Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecCoul_VdwNone_GeomW4P1_sse4_1_single.c
Location:line 582, column 5
Description:Value stored to 'j_coord_offsetB' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwNone_GeomW4P1_VF_sse4_1_single
54 * Electrostatics interaction: Coulomb
55 * VdW interaction: None
56 * Geometry: Water4-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecCoul_VdwNone_GeomW4P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset1;
86 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87 int vdwioffset2;
88 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89 int vdwioffset3;
90 __m128 ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95 __m128 dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
97 real *charge;
98 __m128 dummy_mask,cutoff_mask;
99 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
100 __m128 one = _mm_set1_ps(1.0);
101 __m128 two = _mm_set1_ps(2.0);
102 x = xx[0];
103 f = ff[0];
104
105 nri = nlist->nri;
106 iinr = nlist->iinr;
107 jindex = nlist->jindex;
108 jjnr = nlist->jjnr;
109 shiftidx = nlist->shift;
110 gid = nlist->gid;
111 shiftvec = fr->shift_vec[0];
112 fshift = fr->fshift[0];
113 facel = _mm_set1_ps(fr->epsfac);
114 charge = mdatoms->chargeA;
115
116 /* Setup water-specific parameters */
117 inr = nlist->iinr[0];
118 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
119 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
120 iq3 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
121
122 /* Avoid stupid compiler warnings */
123 jnrA = jnrB = jnrC = jnrD = 0;
124 j_coord_offsetA = 0;
125 j_coord_offsetB = 0;
126 j_coord_offsetC = 0;
127 j_coord_offsetD = 0;
128
129 outeriter = 0;
130 inneriter = 0;
131
132 for(iidx=0;iidx<4*DIM3;iidx++)
133 {
134 scratch[iidx] = 0.0;
135 }
136
137 /* Start outer loop over neighborlists */
138 for(iidx=0; iidx<nri; iidx++)
139 {
140 /* Load shift vector for this list */
141 i_shift_offset = DIM3*shiftidx[iidx];
142
143 /* Load limits for loop over neighbors */
144 j_index_start = jindex[iidx];
145 j_index_end = jindex[iidx+1];
146
147 /* Get outer coordinate index */
148 inr = iinr[iidx];
149 i_coord_offset = DIM3*inr;
150
151 /* Load i particle coords and add shift vector */
152 gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM3,
153 &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
154
155 fix1 = _mm_setzero_ps();
156 fiy1 = _mm_setzero_ps();
157 fiz1 = _mm_setzero_ps();
158 fix2 = _mm_setzero_ps();
159 fiy2 = _mm_setzero_ps();
160 fiz2 = _mm_setzero_ps();
161 fix3 = _mm_setzero_ps();
162 fiy3 = _mm_setzero_ps();
163 fiz3 = _mm_setzero_ps();
164
165 /* Reset potential sums */
166 velecsum = _mm_setzero_ps();
167
168 /* Start inner kernel loop */
169 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
170 {
171
172 /* Get j neighbor index, and coordinate index */
173 jnrA = jjnr[jidx];
174 jnrB = jjnr[jidx+1];
175 jnrC = jjnr[jidx+2];
176 jnrD = jjnr[jidx+3];
177 j_coord_offsetA = DIM3*jnrA;
178 j_coord_offsetB = DIM3*jnrB;
179 j_coord_offsetC = DIM3*jnrC;
180 j_coord_offsetD = DIM3*jnrD;
181
182 /* load j atom coordinates */
183 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
184 x+j_coord_offsetC,x+j_coord_offsetD,
185 &jx0,&jy0,&jz0);
186
187 /* Calculate displacement vector */
188 dx10 = _mm_sub_ps(ix1,jx0);
189 dy10 = _mm_sub_ps(iy1,jy0);
190 dz10 = _mm_sub_ps(iz1,jz0);
191 dx20 = _mm_sub_ps(ix2,jx0);
192 dy20 = _mm_sub_ps(iy2,jy0);
193 dz20 = _mm_sub_ps(iz2,jz0);
194 dx30 = _mm_sub_ps(ix3,jx0);
195 dy30 = _mm_sub_ps(iy3,jy0);
196 dz30 = _mm_sub_ps(iz3,jz0);
197
198 /* Calculate squared distance and things based on it */
199 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
200 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
201 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
202
203 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
204 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
205 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
206
207 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
208 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
209 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
210
211 /* Load parameters for j particles */
212 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
213 charge+jnrC+0,charge+jnrD+0);
214
215 fjx0 = _mm_setzero_ps();
216 fjy0 = _mm_setzero_ps();
217 fjz0 = _mm_setzero_ps();
218
219 /**************************
220 * CALCULATE INTERACTIONS *
221 **************************/
222
223 /* Compute parameters for interactions between i and j atoms */
224 qq10 = _mm_mul_ps(iq1,jq0);
225
226 /* COULOMB ELECTROSTATICS */
227 velec = _mm_mul_ps(qq10,rinv10);
228 felec = _mm_mul_ps(velec,rinvsq10);
229
230 /* Update potential sum for this i atom from the interaction with this j atom. */
231 velecsum = _mm_add_ps(velecsum,velec);
232
233 fscal = felec;
234
235 /* Calculate temporary vectorial force */
236 tx = _mm_mul_ps(fscal,dx10);
237 ty = _mm_mul_ps(fscal,dy10);
238 tz = _mm_mul_ps(fscal,dz10);
239
240 /* Update vectorial force */
241 fix1 = _mm_add_ps(fix1,tx);
242 fiy1 = _mm_add_ps(fiy1,ty);
243 fiz1 = _mm_add_ps(fiz1,tz);
244
245 fjx0 = _mm_add_ps(fjx0,tx);
246 fjy0 = _mm_add_ps(fjy0,ty);
247 fjz0 = _mm_add_ps(fjz0,tz);
248
249 /**************************
250 * CALCULATE INTERACTIONS *
251 **************************/
252
253 /* Compute parameters for interactions between i and j atoms */
254 qq20 = _mm_mul_ps(iq2,jq0);
255
256 /* COULOMB ELECTROSTATICS */
257 velec = _mm_mul_ps(qq20,rinv20);
258 felec = _mm_mul_ps(velec,rinvsq20);
259
260 /* Update potential sum for this i atom from the interaction with this j atom. */
261 velecsum = _mm_add_ps(velecsum,velec);
262
263 fscal = felec;
264
265 /* Calculate temporary vectorial force */
266 tx = _mm_mul_ps(fscal,dx20);
267 ty = _mm_mul_ps(fscal,dy20);
268 tz = _mm_mul_ps(fscal,dz20);
269
270 /* Update vectorial force */
271 fix2 = _mm_add_ps(fix2,tx);
272 fiy2 = _mm_add_ps(fiy2,ty);
273 fiz2 = _mm_add_ps(fiz2,tz);
274
275 fjx0 = _mm_add_ps(fjx0,tx);
276 fjy0 = _mm_add_ps(fjy0,ty);
277 fjz0 = _mm_add_ps(fjz0,tz);
278
279 /**************************
280 * CALCULATE INTERACTIONS *
281 **************************/
282
283 /* Compute parameters for interactions between i and j atoms */
284 qq30 = _mm_mul_ps(iq3,jq0);
285
286 /* COULOMB ELECTROSTATICS */
287 velec = _mm_mul_ps(qq30,rinv30);
288 felec = _mm_mul_ps(velec,rinvsq30);
289
290 /* Update potential sum for this i atom from the interaction with this j atom. */
291 velecsum = _mm_add_ps(velecsum,velec);
292
293 fscal = felec;
294
295 /* Calculate temporary vectorial force */
296 tx = _mm_mul_ps(fscal,dx30);
297 ty = _mm_mul_ps(fscal,dy30);
298 tz = _mm_mul_ps(fscal,dz30);
299
300 /* Update vectorial force */
301 fix3 = _mm_add_ps(fix3,tx);
302 fiy3 = _mm_add_ps(fiy3,ty);
303 fiz3 = _mm_add_ps(fiz3,tz);
304
305 fjx0 = _mm_add_ps(fjx0,tx);
306 fjy0 = _mm_add_ps(fjy0,ty);
307 fjz0 = _mm_add_ps(fjz0,tz);
308
309 fjptrA = f+j_coord_offsetA;
310 fjptrB = f+j_coord_offsetB;
311 fjptrC = f+j_coord_offsetC;
312 fjptrD = f+j_coord_offsetD;
313
314 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
315
316 /* Inner loop uses 84 flops */
317 }
318
319 if(jidx<j_index_end)
320 {
321
322 /* Get j neighbor index, and coordinate index */
323 jnrlistA = jjnr[jidx];
324 jnrlistB = jjnr[jidx+1];
325 jnrlistC = jjnr[jidx+2];
326 jnrlistD = jjnr[jidx+3];
327 /* Sign of each element will be negative for non-real atoms.
328 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
329 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
330 */
331 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
332 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
333 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
334 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
335 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
336 j_coord_offsetA = DIM3*jnrA;
337 j_coord_offsetB = DIM3*jnrB;
338 j_coord_offsetC = DIM3*jnrC;
339 j_coord_offsetD = DIM3*jnrD;
340
341 /* load j atom coordinates */
342 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
343 x+j_coord_offsetC,x+j_coord_offsetD,
344 &jx0,&jy0,&jz0);
345
346 /* Calculate displacement vector */
347 dx10 = _mm_sub_ps(ix1,jx0);
348 dy10 = _mm_sub_ps(iy1,jy0);
349 dz10 = _mm_sub_ps(iz1,jz0);
350 dx20 = _mm_sub_ps(ix2,jx0);
351 dy20 = _mm_sub_ps(iy2,jy0);
352 dz20 = _mm_sub_ps(iz2,jz0);
353 dx30 = _mm_sub_ps(ix3,jx0);
354 dy30 = _mm_sub_ps(iy3,jy0);
355 dz30 = _mm_sub_ps(iz3,jz0);
356
357 /* Calculate squared distance and things based on it */
358 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
359 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
360 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
361
362 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
363 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
364 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
365
366 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
367 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
368 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
369
370 /* Load parameters for j particles */
371 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
372 charge+jnrC+0,charge+jnrD+0);
373
374 fjx0 = _mm_setzero_ps();
375 fjy0 = _mm_setzero_ps();
376 fjz0 = _mm_setzero_ps();
377
378 /**************************
379 * CALCULATE INTERACTIONS *
380 **************************/
381
382 /* Compute parameters for interactions between i and j atoms */
383 qq10 = _mm_mul_ps(iq1,jq0);
384
385 /* COULOMB ELECTROSTATICS */
386 velec = _mm_mul_ps(qq10,rinv10);
387 felec = _mm_mul_ps(velec,rinvsq10);
388
389 /* Update potential sum for this i atom from the interaction with this j atom. */
390 velec = _mm_andnot_ps(dummy_mask,velec);
391 velecsum = _mm_add_ps(velecsum,velec);
392
393 fscal = felec;
394
395 fscal = _mm_andnot_ps(dummy_mask,fscal);
396
397 /* Calculate temporary vectorial force */
398 tx = _mm_mul_ps(fscal,dx10);
399 ty = _mm_mul_ps(fscal,dy10);
400 tz = _mm_mul_ps(fscal,dz10);
401
402 /* Update vectorial force */
403 fix1 = _mm_add_ps(fix1,tx);
404 fiy1 = _mm_add_ps(fiy1,ty);
405 fiz1 = _mm_add_ps(fiz1,tz);
406
407 fjx0 = _mm_add_ps(fjx0,tx);
408 fjy0 = _mm_add_ps(fjy0,ty);
409 fjz0 = _mm_add_ps(fjz0,tz);
410
411 /**************************
412 * CALCULATE INTERACTIONS *
413 **************************/
414
415 /* Compute parameters for interactions between i and j atoms */
416 qq20 = _mm_mul_ps(iq2,jq0);
417
418 /* COULOMB ELECTROSTATICS */
419 velec = _mm_mul_ps(qq20,rinv20);
420 felec = _mm_mul_ps(velec,rinvsq20);
421
422 /* Update potential sum for this i atom from the interaction with this j atom. */
423 velec = _mm_andnot_ps(dummy_mask,velec);
424 velecsum = _mm_add_ps(velecsum,velec);
425
426 fscal = felec;
427
428 fscal = _mm_andnot_ps(dummy_mask,fscal);
429
430 /* Calculate temporary vectorial force */
431 tx = _mm_mul_ps(fscal,dx20);
432 ty = _mm_mul_ps(fscal,dy20);
433 tz = _mm_mul_ps(fscal,dz20);
434
435 /* Update vectorial force */
436 fix2 = _mm_add_ps(fix2,tx);
437 fiy2 = _mm_add_ps(fiy2,ty);
438 fiz2 = _mm_add_ps(fiz2,tz);
439
440 fjx0 = _mm_add_ps(fjx0,tx);
441 fjy0 = _mm_add_ps(fjy0,ty);
442 fjz0 = _mm_add_ps(fjz0,tz);
443
444 /**************************
445 * CALCULATE INTERACTIONS *
446 **************************/
447
448 /* Compute parameters for interactions between i and j atoms */
449 qq30 = _mm_mul_ps(iq3,jq0);
450
451 /* COULOMB ELECTROSTATICS */
452 velec = _mm_mul_ps(qq30,rinv30);
453 felec = _mm_mul_ps(velec,rinvsq30);
454
455 /* Update potential sum for this i atom from the interaction with this j atom. */
456 velec = _mm_andnot_ps(dummy_mask,velec);
457 velecsum = _mm_add_ps(velecsum,velec);
458
459 fscal = felec;
460
461 fscal = _mm_andnot_ps(dummy_mask,fscal);
462
463 /* Calculate temporary vectorial force */
464 tx = _mm_mul_ps(fscal,dx30);
465 ty = _mm_mul_ps(fscal,dy30);
466 tz = _mm_mul_ps(fscal,dz30);
467
468 /* Update vectorial force */
469 fix3 = _mm_add_ps(fix3,tx);
470 fiy3 = _mm_add_ps(fiy3,ty);
471 fiz3 = _mm_add_ps(fiz3,tz);
472
473 fjx0 = _mm_add_ps(fjx0,tx);
474 fjy0 = _mm_add_ps(fjy0,ty);
475 fjz0 = _mm_add_ps(fjz0,tz);
476
477 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
478 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
479 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
480 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
481
482 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
483
484 /* Inner loop uses 84 flops */
485 }
486
487 /* End of innermost loop */
488
489 gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
490 f+i_coord_offset+DIM3,fshift+i_shift_offset);
491
492 ggid = gid[iidx];
493 /* Update potential energies */
494 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
495
496 /* Increment number of inner iterations */
497 inneriter += j_index_end - j_index_start;
498
499 /* Outer loop uses 19 flops */
500 }
501
502 /* Increment number of outer iterations */
503 outeriter += nri;
504
505 /* Update outer/inner flops */
506
507 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*84)(nrnb)->n[eNR_NBKERNEL_ELEC_W4_VF] += outeriter*19 + inneriter
*84
;
508}
509/*
510 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwNone_GeomW4P1_F_sse4_1_single
511 * Electrostatics interaction: Coulomb
512 * VdW interaction: None
513 * Geometry: Water4-Particle
514 * Calculate force/pot: Force
515 */
516void
517nb_kernel_ElecCoul_VdwNone_GeomW4P1_F_sse4_1_single
518 (t_nblist * gmx_restrict nlist,
519 rvec * gmx_restrict xx,
520 rvec * gmx_restrict ff,
521 t_forcerec * gmx_restrict fr,
522 t_mdatoms * gmx_restrict mdatoms,
523 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
524 t_nrnb * gmx_restrict nrnb)
525{
526 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
527 * just 0 for non-waters.
528 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
529 * jnr indices corresponding to data put in the four positions in the SIMD register.
530 */
531 int i_shift_offset,i_coord_offset,outeriter,inneriter;
532 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
533 int jnrA,jnrB,jnrC,jnrD;
534 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
535 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
536 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
537 real rcutoff_scalar;
538 real *shiftvec,*fshift,*x,*f;
539 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
540 real scratch[4*DIM3];
541 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
542 int vdwioffset1;
543 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
544 int vdwioffset2;
545 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
546 int vdwioffset3;
547 __m128 ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
548 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
549 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
550 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
551 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
552 __m128 dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
553 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
554 real *charge;
555 __m128 dummy_mask,cutoff_mask;
556 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
557 __m128 one = _mm_set1_ps(1.0);
558 __m128 two = _mm_set1_ps(2.0);
559 x = xx[0];
560 f = ff[0];
561
562 nri = nlist->nri;
563 iinr = nlist->iinr;
564 jindex = nlist->jindex;
565 jjnr = nlist->jjnr;
566 shiftidx = nlist->shift;
567 gid = nlist->gid;
568 shiftvec = fr->shift_vec[0];
569 fshift = fr->fshift[0];
570 facel = _mm_set1_ps(fr->epsfac);
571 charge = mdatoms->chargeA;
572
573 /* Setup water-specific parameters */
574 inr = nlist->iinr[0];
575 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
576 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
577 iq3 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
578
579 /* Avoid stupid compiler warnings */
580 jnrA = jnrB = jnrC = jnrD = 0;
581 j_coord_offsetA = 0;
582 j_coord_offsetB = 0;
Value stored to 'j_coord_offsetB' is never read
583 j_coord_offsetC = 0;
584 j_coord_offsetD = 0;
585
586 outeriter = 0;
587 inneriter = 0;
588
589 for(iidx=0;iidx<4*DIM3;iidx++)
590 {
591 scratch[iidx] = 0.0;
592 }
593
594 /* Start outer loop over neighborlists */
595 for(iidx=0; iidx<nri; iidx++)
596 {
597 /* Load shift vector for this list */
598 i_shift_offset = DIM3*shiftidx[iidx];
599
600 /* Load limits for loop over neighbors */
601 j_index_start = jindex[iidx];
602 j_index_end = jindex[iidx+1];
603
604 /* Get outer coordinate index */
605 inr = iinr[iidx];
606 i_coord_offset = DIM3*inr;
607
608 /* Load i particle coords and add shift vector */
609 gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM3,
610 &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
611
612 fix1 = _mm_setzero_ps();
613 fiy1 = _mm_setzero_ps();
614 fiz1 = _mm_setzero_ps();
615 fix2 = _mm_setzero_ps();
616 fiy2 = _mm_setzero_ps();
617 fiz2 = _mm_setzero_ps();
618 fix3 = _mm_setzero_ps();
619 fiy3 = _mm_setzero_ps();
620 fiz3 = _mm_setzero_ps();
621
622 /* Start inner kernel loop */
623 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
624 {
625
626 /* Get j neighbor index, and coordinate index */
627 jnrA = jjnr[jidx];
628 jnrB = jjnr[jidx+1];
629 jnrC = jjnr[jidx+2];
630 jnrD = jjnr[jidx+3];
631 j_coord_offsetA = DIM3*jnrA;
632 j_coord_offsetB = DIM3*jnrB;
633 j_coord_offsetC = DIM3*jnrC;
634 j_coord_offsetD = DIM3*jnrD;
635
636 /* load j atom coordinates */
637 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
638 x+j_coord_offsetC,x+j_coord_offsetD,
639 &jx0,&jy0,&jz0);
640
641 /* Calculate displacement vector */
642 dx10 = _mm_sub_ps(ix1,jx0);
643 dy10 = _mm_sub_ps(iy1,jy0);
644 dz10 = _mm_sub_ps(iz1,jz0);
645 dx20 = _mm_sub_ps(ix2,jx0);
646 dy20 = _mm_sub_ps(iy2,jy0);
647 dz20 = _mm_sub_ps(iz2,jz0);
648 dx30 = _mm_sub_ps(ix3,jx0);
649 dy30 = _mm_sub_ps(iy3,jy0);
650 dz30 = _mm_sub_ps(iz3,jz0);
651
652 /* Calculate squared distance and things based on it */
653 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
654 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
655 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
656
657 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
658 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
659 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
660
661 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
662 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
663 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
664
665 /* Load parameters for j particles */
666 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
667 charge+jnrC+0,charge+jnrD+0);
668
669 fjx0 = _mm_setzero_ps();
670 fjy0 = _mm_setzero_ps();
671 fjz0 = _mm_setzero_ps();
672
673 /**************************
674 * CALCULATE INTERACTIONS *
675 **************************/
676
677 /* Compute parameters for interactions between i and j atoms */
678 qq10 = _mm_mul_ps(iq1,jq0);
679
680 /* COULOMB ELECTROSTATICS */
681 velec = _mm_mul_ps(qq10,rinv10);
682 felec = _mm_mul_ps(velec,rinvsq10);
683
684 fscal = felec;
685
686 /* Calculate temporary vectorial force */
687 tx = _mm_mul_ps(fscal,dx10);
688 ty = _mm_mul_ps(fscal,dy10);
689 tz = _mm_mul_ps(fscal,dz10);
690
691 /* Update vectorial force */
692 fix1 = _mm_add_ps(fix1,tx);
693 fiy1 = _mm_add_ps(fiy1,ty);
694 fiz1 = _mm_add_ps(fiz1,tz);
695
696 fjx0 = _mm_add_ps(fjx0,tx);
697 fjy0 = _mm_add_ps(fjy0,ty);
698 fjz0 = _mm_add_ps(fjz0,tz);
699
700 /**************************
701 * CALCULATE INTERACTIONS *
702 **************************/
703
704 /* Compute parameters for interactions between i and j atoms */
705 qq20 = _mm_mul_ps(iq2,jq0);
706
707 /* COULOMB ELECTROSTATICS */
708 velec = _mm_mul_ps(qq20,rinv20);
709 felec = _mm_mul_ps(velec,rinvsq20);
710
711 fscal = felec;
712
713 /* Calculate temporary vectorial force */
714 tx = _mm_mul_ps(fscal,dx20);
715 ty = _mm_mul_ps(fscal,dy20);
716 tz = _mm_mul_ps(fscal,dz20);
717
718 /* Update vectorial force */
719 fix2 = _mm_add_ps(fix2,tx);
720 fiy2 = _mm_add_ps(fiy2,ty);
721 fiz2 = _mm_add_ps(fiz2,tz);
722
723 fjx0 = _mm_add_ps(fjx0,tx);
724 fjy0 = _mm_add_ps(fjy0,ty);
725 fjz0 = _mm_add_ps(fjz0,tz);
726
727 /**************************
728 * CALCULATE INTERACTIONS *
729 **************************/
730
731 /* Compute parameters for interactions between i and j atoms */
732 qq30 = _mm_mul_ps(iq3,jq0);
733
734 /* COULOMB ELECTROSTATICS */
735 velec = _mm_mul_ps(qq30,rinv30);
736 felec = _mm_mul_ps(velec,rinvsq30);
737
738 fscal = felec;
739
740 /* Calculate temporary vectorial force */
741 tx = _mm_mul_ps(fscal,dx30);
742 ty = _mm_mul_ps(fscal,dy30);
743 tz = _mm_mul_ps(fscal,dz30);
744
745 /* Update vectorial force */
746 fix3 = _mm_add_ps(fix3,tx);
747 fiy3 = _mm_add_ps(fiy3,ty);
748 fiz3 = _mm_add_ps(fiz3,tz);
749
750 fjx0 = _mm_add_ps(fjx0,tx);
751 fjy0 = _mm_add_ps(fjy0,ty);
752 fjz0 = _mm_add_ps(fjz0,tz);
753
754 fjptrA = f+j_coord_offsetA;
755 fjptrB = f+j_coord_offsetB;
756 fjptrC = f+j_coord_offsetC;
757 fjptrD = f+j_coord_offsetD;
758
759 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
760
761 /* Inner loop uses 81 flops */
762 }
763
764 if(jidx<j_index_end)
765 {
766
767 /* Get j neighbor index, and coordinate index */
768 jnrlistA = jjnr[jidx];
769 jnrlistB = jjnr[jidx+1];
770 jnrlistC = jjnr[jidx+2];
771 jnrlistD = jjnr[jidx+3];
772 /* Sign of each element will be negative for non-real atoms.
773 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
774 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
775 */
776 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
777 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
778 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
779 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
780 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
781 j_coord_offsetA = DIM3*jnrA;
782 j_coord_offsetB = DIM3*jnrB;
783 j_coord_offsetC = DIM3*jnrC;
784 j_coord_offsetD = DIM3*jnrD;
785
786 /* load j atom coordinates */
787 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
788 x+j_coord_offsetC,x+j_coord_offsetD,
789 &jx0,&jy0,&jz0);
790
791 /* Calculate displacement vector */
792 dx10 = _mm_sub_ps(ix1,jx0);
793 dy10 = _mm_sub_ps(iy1,jy0);
794 dz10 = _mm_sub_ps(iz1,jz0);
795 dx20 = _mm_sub_ps(ix2,jx0);
796 dy20 = _mm_sub_ps(iy2,jy0);
797 dz20 = _mm_sub_ps(iz2,jz0);
798 dx30 = _mm_sub_ps(ix3,jx0);
799 dy30 = _mm_sub_ps(iy3,jy0);
800 dz30 = _mm_sub_ps(iz3,jz0);
801
802 /* Calculate squared distance and things based on it */
803 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
804 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
805 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
806
807 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
808 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
809 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
810
811 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
812 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
813 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
814
815 /* Load parameters for j particles */
816 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
817 charge+jnrC+0,charge+jnrD+0);
818
819 fjx0 = _mm_setzero_ps();
820 fjy0 = _mm_setzero_ps();
821 fjz0 = _mm_setzero_ps();
822
823 /**************************
824 * CALCULATE INTERACTIONS *
825 **************************/
826
827 /* Compute parameters for interactions between i and j atoms */
828 qq10 = _mm_mul_ps(iq1,jq0);
829
830 /* COULOMB ELECTROSTATICS */
831 velec = _mm_mul_ps(qq10,rinv10);
832 felec = _mm_mul_ps(velec,rinvsq10);
833
834 fscal = felec;
835
836 fscal = _mm_andnot_ps(dummy_mask,fscal);
837
838 /* Calculate temporary vectorial force */
839 tx = _mm_mul_ps(fscal,dx10);
840 ty = _mm_mul_ps(fscal,dy10);
841 tz = _mm_mul_ps(fscal,dz10);
842
843 /* Update vectorial force */
844 fix1 = _mm_add_ps(fix1,tx);
845 fiy1 = _mm_add_ps(fiy1,ty);
846 fiz1 = _mm_add_ps(fiz1,tz);
847
848 fjx0 = _mm_add_ps(fjx0,tx);
849 fjy0 = _mm_add_ps(fjy0,ty);
850 fjz0 = _mm_add_ps(fjz0,tz);
851
852 /**************************
853 * CALCULATE INTERACTIONS *
854 **************************/
855
856 /* Compute parameters for interactions between i and j atoms */
857 qq20 = _mm_mul_ps(iq2,jq0);
858
859 /* COULOMB ELECTROSTATICS */
860 velec = _mm_mul_ps(qq20,rinv20);
861 felec = _mm_mul_ps(velec,rinvsq20);
862
863 fscal = felec;
864
865 fscal = _mm_andnot_ps(dummy_mask,fscal);
866
867 /* Calculate temporary vectorial force */
868 tx = _mm_mul_ps(fscal,dx20);
869 ty = _mm_mul_ps(fscal,dy20);
870 tz = _mm_mul_ps(fscal,dz20);
871
872 /* Update vectorial force */
873 fix2 = _mm_add_ps(fix2,tx);
874 fiy2 = _mm_add_ps(fiy2,ty);
875 fiz2 = _mm_add_ps(fiz2,tz);
876
877 fjx0 = _mm_add_ps(fjx0,tx);
878 fjy0 = _mm_add_ps(fjy0,ty);
879 fjz0 = _mm_add_ps(fjz0,tz);
880
881 /**************************
882 * CALCULATE INTERACTIONS *
883 **************************/
884
885 /* Compute parameters for interactions between i and j atoms */
886 qq30 = _mm_mul_ps(iq3,jq0);
887
888 /* COULOMB ELECTROSTATICS */
889 velec = _mm_mul_ps(qq30,rinv30);
890 felec = _mm_mul_ps(velec,rinvsq30);
891
892 fscal = felec;
893
894 fscal = _mm_andnot_ps(dummy_mask,fscal);
895
896 /* Calculate temporary vectorial force */
897 tx = _mm_mul_ps(fscal,dx30);
898 ty = _mm_mul_ps(fscal,dy30);
899 tz = _mm_mul_ps(fscal,dz30);
900
901 /* Update vectorial force */
902 fix3 = _mm_add_ps(fix3,tx);
903 fiy3 = _mm_add_ps(fiy3,ty);
904 fiz3 = _mm_add_ps(fiz3,tz);
905
906 fjx0 = _mm_add_ps(fjx0,tx);
907 fjy0 = _mm_add_ps(fjy0,ty);
908 fjz0 = _mm_add_ps(fjz0,tz);
909
910 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
911 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
912 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
913 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
914
915 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
916
917 /* Inner loop uses 81 flops */
918 }
919
920 /* End of innermost loop */
921
922 gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
923 f+i_coord_offset+DIM3,fshift+i_shift_offset);
924
925 /* Increment number of inner iterations */
926 inneriter += j_index_end - j_index_start;
927
928 /* Outer loop uses 18 flops */
929 }
930
931 /* Increment number of outer iterations */
932 outeriter += nri;
933
934 /* Update outer/inner flops */
935
936 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*81)(nrnb)->n[eNR_NBKERNEL_ELEC_W4_F] += outeriter*18 + inneriter
*81
;
937}