Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEwSh_VdwNone_GeomW3P1_c.c
Location:line 419, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwNone_GeomW3P1_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: None
53 * Geometry: Water3-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEwSh_VdwNone_GeomW3P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83 real velec,felec,velecsum,facel,crf,krf,krf2;
84 real *charge;
85 int ewitab;
86 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
87 real *ewtab;
88
89 x = xx[0];
90 f = ff[0];
91
92 nri = nlist->nri;
93 iinr = nlist->iinr;
94 jindex = nlist->jindex;
95 jjnr = nlist->jjnr;
96 shiftidx = nlist->shift;
97 gid = nlist->gid;
98 shiftvec = fr->shift_vec[0];
99 fshift = fr->fshift[0];
100 facel = fr->epsfac;
101 charge = mdatoms->chargeA;
102
103 sh_ewald = fr->ic->sh_ewald;
104 ewtab = fr->ic->tabq_coul_FDV0;
105 ewtabscale = fr->ic->tabq_scale;
106 ewtabhalfspace = 0.5/ewtabscale;
107
108 /* Setup water-specific parameters */
109 inr = nlist->iinr[0];
110 iq0 = facel*charge[inr+0];
111 iq1 = facel*charge[inr+1];
112 iq2 = facel*charge[inr+2];
113
114 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
115 rcutoff = fr->rcoulomb;
116 rcutoff2 = rcutoff*rcutoff;
117
118 outeriter = 0;
119 inneriter = 0;
120
121 /* Start outer loop over neighborlists */
122 for(iidx=0; iidx<nri; iidx++)
123 {
124 /* Load shift vector for this list */
125 i_shift_offset = DIM3*shiftidx[iidx];
126 shX = shiftvec[i_shift_offset+XX0];
127 shY = shiftvec[i_shift_offset+YY1];
128 shZ = shiftvec[i_shift_offset+ZZ2];
129
130 /* Load limits for loop over neighbors */
131 j_index_start = jindex[iidx];
132 j_index_end = jindex[iidx+1];
133
134 /* Get outer coordinate index */
135 inr = iinr[iidx];
136 i_coord_offset = DIM3*inr;
137
138 /* Load i particle coords and add shift vector */
139 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
140 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
141 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
142 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
143 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
144 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
145 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
146 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
147 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
148
149 fix0 = 0.0;
150 fiy0 = 0.0;
151 fiz0 = 0.0;
152 fix1 = 0.0;
153 fiy1 = 0.0;
154 fiz1 = 0.0;
155 fix2 = 0.0;
156 fiy2 = 0.0;
157 fiz2 = 0.0;
158
159 /* Reset potential sums */
160 velecsum = 0.0;
161
162 /* Start inner kernel loop */
163 for(jidx=j_index_start; jidx<j_index_end; jidx++)
164 {
165 /* Get j neighbor index, and coordinate index */
166 jnr = jjnr[jidx];
167 j_coord_offset = DIM3*jnr;
168
169 /* load j atom coordinates */
170 jx0 = x[j_coord_offset+DIM3*0+XX0];
171 jy0 = x[j_coord_offset+DIM3*0+YY1];
172 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
173
174 /* Calculate displacement vector */
175 dx00 = ix0 - jx0;
176 dy00 = iy0 - jy0;
177 dz00 = iz0 - jz0;
178 dx10 = ix1 - jx0;
179 dy10 = iy1 - jy0;
180 dz10 = iz1 - jz0;
181 dx20 = ix2 - jx0;
182 dy20 = iy2 - jy0;
183 dz20 = iz2 - jz0;
184
185 /* Calculate squared distance and things based on it */
186 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
187 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
188 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
189
190 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
191 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
192 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
193
194 rinvsq00 = rinv00*rinv00;
195 rinvsq10 = rinv10*rinv10;
196 rinvsq20 = rinv20*rinv20;
197
198 /* Load parameters for j particles */
199 jq0 = charge[jnr+0];
200
201 /**************************
202 * CALCULATE INTERACTIONS *
203 **************************/
204
205 if (rsq00<rcutoff2)
206 {
207
208 r00 = rsq00*rinv00;
209
210 qq00 = iq0*jq0;
211
212 /* EWALD ELECTROSTATICS */
213
214 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
215 ewrt = r00*ewtabscale;
216 ewitab = ewrt;
217 eweps = ewrt-ewitab;
218 ewitab = 4*ewitab;
219 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
220 velec = qq00*((rinv00-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
221 felec = qq00*rinv00*(rinvsq00-felec);
222
223 /* Update potential sums from outer loop */
224 velecsum += velec;
225
226 fscal = felec;
227
228 /* Calculate temporary vectorial force */
229 tx = fscal*dx00;
230 ty = fscal*dy00;
231 tz = fscal*dz00;
232
233 /* Update vectorial force */
234 fix0 += tx;
235 fiy0 += ty;
236 fiz0 += tz;
237 f[j_coord_offset+DIM3*0+XX0] -= tx;
238 f[j_coord_offset+DIM3*0+YY1] -= ty;
239 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
240
241 }
242
243 /**************************
244 * CALCULATE INTERACTIONS *
245 **************************/
246
247 if (rsq10<rcutoff2)
248 {
249
250 r10 = rsq10*rinv10;
251
252 qq10 = iq1*jq0;
253
254 /* EWALD ELECTROSTATICS */
255
256 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
257 ewrt = r10*ewtabscale;
258 ewitab = ewrt;
259 eweps = ewrt-ewitab;
260 ewitab = 4*ewitab;
261 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
262 velec = qq10*((rinv10-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
263 felec = qq10*rinv10*(rinvsq10-felec);
264
265 /* Update potential sums from outer loop */
266 velecsum += velec;
267
268 fscal = felec;
269
270 /* Calculate temporary vectorial force */
271 tx = fscal*dx10;
272 ty = fscal*dy10;
273 tz = fscal*dz10;
274
275 /* Update vectorial force */
276 fix1 += tx;
277 fiy1 += ty;
278 fiz1 += tz;
279 f[j_coord_offset+DIM3*0+XX0] -= tx;
280 f[j_coord_offset+DIM3*0+YY1] -= ty;
281 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
282
283 }
284
285 /**************************
286 * CALCULATE INTERACTIONS *
287 **************************/
288
289 if (rsq20<rcutoff2)
290 {
291
292 r20 = rsq20*rinv20;
293
294 qq20 = iq2*jq0;
295
296 /* EWALD ELECTROSTATICS */
297
298 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
299 ewrt = r20*ewtabscale;
300 ewitab = ewrt;
301 eweps = ewrt-ewitab;
302 ewitab = 4*ewitab;
303 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
304 velec = qq20*((rinv20-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
305 felec = qq20*rinv20*(rinvsq20-felec);
306
307 /* Update potential sums from outer loop */
308 velecsum += velec;
309
310 fscal = felec;
311
312 /* Calculate temporary vectorial force */
313 tx = fscal*dx20;
314 ty = fscal*dy20;
315 tz = fscal*dz20;
316
317 /* Update vectorial force */
318 fix2 += tx;
319 fiy2 += ty;
320 fiz2 += tz;
321 f[j_coord_offset+DIM3*0+XX0] -= tx;
322 f[j_coord_offset+DIM3*0+YY1] -= ty;
323 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
324
325 }
326
327 /* Inner loop uses 126 flops */
328 }
329 /* End of innermost loop */
330
331 tx = ty = tz = 0;
332 f[i_coord_offset+DIM3*0+XX0] += fix0;
333 f[i_coord_offset+DIM3*0+YY1] += fiy0;
334 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
335 tx += fix0;
336 ty += fiy0;
337 tz += fiz0;
338 f[i_coord_offset+DIM3*1+XX0] += fix1;
339 f[i_coord_offset+DIM3*1+YY1] += fiy1;
340 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
341 tx += fix1;
342 ty += fiy1;
343 tz += fiz1;
344 f[i_coord_offset+DIM3*2+XX0] += fix2;
345 f[i_coord_offset+DIM3*2+YY1] += fiy2;
346 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
347 tx += fix2;
348 ty += fiy2;
349 tz += fiz2;
350 fshift[i_shift_offset+XX0] += tx;
351 fshift[i_shift_offset+YY1] += ty;
352 fshift[i_shift_offset+ZZ2] += tz;
353
354 ggid = gid[iidx];
355 /* Update potential energies */
356 kernel_data->energygrp_elec[ggid] += velecsum;
357
358 /* Increment number of inner iterations */
359 inneriter += j_index_end - j_index_start;
360
361 /* Outer loop uses 31 flops */
362 }
363
364 /* Increment number of outer iterations */
365 outeriter += nri;
366
367 /* Update outer/inner flops */
368
369 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*31 + inneriter*126)(nrnb)->n[eNR_NBKERNEL_ELEC_W3_VF] += outeriter*31 + inneriter
*126
;
370}
371/*
372 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwNone_GeomW3P1_F_c
373 * Electrostatics interaction: Ewald
374 * VdW interaction: None
375 * Geometry: Water3-Particle
376 * Calculate force/pot: Force
377 */
378void
379nb_kernel_ElecEwSh_VdwNone_GeomW3P1_F_c
380 (t_nblist * gmx_restrict__restrict nlist,
381 rvec * gmx_restrict__restrict xx,
382 rvec * gmx_restrict__restrict ff,
383 t_forcerec * gmx_restrict__restrict fr,
384 t_mdatoms * gmx_restrict__restrict mdatoms,
385 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
386 t_nrnb * gmx_restrict__restrict nrnb)
387{
388 int i_shift_offset,i_coord_offset,j_coord_offset;
389 int j_index_start,j_index_end;
390 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
391 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
392 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
393 real *shiftvec,*fshift,*x,*f;
394 int vdwioffset0;
395 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
396 int vdwioffset1;
397 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
398 int vdwioffset2;
399 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
400 int vdwjidx0;
401 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
402 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
403 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
404 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
405 real velec,felec,velecsum,facel,crf,krf,krf2;
406 real *charge;
407 int ewitab;
408 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
409 real *ewtab;
410
411 x = xx[0];
412 f = ff[0];
413
414 nri = nlist->nri;
415 iinr = nlist->iinr;
416 jindex = nlist->jindex;
417 jjnr = nlist->jjnr;
418 shiftidx = nlist->shift;
419 gid = nlist->gid;
Value stored to 'gid' is never read
420 shiftvec = fr->shift_vec[0];
421 fshift = fr->fshift[0];
422 facel = fr->epsfac;
423 charge = mdatoms->chargeA;
424
425 sh_ewald = fr->ic->sh_ewald;
426 ewtab = fr->ic->tabq_coul_F;
427 ewtabscale = fr->ic->tabq_scale;
428 ewtabhalfspace = 0.5/ewtabscale;
429
430 /* Setup water-specific parameters */
431 inr = nlist->iinr[0];
432 iq0 = facel*charge[inr+0];
433 iq1 = facel*charge[inr+1];
434 iq2 = facel*charge[inr+2];
435
436 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
437 rcutoff = fr->rcoulomb;
438 rcutoff2 = rcutoff*rcutoff;
439
440 outeriter = 0;
441 inneriter = 0;
442
443 /* Start outer loop over neighborlists */
444 for(iidx=0; iidx<nri; iidx++)
445 {
446 /* Load shift vector for this list */
447 i_shift_offset = DIM3*shiftidx[iidx];
448 shX = shiftvec[i_shift_offset+XX0];
449 shY = shiftvec[i_shift_offset+YY1];
450 shZ = shiftvec[i_shift_offset+ZZ2];
451
452 /* Load limits for loop over neighbors */
453 j_index_start = jindex[iidx];
454 j_index_end = jindex[iidx+1];
455
456 /* Get outer coordinate index */
457 inr = iinr[iidx];
458 i_coord_offset = DIM3*inr;
459
460 /* Load i particle coords and add shift vector */
461 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
462 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
463 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
464 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
465 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
466 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
467 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
468 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
469 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
470
471 fix0 = 0.0;
472 fiy0 = 0.0;
473 fiz0 = 0.0;
474 fix1 = 0.0;
475 fiy1 = 0.0;
476 fiz1 = 0.0;
477 fix2 = 0.0;
478 fiy2 = 0.0;
479 fiz2 = 0.0;
480
481 /* Start inner kernel loop */
482 for(jidx=j_index_start; jidx<j_index_end; jidx++)
483 {
484 /* Get j neighbor index, and coordinate index */
485 jnr = jjnr[jidx];
486 j_coord_offset = DIM3*jnr;
487
488 /* load j atom coordinates */
489 jx0 = x[j_coord_offset+DIM3*0+XX0];
490 jy0 = x[j_coord_offset+DIM3*0+YY1];
491 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
492
493 /* Calculate displacement vector */
494 dx00 = ix0 - jx0;
495 dy00 = iy0 - jy0;
496 dz00 = iz0 - jz0;
497 dx10 = ix1 - jx0;
498 dy10 = iy1 - jy0;
499 dz10 = iz1 - jz0;
500 dx20 = ix2 - jx0;
501 dy20 = iy2 - jy0;
502 dz20 = iz2 - jz0;
503
504 /* Calculate squared distance and things based on it */
505 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
506 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
507 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
508
509 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
510 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
511 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
512
513 rinvsq00 = rinv00*rinv00;
514 rinvsq10 = rinv10*rinv10;
515 rinvsq20 = rinv20*rinv20;
516
517 /* Load parameters for j particles */
518 jq0 = charge[jnr+0];
519
520 /**************************
521 * CALCULATE INTERACTIONS *
522 **************************/
523
524 if (rsq00<rcutoff2)
525 {
526
527 r00 = rsq00*rinv00;
528
529 qq00 = iq0*jq0;
530
531 /* EWALD ELECTROSTATICS */
532
533 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
534 ewrt = r00*ewtabscale;
535 ewitab = ewrt;
536 eweps = ewrt-ewitab;
537 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
538 felec = qq00*rinv00*(rinvsq00-felec);
539
540 fscal = felec;
541
542 /* Calculate temporary vectorial force */
543 tx = fscal*dx00;
544 ty = fscal*dy00;
545 tz = fscal*dz00;
546
547 /* Update vectorial force */
548 fix0 += tx;
549 fiy0 += ty;
550 fiz0 += tz;
551 f[j_coord_offset+DIM3*0+XX0] -= tx;
552 f[j_coord_offset+DIM3*0+YY1] -= ty;
553 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
554
555 }
556
557 /**************************
558 * CALCULATE INTERACTIONS *
559 **************************/
560
561 if (rsq10<rcutoff2)
562 {
563
564 r10 = rsq10*rinv10;
565
566 qq10 = iq1*jq0;
567
568 /* EWALD ELECTROSTATICS */
569
570 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
571 ewrt = r10*ewtabscale;
572 ewitab = ewrt;
573 eweps = ewrt-ewitab;
574 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
575 felec = qq10*rinv10*(rinvsq10-felec);
576
577 fscal = felec;
578
579 /* Calculate temporary vectorial force */
580 tx = fscal*dx10;
581 ty = fscal*dy10;
582 tz = fscal*dz10;
583
584 /* Update vectorial force */
585 fix1 += tx;
586 fiy1 += ty;
587 fiz1 += tz;
588 f[j_coord_offset+DIM3*0+XX0] -= tx;
589 f[j_coord_offset+DIM3*0+YY1] -= ty;
590 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
591
592 }
593
594 /**************************
595 * CALCULATE INTERACTIONS *
596 **************************/
597
598 if (rsq20<rcutoff2)
599 {
600
601 r20 = rsq20*rinv20;
602
603 qq20 = iq2*jq0;
604
605 /* EWALD ELECTROSTATICS */
606
607 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
608 ewrt = r20*ewtabscale;
609 ewitab = ewrt;
610 eweps = ewrt-ewitab;
611 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
612 felec = qq20*rinv20*(rinvsq20-felec);
613
614 fscal = felec;
615
616 /* Calculate temporary vectorial force */
617 tx = fscal*dx20;
618 ty = fscal*dy20;
619 tz = fscal*dz20;
620
621 /* Update vectorial force */
622 fix2 += tx;
623 fiy2 += ty;
624 fiz2 += tz;
625 f[j_coord_offset+DIM3*0+XX0] -= tx;
626 f[j_coord_offset+DIM3*0+YY1] -= ty;
627 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
628
629 }
630
631 /* Inner loop uses 102 flops */
632 }
633 /* End of innermost loop */
634
635 tx = ty = tz = 0;
636 f[i_coord_offset+DIM3*0+XX0] += fix0;
637 f[i_coord_offset+DIM3*0+YY1] += fiy0;
638 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
639 tx += fix0;
640 ty += fiy0;
641 tz += fiz0;
642 f[i_coord_offset+DIM3*1+XX0] += fix1;
643 f[i_coord_offset+DIM3*1+YY1] += fiy1;
644 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
645 tx += fix1;
646 ty += fiy1;
647 tz += fiz1;
648 f[i_coord_offset+DIM3*2+XX0] += fix2;
649 f[i_coord_offset+DIM3*2+YY1] += fiy2;
650 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
651 tx += fix2;
652 ty += fiy2;
653 tz += fiz2;
654 fshift[i_shift_offset+XX0] += tx;
655 fshift[i_shift_offset+YY1] += ty;
656 fshift[i_shift_offset+ZZ2] += tz;
657
658 /* Increment number of inner iterations */
659 inneriter += j_index_end - j_index_start;
660
661 /* Outer loop uses 30 flops */
662 }
663
664 /* Increment number of outer iterations */
665 outeriter += nri;
666
667 /* Update outer/inner flops */
668
669 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*30 + inneriter*102)(nrnb)->n[eNR_NBKERNEL_ELEC_W3_F] += outeriter*30 + inneriter
*102
;
670}