Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecRFCut_VdwNone_GeomW3P1_c.c
Location:line 384, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwNone_GeomW3P1_VF_c
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: None
53 * Geometry: Water3-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecRFCut_VdwNone_GeomW3P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83 real velec,felec,velecsum,facel,crf,krf,krf2;
84 real *charge;
85
86 x = xx[0];
87 f = ff[0];
88
89 nri = nlist->nri;
90 iinr = nlist->iinr;
91 jindex = nlist->jindex;
92 jjnr = nlist->jjnr;
93 shiftidx = nlist->shift;
94 gid = nlist->gid;
95 shiftvec = fr->shift_vec[0];
96 fshift = fr->fshift[0];
97 facel = fr->epsfac;
98 charge = mdatoms->chargeA;
99 krf = fr->ic->k_rf;
100 krf2 = krf*2.0;
101 crf = fr->ic->c_rf;
102
103 /* Setup water-specific parameters */
104 inr = nlist->iinr[0];
105 iq0 = facel*charge[inr+0];
106 iq1 = facel*charge[inr+1];
107 iq2 = facel*charge[inr+2];
108
109 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
110 rcutoff = fr->rcoulomb;
111 rcutoff2 = rcutoff*rcutoff;
112
113 outeriter = 0;
114 inneriter = 0;
115
116 /* Start outer loop over neighborlists */
117 for(iidx=0; iidx<nri; iidx++)
118 {
119 /* Load shift vector for this list */
120 i_shift_offset = DIM3*shiftidx[iidx];
121 shX = shiftvec[i_shift_offset+XX0];
122 shY = shiftvec[i_shift_offset+YY1];
123 shZ = shiftvec[i_shift_offset+ZZ2];
124
125 /* Load limits for loop over neighbors */
126 j_index_start = jindex[iidx];
127 j_index_end = jindex[iidx+1];
128
129 /* Get outer coordinate index */
130 inr = iinr[iidx];
131 i_coord_offset = DIM3*inr;
132
133 /* Load i particle coords and add shift vector */
134 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
135 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
136 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
137 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
138 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
139 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
140 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
141 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
142 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
143
144 fix0 = 0.0;
145 fiy0 = 0.0;
146 fiz0 = 0.0;
147 fix1 = 0.0;
148 fiy1 = 0.0;
149 fiz1 = 0.0;
150 fix2 = 0.0;
151 fiy2 = 0.0;
152 fiz2 = 0.0;
153
154 /* Reset potential sums */
155 velecsum = 0.0;
156
157 /* Start inner kernel loop */
158 for(jidx=j_index_start; jidx<j_index_end; jidx++)
159 {
160 /* Get j neighbor index, and coordinate index */
161 jnr = jjnr[jidx];
162 j_coord_offset = DIM3*jnr;
163
164 /* load j atom coordinates */
165 jx0 = x[j_coord_offset+DIM3*0+XX0];
166 jy0 = x[j_coord_offset+DIM3*0+YY1];
167 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
168
169 /* Calculate displacement vector */
170 dx00 = ix0 - jx0;
171 dy00 = iy0 - jy0;
172 dz00 = iz0 - jz0;
173 dx10 = ix1 - jx0;
174 dy10 = iy1 - jy0;
175 dz10 = iz1 - jz0;
176 dx20 = ix2 - jx0;
177 dy20 = iy2 - jy0;
178 dz20 = iz2 - jz0;
179
180 /* Calculate squared distance and things based on it */
181 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
182 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
183 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
184
185 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
186 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
187 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
188
189 rinvsq00 = rinv00*rinv00;
190 rinvsq10 = rinv10*rinv10;
191 rinvsq20 = rinv20*rinv20;
192
193 /* Load parameters for j particles */
194 jq0 = charge[jnr+0];
195
196 /**************************
197 * CALCULATE INTERACTIONS *
198 **************************/
199
200 if (rsq00<rcutoff2)
201 {
202
203 qq00 = iq0*jq0;
204
205 /* REACTION-FIELD ELECTROSTATICS */
206 velec = qq00*(rinv00+krf*rsq00-crf);
207 felec = qq00*(rinv00*rinvsq00-krf2);
208
209 /* Update potential sums from outer loop */
210 velecsum += velec;
211
212 fscal = felec;
213
214 /* Calculate temporary vectorial force */
215 tx = fscal*dx00;
216 ty = fscal*dy00;
217 tz = fscal*dz00;
218
219 /* Update vectorial force */
220 fix0 += tx;
221 fiy0 += ty;
222 fiz0 += tz;
223 f[j_coord_offset+DIM3*0+XX0] -= tx;
224 f[j_coord_offset+DIM3*0+YY1] -= ty;
225 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
226
227 }
228
229 /**************************
230 * CALCULATE INTERACTIONS *
231 **************************/
232
233 if (rsq10<rcutoff2)
234 {
235
236 qq10 = iq1*jq0;
237
238 /* REACTION-FIELD ELECTROSTATICS */
239 velec = qq10*(rinv10+krf*rsq10-crf);
240 felec = qq10*(rinv10*rinvsq10-krf2);
241
242 /* Update potential sums from outer loop */
243 velecsum += velec;
244
245 fscal = felec;
246
247 /* Calculate temporary vectorial force */
248 tx = fscal*dx10;
249 ty = fscal*dy10;
250 tz = fscal*dz10;
251
252 /* Update vectorial force */
253 fix1 += tx;
254 fiy1 += ty;
255 fiz1 += tz;
256 f[j_coord_offset+DIM3*0+XX0] -= tx;
257 f[j_coord_offset+DIM3*0+YY1] -= ty;
258 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
259
260 }
261
262 /**************************
263 * CALCULATE INTERACTIONS *
264 **************************/
265
266 if (rsq20<rcutoff2)
267 {
268
269 qq20 = iq2*jq0;
270
271 /* REACTION-FIELD ELECTROSTATICS */
272 velec = qq20*(rinv20+krf*rsq20-crf);
273 felec = qq20*(rinv20*rinvsq20-krf2);
274
275 /* Update potential sums from outer loop */
276 velecsum += velec;
277
278 fscal = felec;
279
280 /* Calculate temporary vectorial force */
281 tx = fscal*dx20;
282 ty = fscal*dy20;
283 tz = fscal*dz20;
284
285 /* Update vectorial force */
286 fix2 += tx;
287 fiy2 += ty;
288 fiz2 += tz;
289 f[j_coord_offset+DIM3*0+XX0] -= tx;
290 f[j_coord_offset+DIM3*0+YY1] -= ty;
291 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
292
293 }
294
295 /* Inner loop uses 96 flops */
296 }
297 /* End of innermost loop */
298
299 tx = ty = tz = 0;
300 f[i_coord_offset+DIM3*0+XX0] += fix0;
301 f[i_coord_offset+DIM3*0+YY1] += fiy0;
302 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
303 tx += fix0;
304 ty += fiy0;
305 tz += fiz0;
306 f[i_coord_offset+DIM3*1+XX0] += fix1;
307 f[i_coord_offset+DIM3*1+YY1] += fiy1;
308 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
309 tx += fix1;
310 ty += fiy1;
311 tz += fiz1;
312 f[i_coord_offset+DIM3*2+XX0] += fix2;
313 f[i_coord_offset+DIM3*2+YY1] += fiy2;
314 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
315 tx += fix2;
316 ty += fiy2;
317 tz += fiz2;
318 fshift[i_shift_offset+XX0] += tx;
319 fshift[i_shift_offset+YY1] += ty;
320 fshift[i_shift_offset+ZZ2] += tz;
321
322 ggid = gid[iidx];
323 /* Update potential energies */
324 kernel_data->energygrp_elec[ggid] += velecsum;
325
326 /* Increment number of inner iterations */
327 inneriter += j_index_end - j_index_start;
328
329 /* Outer loop uses 31 flops */
330 }
331
332 /* Increment number of outer iterations */
333 outeriter += nri;
334
335 /* Update outer/inner flops */
336
337 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*31 + inneriter*96)(nrnb)->n[eNR_NBKERNEL_ELEC_W3_VF] += outeriter*31 + inneriter
*96
;
338}
339/*
340 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwNone_GeomW3P1_F_c
341 * Electrostatics interaction: ReactionField
342 * VdW interaction: None
343 * Geometry: Water3-Particle
344 * Calculate force/pot: Force
345 */
346void
347nb_kernel_ElecRFCut_VdwNone_GeomW3P1_F_c
348 (t_nblist * gmx_restrict__restrict nlist,
349 rvec * gmx_restrict__restrict xx,
350 rvec * gmx_restrict__restrict ff,
351 t_forcerec * gmx_restrict__restrict fr,
352 t_mdatoms * gmx_restrict__restrict mdatoms,
353 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
354 t_nrnb * gmx_restrict__restrict nrnb)
355{
356 int i_shift_offset,i_coord_offset,j_coord_offset;
357 int j_index_start,j_index_end;
358 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
359 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
360 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
361 real *shiftvec,*fshift,*x,*f;
362 int vdwioffset0;
363 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
364 int vdwioffset1;
365 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
366 int vdwioffset2;
367 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
368 int vdwjidx0;
369 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
370 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
371 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
372 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
373 real velec,felec,velecsum,facel,crf,krf,krf2;
374 real *charge;
375
376 x = xx[0];
377 f = ff[0];
378
379 nri = nlist->nri;
380 iinr = nlist->iinr;
381 jindex = nlist->jindex;
382 jjnr = nlist->jjnr;
383 shiftidx = nlist->shift;
384 gid = nlist->gid;
Value stored to 'gid' is never read
385 shiftvec = fr->shift_vec[0];
386 fshift = fr->fshift[0];
387 facel = fr->epsfac;
388 charge = mdatoms->chargeA;
389 krf = fr->ic->k_rf;
390 krf2 = krf*2.0;
391 crf = fr->ic->c_rf;
392
393 /* Setup water-specific parameters */
394 inr = nlist->iinr[0];
395 iq0 = facel*charge[inr+0];
396 iq1 = facel*charge[inr+1];
397 iq2 = facel*charge[inr+2];
398
399 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
400 rcutoff = fr->rcoulomb;
401 rcutoff2 = rcutoff*rcutoff;
402
403 outeriter = 0;
404 inneriter = 0;
405
406 /* Start outer loop over neighborlists */
407 for(iidx=0; iidx<nri; iidx++)
408 {
409 /* Load shift vector for this list */
410 i_shift_offset = DIM3*shiftidx[iidx];
411 shX = shiftvec[i_shift_offset+XX0];
412 shY = shiftvec[i_shift_offset+YY1];
413 shZ = shiftvec[i_shift_offset+ZZ2];
414
415 /* Load limits for loop over neighbors */
416 j_index_start = jindex[iidx];
417 j_index_end = jindex[iidx+1];
418
419 /* Get outer coordinate index */
420 inr = iinr[iidx];
421 i_coord_offset = DIM3*inr;
422
423 /* Load i particle coords and add shift vector */
424 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
425 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
426 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
427 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
428 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
429 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
430 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
431 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
432 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
433
434 fix0 = 0.0;
435 fiy0 = 0.0;
436 fiz0 = 0.0;
437 fix1 = 0.0;
438 fiy1 = 0.0;
439 fiz1 = 0.0;
440 fix2 = 0.0;
441 fiy2 = 0.0;
442 fiz2 = 0.0;
443
444 /* Start inner kernel loop */
445 for(jidx=j_index_start; jidx<j_index_end; jidx++)
446 {
447 /* Get j neighbor index, and coordinate index */
448 jnr = jjnr[jidx];
449 j_coord_offset = DIM3*jnr;
450
451 /* load j atom coordinates */
452 jx0 = x[j_coord_offset+DIM3*0+XX0];
453 jy0 = x[j_coord_offset+DIM3*0+YY1];
454 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
455
456 /* Calculate displacement vector */
457 dx00 = ix0 - jx0;
458 dy00 = iy0 - jy0;
459 dz00 = iz0 - jz0;
460 dx10 = ix1 - jx0;
461 dy10 = iy1 - jy0;
462 dz10 = iz1 - jz0;
463 dx20 = ix2 - jx0;
464 dy20 = iy2 - jy0;
465 dz20 = iz2 - jz0;
466
467 /* Calculate squared distance and things based on it */
468 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
469 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
470 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
471
472 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
473 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
474 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
475
476 rinvsq00 = rinv00*rinv00;
477 rinvsq10 = rinv10*rinv10;
478 rinvsq20 = rinv20*rinv20;
479
480 /* Load parameters for j particles */
481 jq0 = charge[jnr+0];
482
483 /**************************
484 * CALCULATE INTERACTIONS *
485 **************************/
486
487 if (rsq00<rcutoff2)
488 {
489
490 qq00 = iq0*jq0;
491
492 /* REACTION-FIELD ELECTROSTATICS */
493 felec = qq00*(rinv00*rinvsq00-krf2);
494
495 fscal = felec;
496
497 /* Calculate temporary vectorial force */
498 tx = fscal*dx00;
499 ty = fscal*dy00;
500 tz = fscal*dz00;
501
502 /* Update vectorial force */
503 fix0 += tx;
504 fiy0 += ty;
505 fiz0 += tz;
506 f[j_coord_offset+DIM3*0+XX0] -= tx;
507 f[j_coord_offset+DIM3*0+YY1] -= ty;
508 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
509
510 }
511
512 /**************************
513 * CALCULATE INTERACTIONS *
514 **************************/
515
516 if (rsq10<rcutoff2)
517 {
518
519 qq10 = iq1*jq0;
520
521 /* REACTION-FIELD ELECTROSTATICS */
522 felec = qq10*(rinv10*rinvsq10-krf2);
523
524 fscal = felec;
525
526 /* Calculate temporary vectorial force */
527 tx = fscal*dx10;
528 ty = fscal*dy10;
529 tz = fscal*dz10;
530
531 /* Update vectorial force */
532 fix1 += tx;
533 fiy1 += ty;
534 fiz1 += tz;
535 f[j_coord_offset+DIM3*0+XX0] -= tx;
536 f[j_coord_offset+DIM3*0+YY1] -= ty;
537 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
538
539 }
540
541 /**************************
542 * CALCULATE INTERACTIONS *
543 **************************/
544
545 if (rsq20<rcutoff2)
546 {
547
548 qq20 = iq2*jq0;
549
550 /* REACTION-FIELD ELECTROSTATICS */
551 felec = qq20*(rinv20*rinvsq20-krf2);
552
553 fscal = felec;
554
555 /* Calculate temporary vectorial force */
556 tx = fscal*dx20;
557 ty = fscal*dy20;
558 tz = fscal*dz20;
559
560 /* Update vectorial force */
561 fix2 += tx;
562 fiy2 += ty;
563 fiz2 += tz;
564 f[j_coord_offset+DIM3*0+XX0] -= tx;
565 f[j_coord_offset+DIM3*0+YY1] -= ty;
566 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
567
568 }
569
570 /* Inner loop uses 81 flops */
571 }
572 /* End of innermost loop */
573
574 tx = ty = tz = 0;
575 f[i_coord_offset+DIM3*0+XX0] += fix0;
576 f[i_coord_offset+DIM3*0+YY1] += fiy0;
577 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
578 tx += fix0;
579 ty += fiy0;
580 tz += fiz0;
581 f[i_coord_offset+DIM3*1+XX0] += fix1;
582 f[i_coord_offset+DIM3*1+YY1] += fiy1;
583 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
584 tx += fix1;
585 ty += fiy1;
586 tz += fiz1;
587 f[i_coord_offset+DIM3*2+XX0] += fix2;
588 f[i_coord_offset+DIM3*2+YY1] += fiy2;
589 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
590 tx += fix2;
591 ty += fiy2;
592 tz += fiz2;
593 fshift[i_shift_offset+XX0] += tx;
594 fshift[i_shift_offset+YY1] += ty;
595 fshift[i_shift_offset+ZZ2] += tz;
596
597 /* Increment number of inner iterations */
598 inneriter += j_index_end - j_index_start;
599
600 /* Outer loop uses 30 flops */
601 }
602
603 /* Increment number of outer iterations */
604 outeriter += nri;
605
606 /* Update outer/inner flops */
607
608 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*30 + inneriter*81)(nrnb)->n[eNR_NBKERNEL_ELEC_W3_F] += outeriter*30 + inneriter
*81
;
609}