Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEwSw_VdwNone_GeomW3P1_c.c
Location:line 467, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEwSw_VdwNone_GeomW3P1_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: None
53 * Geometry: Water3-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEwSw_VdwNone_GeomW3P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83 real velec,felec,velecsum,facel,crf,krf,krf2;
84 real *charge;
85 int ewitab;
86 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
87 real *ewtab;
88 real rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
89
90 x = xx[0];
91 f = ff[0];
92
93 nri = nlist->nri;
94 iinr = nlist->iinr;
95 jindex = nlist->jindex;
96 jjnr = nlist->jjnr;
97 shiftidx = nlist->shift;
98 gid = nlist->gid;
99 shiftvec = fr->shift_vec[0];
100 fshift = fr->fshift[0];
101 facel = fr->epsfac;
102 charge = mdatoms->chargeA;
103
104 sh_ewald = fr->ic->sh_ewald;
105 ewtab = fr->ic->tabq_coul_FDV0;
106 ewtabscale = fr->ic->tabq_scale;
107 ewtabhalfspace = 0.5/ewtabscale;
108
109 /* Setup water-specific parameters */
110 inr = nlist->iinr[0];
111 iq0 = facel*charge[inr+0];
112 iq1 = facel*charge[inr+1];
113 iq2 = facel*charge[inr+2];
114
115 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
116 rcutoff = fr->rcoulomb;
117 rcutoff2 = rcutoff*rcutoff;
118
119 rswitch = fr->rcoulomb_switch;
120 /* Setup switch parameters */
121 d = rcutoff-rswitch;
122 swV3 = -10.0/(d*d*d);
123 swV4 = 15.0/(d*d*d*d);
124 swV5 = -6.0/(d*d*d*d*d);
125 swF2 = -30.0/(d*d*d);
126 swF3 = 60.0/(d*d*d*d);
127 swF4 = -30.0/(d*d*d*d*d);
128
129 outeriter = 0;
130 inneriter = 0;
131
132 /* Start outer loop over neighborlists */
133 for(iidx=0; iidx<nri; iidx++)
134 {
135 /* Load shift vector for this list */
136 i_shift_offset = DIM3*shiftidx[iidx];
137 shX = shiftvec[i_shift_offset+XX0];
138 shY = shiftvec[i_shift_offset+YY1];
139 shZ = shiftvec[i_shift_offset+ZZ2];
140
141 /* Load limits for loop over neighbors */
142 j_index_start = jindex[iidx];
143 j_index_end = jindex[iidx+1];
144
145 /* Get outer coordinate index */
146 inr = iinr[iidx];
147 i_coord_offset = DIM3*inr;
148
149 /* Load i particle coords and add shift vector */
150 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
151 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
152 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
153 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
154 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
155 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
156 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
157 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
158 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
159
160 fix0 = 0.0;
161 fiy0 = 0.0;
162 fiz0 = 0.0;
163 fix1 = 0.0;
164 fiy1 = 0.0;
165 fiz1 = 0.0;
166 fix2 = 0.0;
167 fiy2 = 0.0;
168 fiz2 = 0.0;
169
170 /* Reset potential sums */
171 velecsum = 0.0;
172
173 /* Start inner kernel loop */
174 for(jidx=j_index_start; jidx<j_index_end; jidx++)
175 {
176 /* Get j neighbor index, and coordinate index */
177 jnr = jjnr[jidx];
178 j_coord_offset = DIM3*jnr;
179
180 /* load j atom coordinates */
181 jx0 = x[j_coord_offset+DIM3*0+XX0];
182 jy0 = x[j_coord_offset+DIM3*0+YY1];
183 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
184
185 /* Calculate displacement vector */
186 dx00 = ix0 - jx0;
187 dy00 = iy0 - jy0;
188 dz00 = iz0 - jz0;
189 dx10 = ix1 - jx0;
190 dy10 = iy1 - jy0;
191 dz10 = iz1 - jz0;
192 dx20 = ix2 - jx0;
193 dy20 = iy2 - jy0;
194 dz20 = iz2 - jz0;
195
196 /* Calculate squared distance and things based on it */
197 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
198 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
199 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
200
201 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
202 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
203 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
204
205 rinvsq00 = rinv00*rinv00;
206 rinvsq10 = rinv10*rinv10;
207 rinvsq20 = rinv20*rinv20;
208
209 /* Load parameters for j particles */
210 jq0 = charge[jnr+0];
211
212 /**************************
213 * CALCULATE INTERACTIONS *
214 **************************/
215
216 if (rsq00<rcutoff2)
217 {
218
219 r00 = rsq00*rinv00;
220
221 qq00 = iq0*jq0;
222
223 /* EWALD ELECTROSTATICS */
224
225 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
226 ewrt = r00*ewtabscale;
227 ewitab = ewrt;
228 eweps = ewrt-ewitab;
229 ewitab = 4*ewitab;
230 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
231 velec = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
232 felec = qq00*rinv00*(rinvsq00-felec);
233
234 d = r00-rswitch;
235 d = (d>0.0) ? d : 0.0;
236 d2 = d*d;
237 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
238
239 dsw = d2*(swF2+d*(swF3+d*swF4));
240
241 /* Evaluate switch function */
242 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
243 felec = felec*sw - rinv00*velec*dsw;
244 velec *= sw;
245
246 /* Update potential sums from outer loop */
247 velecsum += velec;
248
249 fscal = felec;
250
251 /* Calculate temporary vectorial force */
252 tx = fscal*dx00;
253 ty = fscal*dy00;
254 tz = fscal*dz00;
255
256 /* Update vectorial force */
257 fix0 += tx;
258 fiy0 += ty;
259 fiz0 += tz;
260 f[j_coord_offset+DIM3*0+XX0] -= tx;
261 f[j_coord_offset+DIM3*0+YY1] -= ty;
262 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
263
264 }
265
266 /**************************
267 * CALCULATE INTERACTIONS *
268 **************************/
269
270 if (rsq10<rcutoff2)
271 {
272
273 r10 = rsq10*rinv10;
274
275 qq10 = iq1*jq0;
276
277 /* EWALD ELECTROSTATICS */
278
279 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
280 ewrt = r10*ewtabscale;
281 ewitab = ewrt;
282 eweps = ewrt-ewitab;
283 ewitab = 4*ewitab;
284 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
285 velec = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
286 felec = qq10*rinv10*(rinvsq10-felec);
287
288 d = r10-rswitch;
289 d = (d>0.0) ? d : 0.0;
290 d2 = d*d;
291 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
292
293 dsw = d2*(swF2+d*(swF3+d*swF4));
294
295 /* Evaluate switch function */
296 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
297 felec = felec*sw - rinv10*velec*dsw;
298 velec *= sw;
299
300 /* Update potential sums from outer loop */
301 velecsum += velec;
302
303 fscal = felec;
304
305 /* Calculate temporary vectorial force */
306 tx = fscal*dx10;
307 ty = fscal*dy10;
308 tz = fscal*dz10;
309
310 /* Update vectorial force */
311 fix1 += tx;
312 fiy1 += ty;
313 fiz1 += tz;
314 f[j_coord_offset+DIM3*0+XX0] -= tx;
315 f[j_coord_offset+DIM3*0+YY1] -= ty;
316 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
317
318 }
319
320 /**************************
321 * CALCULATE INTERACTIONS *
322 **************************/
323
324 if (rsq20<rcutoff2)
325 {
326
327 r20 = rsq20*rinv20;
328
329 qq20 = iq2*jq0;
330
331 /* EWALD ELECTROSTATICS */
332
333 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
334 ewrt = r20*ewtabscale;
335 ewitab = ewrt;
336 eweps = ewrt-ewitab;
337 ewitab = 4*ewitab;
338 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
339 velec = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
340 felec = qq20*rinv20*(rinvsq20-felec);
341
342 d = r20-rswitch;
343 d = (d>0.0) ? d : 0.0;
344 d2 = d*d;
345 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
346
347 dsw = d2*(swF2+d*(swF3+d*swF4));
348
349 /* Evaluate switch function */
350 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
351 felec = felec*sw - rinv20*velec*dsw;
352 velec *= sw;
353
354 /* Update potential sums from outer loop */
355 velecsum += velec;
356
357 fscal = felec;
358
359 /* Calculate temporary vectorial force */
360 tx = fscal*dx20;
361 ty = fscal*dy20;
362 tz = fscal*dz20;
363
364 /* Update vectorial force */
365 fix2 += tx;
366 fiy2 += ty;
367 fiz2 += tz;
368 f[j_coord_offset+DIM3*0+XX0] -= tx;
369 f[j_coord_offset+DIM3*0+YY1] -= ty;
370 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
371
372 }
373
374 /* Inner loop uses 177 flops */
375 }
376 /* End of innermost loop */
377
378 tx = ty = tz = 0;
379 f[i_coord_offset+DIM3*0+XX0] += fix0;
380 f[i_coord_offset+DIM3*0+YY1] += fiy0;
381 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
382 tx += fix0;
383 ty += fiy0;
384 tz += fiz0;
385 f[i_coord_offset+DIM3*1+XX0] += fix1;
386 f[i_coord_offset+DIM3*1+YY1] += fiy1;
387 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
388 tx += fix1;
389 ty += fiy1;
390 tz += fiz1;
391 f[i_coord_offset+DIM3*2+XX0] += fix2;
392 f[i_coord_offset+DIM3*2+YY1] += fiy2;
393 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
394 tx += fix2;
395 ty += fiy2;
396 tz += fiz2;
397 fshift[i_shift_offset+XX0] += tx;
398 fshift[i_shift_offset+YY1] += ty;
399 fshift[i_shift_offset+ZZ2] += tz;
400
401 ggid = gid[iidx];
402 /* Update potential energies */
403 kernel_data->energygrp_elec[ggid] += velecsum;
404
405 /* Increment number of inner iterations */
406 inneriter += j_index_end - j_index_start;
407
408 /* Outer loop uses 31 flops */
409 }
410
411 /* Increment number of outer iterations */
412 outeriter += nri;
413
414 /* Update outer/inner flops */
415
416 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*31 + inneriter*177)(nrnb)->n[eNR_NBKERNEL_ELEC_W3_VF] += outeriter*31 + inneriter
*177
;
417}
418/*
419 * Gromacs nonbonded kernel: nb_kernel_ElecEwSw_VdwNone_GeomW3P1_F_c
420 * Electrostatics interaction: Ewald
421 * VdW interaction: None
422 * Geometry: Water3-Particle
423 * Calculate force/pot: Force
424 */
425void
426nb_kernel_ElecEwSw_VdwNone_GeomW3P1_F_c
427 (t_nblist * gmx_restrict__restrict nlist,
428 rvec * gmx_restrict__restrict xx,
429 rvec * gmx_restrict__restrict ff,
430 t_forcerec * gmx_restrict__restrict fr,
431 t_mdatoms * gmx_restrict__restrict mdatoms,
432 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
433 t_nrnb * gmx_restrict__restrict nrnb)
434{
435 int i_shift_offset,i_coord_offset,j_coord_offset;
436 int j_index_start,j_index_end;
437 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
438 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
439 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
440 real *shiftvec,*fshift,*x,*f;
441 int vdwioffset0;
442 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
443 int vdwioffset1;
444 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
445 int vdwioffset2;
446 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
447 int vdwjidx0;
448 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
449 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
450 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
451 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
452 real velec,felec,velecsum,facel,crf,krf,krf2;
453 real *charge;
454 int ewitab;
455 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
456 real *ewtab;
457 real rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
458
459 x = xx[0];
460 f = ff[0];
461
462 nri = nlist->nri;
463 iinr = nlist->iinr;
464 jindex = nlist->jindex;
465 jjnr = nlist->jjnr;
466 shiftidx = nlist->shift;
467 gid = nlist->gid;
Value stored to 'gid' is never read
468 shiftvec = fr->shift_vec[0];
469 fshift = fr->fshift[0];
470 facel = fr->epsfac;
471 charge = mdatoms->chargeA;
472
473 sh_ewald = fr->ic->sh_ewald;
474 ewtab = fr->ic->tabq_coul_FDV0;
475 ewtabscale = fr->ic->tabq_scale;
476 ewtabhalfspace = 0.5/ewtabscale;
477
478 /* Setup water-specific parameters */
479 inr = nlist->iinr[0];
480 iq0 = facel*charge[inr+0];
481 iq1 = facel*charge[inr+1];
482 iq2 = facel*charge[inr+2];
483
484 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
485 rcutoff = fr->rcoulomb;
486 rcutoff2 = rcutoff*rcutoff;
487
488 rswitch = fr->rcoulomb_switch;
489 /* Setup switch parameters */
490 d = rcutoff-rswitch;
491 swV3 = -10.0/(d*d*d);
492 swV4 = 15.0/(d*d*d*d);
493 swV5 = -6.0/(d*d*d*d*d);
494 swF2 = -30.0/(d*d*d);
495 swF3 = 60.0/(d*d*d*d);
496 swF4 = -30.0/(d*d*d*d*d);
497
498 outeriter = 0;
499 inneriter = 0;
500
501 /* Start outer loop over neighborlists */
502 for(iidx=0; iidx<nri; iidx++)
503 {
504 /* Load shift vector for this list */
505 i_shift_offset = DIM3*shiftidx[iidx];
506 shX = shiftvec[i_shift_offset+XX0];
507 shY = shiftvec[i_shift_offset+YY1];
508 shZ = shiftvec[i_shift_offset+ZZ2];
509
510 /* Load limits for loop over neighbors */
511 j_index_start = jindex[iidx];
512 j_index_end = jindex[iidx+1];
513
514 /* Get outer coordinate index */
515 inr = iinr[iidx];
516 i_coord_offset = DIM3*inr;
517
518 /* Load i particle coords and add shift vector */
519 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
520 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
521 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
522 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
523 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
524 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
525 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
526 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
527 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
528
529 fix0 = 0.0;
530 fiy0 = 0.0;
531 fiz0 = 0.0;
532 fix1 = 0.0;
533 fiy1 = 0.0;
534 fiz1 = 0.0;
535 fix2 = 0.0;
536 fiy2 = 0.0;
537 fiz2 = 0.0;
538
539 /* Start inner kernel loop */
540 for(jidx=j_index_start; jidx<j_index_end; jidx++)
541 {
542 /* Get j neighbor index, and coordinate index */
543 jnr = jjnr[jidx];
544 j_coord_offset = DIM3*jnr;
545
546 /* load j atom coordinates */
547 jx0 = x[j_coord_offset+DIM3*0+XX0];
548 jy0 = x[j_coord_offset+DIM3*0+YY1];
549 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
550
551 /* Calculate displacement vector */
552 dx00 = ix0 - jx0;
553 dy00 = iy0 - jy0;
554 dz00 = iz0 - jz0;
555 dx10 = ix1 - jx0;
556 dy10 = iy1 - jy0;
557 dz10 = iz1 - jz0;
558 dx20 = ix2 - jx0;
559 dy20 = iy2 - jy0;
560 dz20 = iz2 - jz0;
561
562 /* Calculate squared distance and things based on it */
563 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
564 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
565 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
566
567 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
568 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
569 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
570
571 rinvsq00 = rinv00*rinv00;
572 rinvsq10 = rinv10*rinv10;
573 rinvsq20 = rinv20*rinv20;
574
575 /* Load parameters for j particles */
576 jq0 = charge[jnr+0];
577
578 /**************************
579 * CALCULATE INTERACTIONS *
580 **************************/
581
582 if (rsq00<rcutoff2)
583 {
584
585 r00 = rsq00*rinv00;
586
587 qq00 = iq0*jq0;
588
589 /* EWALD ELECTROSTATICS */
590
591 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
592 ewrt = r00*ewtabscale;
593 ewitab = ewrt;
594 eweps = ewrt-ewitab;
595 ewitab = 4*ewitab;
596 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
597 velec = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
598 felec = qq00*rinv00*(rinvsq00-felec);
599
600 d = r00-rswitch;
601 d = (d>0.0) ? d : 0.0;
602 d2 = d*d;
603 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
604
605 dsw = d2*(swF2+d*(swF3+d*swF4));
606
607 /* Evaluate switch function */
608 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
609 felec = felec*sw - rinv00*velec*dsw;
610
611 fscal = felec;
612
613 /* Calculate temporary vectorial force */
614 tx = fscal*dx00;
615 ty = fscal*dy00;
616 tz = fscal*dz00;
617
618 /* Update vectorial force */
619 fix0 += tx;
620 fiy0 += ty;
621 fiz0 += tz;
622 f[j_coord_offset+DIM3*0+XX0] -= tx;
623 f[j_coord_offset+DIM3*0+YY1] -= ty;
624 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
625
626 }
627
628 /**************************
629 * CALCULATE INTERACTIONS *
630 **************************/
631
632 if (rsq10<rcutoff2)
633 {
634
635 r10 = rsq10*rinv10;
636
637 qq10 = iq1*jq0;
638
639 /* EWALD ELECTROSTATICS */
640
641 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
642 ewrt = r10*ewtabscale;
643 ewitab = ewrt;
644 eweps = ewrt-ewitab;
645 ewitab = 4*ewitab;
646 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
647 velec = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
648 felec = qq10*rinv10*(rinvsq10-felec);
649
650 d = r10-rswitch;
651 d = (d>0.0) ? d : 0.0;
652 d2 = d*d;
653 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
654
655 dsw = d2*(swF2+d*(swF3+d*swF4));
656
657 /* Evaluate switch function */
658 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
659 felec = felec*sw - rinv10*velec*dsw;
660
661 fscal = felec;
662
663 /* Calculate temporary vectorial force */
664 tx = fscal*dx10;
665 ty = fscal*dy10;
666 tz = fscal*dz10;
667
668 /* Update vectorial force */
669 fix1 += tx;
670 fiy1 += ty;
671 fiz1 += tz;
672 f[j_coord_offset+DIM3*0+XX0] -= tx;
673 f[j_coord_offset+DIM3*0+YY1] -= ty;
674 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
675
676 }
677
678 /**************************
679 * CALCULATE INTERACTIONS *
680 **************************/
681
682 if (rsq20<rcutoff2)
683 {
684
685 r20 = rsq20*rinv20;
686
687 qq20 = iq2*jq0;
688
689 /* EWALD ELECTROSTATICS */
690
691 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
692 ewrt = r20*ewtabscale;
693 ewitab = ewrt;
694 eweps = ewrt-ewitab;
695 ewitab = 4*ewitab;
696 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
697 velec = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
698 felec = qq20*rinv20*(rinvsq20-felec);
699
700 d = r20-rswitch;
701 d = (d>0.0) ? d : 0.0;
702 d2 = d*d;
703 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
704
705 dsw = d2*(swF2+d*(swF3+d*swF4));
706
707 /* Evaluate switch function */
708 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
709 felec = felec*sw - rinv20*velec*dsw;
710
711 fscal = felec;
712
713 /* Calculate temporary vectorial force */
714 tx = fscal*dx20;
715 ty = fscal*dy20;
716 tz = fscal*dz20;
717
718 /* Update vectorial force */
719 fix2 += tx;
720 fiy2 += ty;
721 fiz2 += tz;
722 f[j_coord_offset+DIM3*0+XX0] -= tx;
723 f[j_coord_offset+DIM3*0+YY1] -= ty;
724 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
725
726 }
727
728 /* Inner loop uses 171 flops */
729 }
730 /* End of innermost loop */
731
732 tx = ty = tz = 0;
733 f[i_coord_offset+DIM3*0+XX0] += fix0;
734 f[i_coord_offset+DIM3*0+YY1] += fiy0;
735 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
736 tx += fix0;
737 ty += fiy0;
738 tz += fiz0;
739 f[i_coord_offset+DIM3*1+XX0] += fix1;
740 f[i_coord_offset+DIM3*1+YY1] += fiy1;
741 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
742 tx += fix1;
743 ty += fiy1;
744 tz += fiz1;
745 f[i_coord_offset+DIM3*2+XX0] += fix2;
746 f[i_coord_offset+DIM3*2+YY1] += fiy2;
747 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
748 tx += fix2;
749 ty += fiy2;
750 tz += fiz2;
751 fshift[i_shift_offset+XX0] += tx;
752 fshift[i_shift_offset+YY1] += ty;
753 fshift[i_shift_offset+ZZ2] += tz;
754
755 /* Increment number of inner iterations */
756 inneriter += j_index_end - j_index_start;
757
758 /* Outer loop uses 30 flops */
759 }
760
761 /* Increment number of outer iterations */
762 outeriter += nri;
763
764 /* Update outer/inner flops */
765
766 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*30 + inneriter*171)(nrnb)->n[eNR_NBKERNEL_ELEC_W3_F] += outeriter*30 + inneriter
*171
;
767}