectorial force */
462 fix2 += tx;
463 fiy2 += ty;
464 fiz2 += tz;
465 f[j_coord_offset+DIM3*3+XX0] -= tx;
466 f[j_coord_offset+DIM3*3+YY1] -= ty;
467 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
468
469 /**************************
470 * CALCULATE INTERACTIONS *
471 **************************/
472
473 r31 = rsq31*rinv31;
474
475 /* EWALD ELECTROSTATICS */
476
477 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
478 ewrt = r31*ewtabscale;
479 ewitab = ewrt;
480 eweps = ewrt-ewitab;
481 ewitab = 4*ewitab;
482 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
483 velec = qq31*(rinv31-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
484 felec = qq31*rinv31*(rinvsq31-felec);
485
486 /* Update potential sums from outer loop */
487 velecsum += velec;
488
489 fscal = felec;
490
491 /* Calculate temporary vectorial force */
492 tx = fscal*dx31;
493 ty = fscal*dy31;
494 tz = fscal*dz31;
495
496 /* Update vectorial force */
497 fix3 += tx;
498 fiy3 += ty;
499 fiz3 += tz;
500 f[j_coord_offset+DIM3*1+XX0] -= tx;
501 f[j_coord_offset+DIM3*1+YY1] -= ty;
502 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
503
504 /**************************
505 * CALCULATE INTERACTIONS *
506 **************************/
507
508 r32 = rsq32*rinv32;
509
510 /* EWALD ELECTROSTATICS */
511
512 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
513 ewrt = r32*ewtabscale;
514 ewitab = ewrt;
515 eweps = ewrt-ewitab;
516 ewitab = 4*ewitab;
517 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
518 velec = qq32*(rinv32-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
519 felec = qq32*rinv32*(rinvsq32-felec);
520
521 /* Update potential sums from outer loop */
522 velecsum += velec;
523
524 fscal = felec;
525
526 /* Calculate temporary vectorial force */
527 tx = fscal*dx32;
528 ty = fscal*dy32;
529 tz = fscal*dz32;
530
531 /* Update vectorial force */
532 fix3 += tx;
533 fiy3 += ty;
534 fiz3 += tz;
535 f[j_coord_offset+DIM3*2+XX0] -= tx;
536 f[j_coord_offset+DIM3*2+YY1] -= ty;
537 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
538
539 /**************************
540 * CALCULATE INTERACTIONS *
541 **************************/
542
543 r33 = rsq33*rinv33;
544
545 /* EWALD ELECTROSTATICS */
546
547 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
548 ewrt = r33*ewtabscale;
549 ewitab = ewrt;
550 eweps = ewrt-ewitab;
551 ewitab = 4*ewitab;
552 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
553 velec = qq33*(rinv33-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
554 felec = qq33*rinv33*(rinvsq33-felec);
555
556 /* Update potential sums from outer loop */
557 velecsum += velec;
558
559 fscal = felec;
560
561 /* Calculate temporary vectorial force */
562 tx = fscal*dx33;
563 ty = fscal*dy33;
564 tz = fscal*dz33;
565
566 /* Update vectorial force */
567 fix3 += tx;
568 fiy3 += ty;
569 fiz3 += tz;
570 f[j_coord_offset+DIM3*3+XX0] -= tx;
571 f[j_coord_offset+DIM3*3+YY1] -= ty;
572 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
573
574 /* Inner loop uses 360 flops */
575 }
576 /* End of innermost loop */
577
578 tx = ty = tz = 0;
579 f[i_coord_offset+DIM3*1+XX0] += fix1;
580 f[i_coord_offset+DIM3*1+YY1] += fiy1;
581 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
582 tx += fix1;
583 ty += fiy1;
584 tz += fiz1;
585 f[i_coord_offset+DIM3*2+XX0] += fix2;
586 f[i_coord_offset+DIM3*2+YY1] += fiy2;
587 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
588 tx += fix2;
589 ty += fiy2;
590 tz += fiz2;
591 f[i_coord_offset+DIM3*3+XX0] += fix3;
592 f[i_coord_offset+DIM3*3+YY1] += fiy3;
593 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
594 tx += fix3;
595 ty += fiy3;
596 tz += fiz3;
597 fshift[i_shift_offset+XX0] += tx;
598 fshift[i_shift_offset+YY1] += ty;
599 fshift[i_shift_offset+ZZ2] += tz;
600
601 ggid = gid[iidx];
602 /* Update potential energies */
603 kernel_data->energygrp_elec[ggid] += velecsum;
604
605 /* Increment number of inner iterations */
606 inneriter += j_index_end - j_index_start;
607
608 /* Outer loop uses 31 flops */
609 }
610
611 /* Increment number of outer iterations */
612 outeriter += nri;
613
614 /* Update outer/inner flops */
615
616 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4W4_VF,outeriter*31 + inneriter*360)(nrnb)->n[eNR_NBKERNEL_ELEC_W4W4_VF] += outeriter*31 + inneriter
*360
;
617}
618/*
619 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwNone_GeomW4W4_F_c
620 * Electrostatics interaction: Ewald
621 * VdW interaction: None
622 * Geometry: Water4-Water4
623 * Calculate force/pot: Force
624 */
625void
626nb_kernel_ElecEw_VdwNone_GeomW4W4_F_c
627 (t_nblist * gmx_restrict__restrict nlist,
628 rvec * gmx_restrict__restrict xx,
629 rvec * gmx_restrict__restrict ff,
630 t_forcerec * gmx_restrict__restrict fr,
631 t_mdatoms * gmx_restrict__restrict mdatoms,
632 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
633 t_nrnb * gmx_restrict__restrict nrnb)
634{
635 int i_shift_offset,i_coord_offset,j_coord_offset;
636 int j_index_start,j_index_end;
637 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
638 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
639 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
640 real *shiftvec,*fshift,*x,*f;
641 int vdwioffset1;
642 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
643 int vdwioffset2;
644 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
645 int vdwioffset3;
646 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
647 int vdwjidx1;
648 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
649 int vdwjidx2;
650 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
651 int vdwjidx3;
652 real jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
653 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
654 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
655 real dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
656 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
657 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
658 real dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
659 real dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
660 real dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
661 real dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
662 real velec,felec,velecsum,facel,crf,krf,krf2;
663 real *charge;
664 int ewitab;
665 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
666 real *ewtab;
667
668 x = xx[0];
669 f = ff[0];
670
671 nri = nlist->nri;
672 iinr = nlist->iinr;
673 jindex = nlist->jindex;
674 jjnr = nlist->jjnr;
675 shiftidx = nlist->shift;
676 gid = nlist->gid;
677 shiftvec = fr->shift_vec[0];
678 fshift = fr->fshift[0];
679 facel = fr->epsfac;
680 charge = mdatoms->chargeA;
681
682 sh_ewald = fr->ic->sh_ewald;
Value stored to 'sh_ewald' is never read
683 ewtab = fr->ic->tabq_coul_F;
684 ewtabscale = fr->ic->tabq_scale;
685 ewtabhalfspace = 0.5/ewtabscale;
686
687 /* Setup water-specific parameters */
688 inr = nlist->iinr[0];
689 iq1 = facel*charge[inr+1];
690 iq2 = facel*charge[inr+2];
691 iq3 = facel*charge[inr+3];
692
693 jq1 = charge[inr+1];
694 jq2 = charge[inr+2];
695 jq3 = charge[inr+3];
696 qq11 = iq1*jq1;
697 qq12 = iq1*jq2;
698 qq13 = iq1*jq3;
699 qq21 = iq2*jq1;
700 qq22 = iq2*jq2;
701 qq23 = iq2*jq3;
702 qq31 = iq3*jq1;
703 qq32 = iq3*jq2;
704 qq33 = iq3*jq3;
705
706 outeriter = 0;
707 inneriter = 0;
708
709 /* Start outer loop over neighborlists */
710 for(iidx=0; iidx<nri; iidx++)
711 {
712 /* Load shift vector for this list */
713 i_shift_offset = DIM3*shiftidx[iidx];
714 shX = shiftvec[i_shift_offset+XX0];
715 shY = shiftvec[i_shift_offset+YY1];
716 shZ = shiftvec[i_shift_offset+ZZ2];
717
718 /* Load limits for loop over neighbors */
719 j_index_start = jindex[iidx];
720 j_index_end = jindex[iidx+1];
721
722 /* Get outer coordinate index */
723 inr = iinr[iidx];
724 i_coord_offset = DIM3*inr;
725
726 /* Load i particle coords and add shift vector */
727 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
728 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
729 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
730 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
731 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
732 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
733 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
734 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
735 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
736
737 fix1 = 0.0;
738 fiy1 = 0.0;
739 fiz1 = 0.0;
740 fix2 = 0.0;
741 fiy2 = 0.0;
742 fiz2 = 0.0;
743 fix3 = 0.0;
744 fiy3 = 0.0;
745 fiz3 = 0.0;
746
747 /* Start inner kernel loop */
748 for(jidx=j_index_start; jidx<j_index_end; jidx++)
749 {
750 /* Get j neighbor index, and coordinate index */
751 jnr = jjnr[jidx];
752 j_coord_offset = DIM3*jnr;
753
754 /* load j atom coordinates */
755 jx1 = x[j_coord_offset+DIM3*1+XX0];
756 jy1 = x[j_coord_offset+DIM3*1+YY1];
757 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
758 jx2 = x[j_coord_offset+DIM3*2+XX0];
759 jy2 = x[j_coord_offset+DIM3*2+YY1];
760 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
761 jx3 = x[j_coord_offset+DIM3*3+XX0];
762 jy3 = x[j_coord_offset+DIM3*3+YY1];
763 jz3 = x[j_coord_offset+DIM3*3+ZZ2];
764
765 /* Calculate displacement vector */
766 dx11 = ix1 - jx1;
767 dy11 = iy1 - jy1;
768 dz11 = iz1 - jz1;
769 dx12 = ix1 - jx2;
770 dy12 = iy1 - jy2;
771 dz12 = iz1 - jz2;
772 dx13 = ix1 - jx3;
773 dy13 = iy1 - jy3;
774 dz13 = iz1 - jz3;
775 dx21 = ix2 - jx1;
776 dy21 = iy2 - jy1;
777 dz21 = iz2 - jz1;
778 dx22 = ix2 - jx2;
779 dy22 = iy2 - jy2;
780 dz22 = iz2 - jz2;
781 dx23 = ix2 - jx3;
782 dy23 = iy2 - jy3;
783 dz23 = iz2 - jz3;
784 dx31 = ix3 - jx1;
785 dy31 = iy3 - jy1;
786 dz31 = iz3 - jz1;
787 dx32 = ix3 - jx2;
788 dy32 = iy3 - jy2;
789 dz32 = iz3 - jz2;
790 dx33 = ix3 - jx3;
791 dy33 = iy3 - jy3;
792 dz33 = iz3 - jz3;
793
794 /* Calculate squared distance and things based on it */
795 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
796 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
797 rsq13 = dx13*dx13+dy13*dy13+dz13*dz13;
798 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
799 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
800 rsq23 = dx23*dx23+dy23*dy23+dz23*dz23;
801 rsq31 = dx31*dx31+dy31*dy31+dz31*dz31;
802 rsq32 = dx32*dx32+dy32*dy32+dz32*dz32;
803 rsq33 = dx33*dx33+dy33*dy33+dz33*dz33;
804
805 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
806 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
807 rinv13 = gmx_invsqrt(rsq13)gmx_software_invsqrt(rsq13);
808 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
809 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
810 rinv23 = gmx_invsqrt(rsq23)gmx_software_invsqrt(rsq23);
811 rinv31 = gmx_invsqrt(rsq31)gmx_software_invsqrt(rsq31);
812 rinv32 = gmx_invsqrt(rsq32)gmx_software_invsqrt(rsq32);
813 rinv33 = gmx_invsqrt(rsq33)gmx_software_invsqrt(rsq33);
814
815 rinvsq11 = rinv11*rinv11;
816 rinvsq12 = rinv12*rinv12;
817 rinvsq13 = rinv13*rinv13;
818 rinvsq21 = rinv21*rinv21;
819 rinvsq22 = rinv22*rinv22;
820 rinvsq23 = rinv23*rinv23;
821 rinvsq31 = rinv31*rinv31;
822 rinvsq32 = rinv32*rinv32;
823 rinvsq33 = rinv33*rinv33;
824
825 /**************************
826 * CALCULATE INTERACTIONS *
827 **************************/
828
829 r11 = rsq11*rinv11;
830
831 /* EWALD ELECTROSTATICS */
832
833 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
834 ewrt = r11*ewtabscale;
835 ewitab = ewrt;
836 eweps = ewrt-ewitab;
837 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
838 felec = qq11*rinv11*(rinvsq11-felec);
839
840 fscal = felec;
841
842 /* Calculate temporary vectorial force */
843 tx = fscal*dx11;
844 ty = fscal*dy11;
845 tz = fscal*dz11;
846
847 /* Update vectorial force */
848 fix1 += tx;
849 fiy1 += ty;
850 fiz1 += tz;
851 f[j_coord_offset+DIM3*1+XX0] -= tx;
852 f[j_coord_offset+DIM3*1+YY1] -= ty;
853 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
854
855 /**************************
856 * CALCULATE INTERACTIONS *
857 **************************/
858
859 r12 = rsq12*rinv12;
860
861 /* EWALD ELECTROSTATICS */
862
863 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
864 ewrt = r12*ewtabscale;
865 ewitab = ewrt;
866 eweps = ewrt-ewitab;
867 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
868 felec = qq12*rinv12*(rinvsq12-felec);
869
870 fscal = felec;
871
872 /* Calculate temporary vectorial force */
873 tx = fscal*dx12;
874 ty = fscal*dy12;
875 tz = fscal*dz12;
876
877 /* Update vectorial force */
878 fix1 += tx;
879 fiy1 += ty;
880 fiz1 += tz;
881 f[j_coord_offset+DIM3*2+XX0] -= tx;
882 f[j_coord_offset+DIM3*2+YY1] -= ty;
883 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
884
885 /**************************
886 * CALCULATE INTERACTIONS *
887 **************************/
888
889 r13 = rsq13*rinv13;
890
891 /* EWALD ELECTROSTATICS */
892
893 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
894 ewrt = r13*ewtabscale;
895 ewitab = ewrt;
896 eweps = ewrt-ewitab;
897 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
898 felec = qq13*rinv13*(rinvsq13-felec);
899
900 fscal = felec;
901
902 /* Calculate temporary vectorial force */
903 tx = fscal*dx13;
904 ty = fscal*dy13;
905 tz = fscal*dz13;
906
907 /* Update vectorial force */
908 fix1 += tx;
909 fiy1 += ty;
910 fiz1 += tz;
911 f[j_coord_offset+DIM3*3+XX0] -= tx;
912 f[j_coord_offset+DIM3*3+YY1] -= ty;
913 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
914
915 /**************************
916 * CALCULATE INTERACTIONS *
917 **************************/
918
919 r21 = rsq21*rinv21;
920
921 /* EWALD ELECTROSTATICS */
922
923 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
924 ewrt = r21*ewtabscale;
925 ewitab = ewrt;
926 eweps = ewrt-ewitab;
927 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
928 felec = qq21*rinv21*(rinvsq21-felec);
929
930 fscal = felec;
931
932 /* Calculate temporary vectorial force */
933 tx = fscal*dx21;
934 ty = fscal*dy21;
935 tz = fscal*dz21;
936
937 /* Update vectorial force */
938 fix2 += tx;
939 fiy2 += ty;
940 fiz2 += tz;
941 f[j_coord_offset+DIM3*1+XX0] -= tx;
942 f[j_coord_offset+DIM3*1+YY1] -= ty;
943 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
944
945 /**************************
946 * CALCULATE INTERACTIONS *
947 **************************/
948
949 r22 = rsq22*rinv22;
950
951 /* EWALD ELECTROSTATICS */
952
953 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
954 ewrt = r22*ewtabscale;
955 ewitab = ewrt;
956 eweps = ewrt-ewitab;
957 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
958 felec = qq22*rinv22*(rinvsq22-felec);
959
960 fscal = felec;
961
962 /* Calculate temporary vectorial force */
963 tx = fscal*dx22;
964 ty = fscal*dy22;
965 tz = fscal*dz22;
966
967 /* Update vectorial force */
968 fix2 += tx;
969 fiy2 += ty;
970 fiz2 += tz;
971 f[j_coord_offset+DIM3*2+XX0] -= tx;
972 f[j_coord_offset+DIM3*2+YY1] -= ty;
973 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
974
975 /**************************
976 * CALCULATE INTERACTIONS *
977 **************************/
978
979 r23 = rsq23*rinv23;
980
981 /* EWALD ELECTROSTATICS */
982
983 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
984 ewrt = r23*ewtabscale;
985 ewitab = ewrt;
986 eweps = ewrt-ewitab;
987 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
988 felec = qq23*rinv23*(rinvsq23-felec);
989
990 fscal = felec;
991
992 /* Calculate temporary vectorial force */
993 tx = fscal*dx23;
994 ty = fscal*dy23;
995 tz = fscal*dz23;
996
997 /* Update vectorial force */
998 fix2 += tx;
999 fiy2 += ty;
1000 fiz2 += tz;
1001 f[j_coord_offset+DIM3*3+XX0] -= tx;
1002 f[j_coord_offset+DIM3*3+YY1] -= ty;
1003 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1004
1005 /**************************
1006 * CALCULATE INTERACTIONS *
1007 **************************/
1008
1009 r31 = rsq31*rinv31;
1010
1011 /* EWALD ELECTROSTATICS */
1012
1013 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1014 ewrt = r31*ewtabscale;
1015 ewitab = ewrt;
1016 eweps = ewrt-ewitab;
1017 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1018 felec = qq31*rinv31*(rinvsq31-felec);
1019
1020 fscal = felec;
1021
1022 /* Calculate temporary vectorial force */
1023 tx = fscal*dx31;
1024 ty = fscal*dy31;
1025 tz = fscal*dz31;
1026
1027 /* Update vectorial force */
1028 fix3 += tx;
1029 fiy3 += ty;
1030 fiz3 += tz;
1031 f[j_coord_offset+DIM3*1+XX0] -= tx;
1032 f[j_coord_offset+DIM3*1+YY1] -= ty;
1033 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1034
1035 /**************************
1036 * CALCULATE INTERACTIONS *
1037 **************************/
1038
1039 r32 = rsq32*rinv32;
1040
1041 /* EWALD ELECTROSTATICS */
1042
1043 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1044 ewrt = r32*ewtabscale;
1045 ewitab = ewrt;
1046 eweps = ewrt-ewitab;
1047 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1048 felec = qq32*rinv32*(rinvsq32-felec);
1049
1050 fscal = felec;
1051
1052 /* Calculate temporary vectorial force */
1053 tx = fscal*dx32;
1054 ty = fscal*dy32;
1055 tz = fscal*dz32;
1056
1057 /* Update vectorial force */
1058 fix3 += tx;
1059 fiy3 += ty;
1060 fiz3 += tz;
1061 f[j_coord_offset+DIM3*2+XX0] -= tx;
1062 f[j_coord_offset+DIM3*2+YY1] -= ty;
1063 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1064
1065 /**************************
1066 * CALCULATE INTERACTIONS *
1067 **************************/
1068
1069 r33 = rsq33*rinv33;
1070
1071 /* EWALD ELECTROSTATICS */
1072
1073 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1074 ewrt = r33*ewtabscale;
1075 ewitab = ewrt;
1076 eweps = ewrt-ewitab;
1077 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1078 felec = qq33*rinv33*(rinvsq33-felec);
1079
1080 fscal = felec;
1081
1082 /* Calculate temporary vectorial force */
1083 tx = fscal*dx33;
1084 ty = fscal*dy33;
1085 tz = fscal*dz33;
1086
1087 /* Update vectorial force */
1088 fix3 += tx;
1089 fiy3 += ty;
1090 fiz3 += tz;
1091 f[j_coord_offset+DIM3*3+XX0] -= tx;
1092 f[j_coord_offset+DIM3*3+YY1] -= ty;
1093 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1094
1095 /* Inner loop uses 297 flops */
1096 }
1097 /* End of innermost loop */
1098
1099 tx = ty = tz = 0;
1100 f[i_coord_offset+DIM3*1+XX0] += fix1;
1101 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1102 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1103 tx += fix1;
1104 ty += fiy1;
1105 tz += fiz1;
1106 f[i_coord_offset+DIM3*2+XX0] += fix2;
1107 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1108 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1109 tx += fix2;
1110 ty += fiy2;
1111 tz += fiz2;
1112 f[i_coord_offset+DIM3*3+XX0] += fix3;
1113 f[i_coord_offset+DIM3*3+YY1] += fiy3;
1114 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
1115 tx += fix3;
1116 ty += fiy3;
1117 tz += fiz3;
1118 fshift[i_shift_offset+XX0] += tx;
1119 fshift[i_shift_offset+YY1] += ty;
1120 fshift[i_shift_offset+ZZ2] += tz;
1121
1122 /* Increment number of inner iterations */
1123 inneriter += j_index_end - j_index_start;
1124
1125 /* Outer loop uses 30 flops */
1126 }
1127
1128 /* Increment number of outer iterations */
1129 outeriter += nri;
1130
1131 /* Update outer/inner flops */
1132
1133 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4W4_F,outeriter*30 + inneriter*297)(nrnb)->n[eNR_NBKERNEL_ELEC_W4W4_F] += outeriter*30 + inneriter
*297
;
1134}