Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecRF_VdwCSTab_GeomW3W3_c.c
Location:line 654, column 5
Description:Value stored to 'crf' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwCSTab_GeomW3W3_VF_c
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: CubicSplineTable
53 * Geometry: Water3-Water3
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecRF_VdwCSTab_GeomW3W3_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 int vdwjidx1;
81 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
82 int vdwjidx2;
83 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
84 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
85 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
86 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
87 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
88 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
89 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
90 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
91 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
92 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
93 real velec,felec,velecsum,facel,crf,krf,krf2;
94 real *charge;
95 int nvdwtype;
96 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
97 int *vdwtype;
98 real *vdwparam;
99 int vfitab;
100 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
101 real *vftab;
102
103 x = xx[0];
104 f = ff[0];
105
106 nri = nlist->nri;
107 iinr = nlist->iinr;
108 jindex = nlist->jindex;
109 jjnr = nlist->jjnr;
110 shiftidx = nlist->shift;
111 gid = nlist->gid;
112 shiftvec = fr->shift_vec[0];
113 fshift = fr->fshift[0];
114 facel = fr->epsfac;
115 charge = mdatoms->chargeA;
116 krf = fr->ic->k_rf;
117 krf2 = krf*2.0;
118 crf = fr->ic->c_rf;
119 nvdwtype = fr->ntype;
120 vdwparam = fr->nbfp;
121 vdwtype = mdatoms->typeA;
122
123 vftab = kernel_data->table_vdw->data;
124 vftabscale = kernel_data->table_vdw->scale;
125
126 /* Setup water-specific parameters */
127 inr = nlist->iinr[0];
128 iq0 = facel*charge[inr+0];
129 iq1 = facel*charge[inr+1];
130 iq2 = facel*charge[inr+2];
131 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
132
133 jq0 = charge[inr+0];
134 jq1 = charge[inr+1];
135 jq2 = charge[inr+2];
136 vdwjidx0 = 2*vdwtype[inr+0];
137 qq00 = iq0*jq0;
138 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
139 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
140 qq01 = iq0*jq1;
141 qq02 = iq0*jq2;
142 qq10 = iq1*jq0;
143 qq11 = iq1*jq1;
144 qq12 = iq1*jq2;
145 qq20 = iq2*jq0;
146 qq21 = iq2*jq1;
147 qq22 = iq2*jq2;
148
149 outeriter = 0;
150 inneriter = 0;
151
152 /* Start outer loop over neighborlists */
153 for(iidx=0; iidx<nri; iidx++)
154 {
155 /* Load shift vector for this list */
156 i_shift_offset = DIM3*shiftidx[iidx];
157 shX = shiftvec[i_shift_offset+XX0];
158 shY = shiftvec[i_shift_offset+YY1];
159 shZ = shiftvec[i_shift_offset+ZZ2];
160
161 /* Load limits for loop over neighbors */
162 j_index_start = jindex[iidx];
163 j_index_end = jindex[iidx+1];
164
165 /* Get outer coordinate index */
166 inr = iinr[iidx];
167 i_coord_offset = DIM3*inr;
168
169 /* Load i particle coords and add shift vector */
170 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
171 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
172 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
173 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
174 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
175 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
176 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
177 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
178 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
179
180 fix0 = 0.0;
181 fiy0 = 0.0;
182 fiz0 = 0.0;
183 fix1 = 0.0;
184 fiy1 = 0.0;
185 fiz1 = 0.0;
186 fix2 = 0.0;
187 fiy2 = 0.0;
188 fiz2 = 0.0;
189
190 /* Reset potential sums */
191 velecsum = 0.0;
192 vvdwsum = 0.0;
193
194 /* Start inner kernel loop */
195 for(jidx=j_index_start; jidx<j_index_end; jidx++)
196 {
197 /* Get j neighbor index, and coordinate index */
198 jnr = jjnr[jidx];
199 j_coord_offset = DIM3*jnr;
200
201 /* load j atom coordinates */
202 jx0 = x[j_coord_offset+DIM3*0+XX0];
203 jy0 = x[j_coord_offset+DIM3*0+YY1];
204 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
205 jx1 = x[j_coord_offset+DIM3*1+XX0];
206 jy1 = x[j_coord_offset+DIM3*1+YY1];
207 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
208 jx2 = x[j_coord_offset+DIM3*2+XX0];
209 jy2 = x[j_coord_offset+DIM3*2+YY1];
210 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
211
212 /* Calculate displacement vector */
213 dx00 = ix0 - jx0;
214 dy00 = iy0 - jy0;
215 dz00 = iz0 - jz0;
216 dx01 = ix0 - jx1;
217 dy01 = iy0 - jy1;
218 dz01 = iz0 - jz1;
219 dx02 = ix0 - jx2;
220 dy02 = iy0 - jy2;
221 dz02 = iz0 - jz2;
222 dx10 = ix1 - jx0;
223 dy10 = iy1 - jy0;
224 dz10 = iz1 - jz0;
225 dx11 = ix1 - jx1;
226 dy11 = iy1 - jy1;
227 dz11 = iz1 - jz1;
228 dx12 = ix1 - jx2;
229 dy12 = iy1 - jy2;
230 dz12 = iz1 - jz2;
231 dx20 = ix2 - jx0;
232 dy20 = iy2 - jy0;
233 dz20 = iz2 - jz0;
234 dx21 = ix2 - jx1;
235 dy21 = iy2 - jy1;
236 dz21 = iz2 - jz1;
237 dx22 = ix2 - jx2;
238 dy22 = iy2 - jy2;
239 dz22 = iz2 - jz2;
240
241 /* Calculate squared distance and things based on it */
242 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
243 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
244 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
245 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
246 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
247 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
248 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
249 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
250 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
251
252 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
253 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
254 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
255 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
256 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
257 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
258 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
259 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
260 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
261
262 rinvsq00 = rinv00*rinv00;
263 rinvsq01 = rinv01*rinv01;
264 rinvsq02 = rinv02*rinv02;
265 rinvsq10 = rinv10*rinv10;
266 rinvsq11 = rinv11*rinv11;
267 rinvsq12 = rinv12*rinv12;
268 rinvsq20 = rinv20*rinv20;
269 rinvsq21 = rinv21*rinv21;
270 rinvsq22 = rinv22*rinv22;
271
272 /**************************
273 * CALCULATE INTERACTIONS *
274 **************************/
275
276 r00 = rsq00*rinv00;
277
278 /* Calculate table index by multiplying r with table scale and truncate to integer */
279 rt = r00*vftabscale;
280 vfitab = rt;
281 vfeps = rt-vfitab;
282 vfitab = 2*4*vfitab;
283
284 /* REACTION-FIELD ELECTROSTATICS */
285 velec = qq00*(rinv00+krf*rsq00-crf);
286 felec = qq00*(rinv00*rinvsq00-krf2);
287
288 /* CUBIC SPLINE TABLE DISPERSION */
289 vfitab += 0;
290 Y = vftab[vfitab];
291 F = vftab[vfitab+1];
292 Geps = vfeps*vftab[vfitab+2];
293 Heps2 = vfeps*vfeps*vftab[vfitab+3];
294 Fp = F+Geps+Heps2;
295 VV = Y+vfeps*Fp;
296 vvdw6 = c6_00*VV;
297 FF = Fp+Geps+2.0*Heps2;
298 fvdw6 = c6_00*FF;
299
300 /* CUBIC SPLINE TABLE REPULSION */
301 Y = vftab[vfitab+4];
302 F = vftab[vfitab+5];
303 Geps = vfeps*vftab[vfitab+6];
304 Heps2 = vfeps*vfeps*vftab[vfitab+7];
305 Fp = F+Geps+Heps2;
306 VV = Y+vfeps*Fp;
307 vvdw12 = c12_00*VV;
308 FF = Fp+Geps+2.0*Heps2;
309 fvdw12 = c12_00*FF;
310 vvdw = vvdw12+vvdw6;
311 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
312
313 /* Update potential sums from outer loop */
314 velecsum += velec;
315 vvdwsum += vvdw;
316
317 fscal = felec+fvdw;
318
319 /* Calculate temporary vectorial force */
320 tx = fscal*dx00;
321 ty = fscal*dy00;
322 tz = fscal*dz00;
323
324 /* Update vectorial force */
325 fix0 += tx;
326 fiy0 += ty;
327 fiz0 += tz;
328 f[j_coord_offset+DIM3*0+XX0] -= tx;
329 f[j_coord_offset+DIM3*0+YY1] -= ty;
330 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
331
332 /**************************
333 * CALCULATE INTERACTIONS *
334 **************************/
335
336 /* REACTION-FIELD ELECTROSTATICS */
337 velec = qq01*(rinv01+krf*rsq01-crf);
338 felec = qq01*(rinv01*rinvsq01-krf2);
339
340 /* Update potential sums from outer loop */
341 velecsum += velec;
342
343 fscal = felec;
344
345 /* Calculate temporary vectorial force */
346 tx = fscal*dx01;
347 ty = fscal*dy01;
348 tz = fscal*dz01;
349
350 /* Update vectorial force */
351 fix0 += tx;
352 fiy0 += ty;
353 fiz0 += tz;
354 f[j_coord_offset+DIM3*1+XX0] -= tx;
355 f[j_coord_offset+DIM3*1+YY1] -= ty;
356 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
357
358 /**************************
359 * CALCULATE INTERACTIONS *
360 **************************/
361
362 /* REACTION-FIELD ELECTROSTATICS */
363 velec = qq02*(rinv02+krf*rsq02-crf);
364 felec = qq02*(rinv02*rinvsq02-krf2);
365
366 /* Update potential sums from outer loop */
367 velecsum += velec;
368
369 fscal = felec;
370
371 /* Calculate temporary vectorial force */
372 tx = fscal*dx02;
373 ty = fscal*dy02;
374 tz = fscal*dz02;
375
376 /* Update vectorial force */
377 fix0 += tx;
378 fiy0 += ty;
379 fiz0 += tz;
380 f[j_coord_offset+DIM3*2+XX0] -= tx;
381 f[j_coord_offset+DIM3*2+YY1] -= ty;
382 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
383
384 /**************************
385 * CALCULATE INTERACTIONS *
386 **************************/
387
388 /* REACTION-FIELD ELECTROSTATICS */
389 velec = qq10*(rinv10+krf*rsq10-crf);
390 felec = qq10*(rinv10*rinvsq10-krf2);
391
392 /* Update potential sums from outer loop */
393 velecsum += velec;
394
395 fscal = felec;
396
397 /* Calculate temporary vectorial force */
398 tx = fscal*dx10;
399 ty = fscal*dy10;
400 tz = fscal*dz10;
401
402 /* Update vectorial force */
403 fix1 += tx;
404 fiy1 += ty;
405 fiz1 += tz;
406 f[j_coord_offset+DIM3*0+XX0] -= tx;
407 f[j_coord_offset+DIM3*0+YY1] -= ty;
408 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
409
410 /**************************
411 * CALCULATE INTERACTIONS *
412 **************************/
413
414 /* REACTION-FIELD ELECTROSTATICS */
415 velec = qq11*(rinv11+krf*rsq11-crf);
416 felec = qq11*(rinv11*rinvsq11-krf2);
417
418 /* Update potential sums from outer loop */
419 velecsum += velec;
420
421 fscal = felec;
422
423 /* Calculate temporary vectorial force */
424 tx = fscal*dx11;
425 ty = fscal*dy11;
426 tz = fscal*dz11;
427
428 /* Update vectorial force */
429 fix1 += tx;
430 fiy1 += ty;
431 fiz1 += tz;
432 f[j_coord_offset+DIM3*1+XX0] -= tx;
433 f[j_coord_offset+DIM3*1+YY1] -= ty;
434 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
435
436 /**************************
437 * CALCULATE INTERACTIONS *
438 **************************/
439
440 /* REACTION-FIELD ELECTROSTATICS */
441 velec = qq12*(rinv12+krf*rsq12-crf);
442 felec = qq12*(rinv12*rinvsq12-krf2);
443
444 /* Update potential sums from outer loop */
445 velecsum += velec;
446
447 fscal = felec;
448
449 /* Calculate temporary vectorial force */
450 tx = fscal*dx12;
451 ty = fscal*dy12;
452 tz = fscal*dz12;
453
454 /* Update vectorial force */
455 fix1 += tx;
456 fiy1 += ty;
457 fiz1 += tz;
458 f[j_coord_offset+DIM3*2+XX0] -= tx;
459 f[j_coord_offset+DIM3*2+YY1] -= ty;
460 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
461
462 /**************************
463 * CALCULATE INTERACTIONS *
464 **************************/
465
466 /* REACTION-FIELD ELECTROSTATICS */
467 velec = qq20*(rinv20+krf*rsq20-crf);
468 felec = qq20*(rinv20*rinvsq20-krf2);
469
470 /* Update potential sums from outer loop */
471 velecsum += velec;
472
473 fscal = felec;
474
475 /* Calculate temporary vectorial force */
476 tx = fscal*dx20;
477 ty = fscal*dy20;
478 tz = fscal*dz20;
479
480 /* Update vectorial force */
481 fix2 += tx;
482 fiy2 += ty;
483 fiz2 += tz;
484 f[j_coord_offset+DIM3*0+XX0] -= tx;
485 f[j_coord_offset+DIM3*0+YY1] -= ty;
486 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
487
488 /**************************
489 * CALCULATE INTERACTIONS *
490 **************************/
491
492 /* REACTION-FIELD ELECTROSTATICS */
493 velec = qq21*(rinv21+krf*rsq21-crf);
494 felec = qq21*(rinv21*rinvsq21-krf2);
495
496 /* Update potential sums from outer loop */
497 velecsum += velec;
498
499 fscal = felec;
500
501 /* Calculate temporary vectorial force */
502 tx = fscal*dx21;
503 ty = fscal*dy21;
504 tz = fscal*dz21;
505
506 /* Update vectorial force */
507 fix2 += tx;
508 fiy2 += ty;
509 fiz2 += tz;
510 f[j_coord_offset+DIM3*1+XX0] -= tx;
511 f[j_coord_offset+DIM3*1+YY1] -= ty;
512 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
513
514 /**************************
515 * CALCULATE INTERACTIONS *
516 **************************/
517
518 /* REACTION-FIELD ELECTROSTATICS */
519 velec = qq22*(rinv22+krf*rsq22-crf);
520 felec = qq22*(rinv22*rinvsq22-krf2);
521
522 /* Update potential sums from outer loop */
523 velecsum += velec;
524
525 fscal = felec;
526
527 /* Calculate temporary vectorial force */
528 tx = fscal*dx22;
529 ty = fscal*dy22;
530 tz = fscal*dz22;
531
532 /* Update vectorial force */
533 fix2 += tx;
534 fiy2 += ty;
535 fiz2 += tz;
536 f[j_coord_offset+DIM3*2+XX0] -= tx;
537 f[j_coord_offset+DIM3*2+YY1] -= ty;
538 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
539
540 /* Inner loop uses 313 flops */
541 }
542 /* End of innermost loop */
543
544 tx = ty = tz = 0;
545 f[i_coord_offset+DIM3*0+XX0] += fix0;
546 f[i_coord_offset+DIM3*0+YY1] += fiy0;
547 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
548 tx += fix0;
549 ty += fiy0;
550 tz += fiz0;
551 f[i_coord_offset+DIM3*1+XX0] += fix1;
552 f[i_coord_offset+DIM3*1+YY1] += fiy1;
553 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
554 tx += fix1;
555 ty += fiy1;
556 tz += fiz1;
557 f[i_coord_offset+DIM3*2+XX0] += fix2;
558 f[i_coord_offset+DIM3*2+YY1] += fiy2;
559 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
560 tx += fix2;
561 ty += fiy2;
562 tz += fiz2;
563 fshift[i_shift_offset+XX0] += tx;
564 fshift[i_shift_offset+YY1] += ty;
565 fshift[i_shift_offset+ZZ2] += tz;
566
567 ggid = gid[iidx];
568 /* Update potential energies */
569 kernel_data->energygrp_elec[ggid] += velecsum;
570 kernel_data->energygrp_vdw[ggid] += vvdwsum;
571
572 /* Increment number of inner iterations */
573 inneriter += j_index_end - j_index_start;
574
575 /* Outer loop uses 32 flops */
576 }
577
578 /* Increment number of outer iterations */
579 outeriter += nri;
580
581 /* Update outer/inner flops */
582
583 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*32 + inneriter*313)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_VF] += outeriter*32 +
inneriter*313
;
584}
585/*
586 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwCSTab_GeomW3W3_F_c
587 * Electrostatics interaction: ReactionField
588 * VdW interaction: CubicSplineTable
589 * Geometry: Water3-Water3
590 * Calculate force/pot: Force
591 */
592void
593nb_kernel_ElecRF_VdwCSTab_GeomW3W3_F_c
594 (t_nblist * gmx_restrict__restrict nlist,
595 rvec * gmx_restrict__restrict xx,
596 rvec * gmx_restrict__restrict ff,
597 t_forcerec * gmx_restrict__restrict fr,
598 t_mdatoms * gmx_restrict__restrict mdatoms,
599 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
600 t_nrnb * gmx_restrict__restrict nrnb)
601{
602 int i_shift_offset,i_coord_offset,j_coord_offset;
603 int j_index_start,j_index_end;
604 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
605 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
606 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
607 real *shiftvec,*fshift,*x,*f;
608 int vdwioffset0;
609 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
610 int vdwioffset1;
611 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
612 int vdwioffset2;
613 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
614 int vdwjidx0;
615 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
616 int vdwjidx1;
617 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
618 int vdwjidx2;
619 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
620 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
621 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
622 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
623 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
624 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
625 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
626 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
627 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
628 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
629 real velec,felec,velecsum,facel,crf,krf,krf2;
630 real *charge;
631 int nvdwtype;
632 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
633 int *vdwtype;
634 real *vdwparam;
635 int vfitab;
636 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
637 real *vftab;
638
639 x = xx[0];
640 f = ff[0];
641
642 nri = nlist->nri;
643 iinr = nlist->iinr;
644 jindex = nlist->jindex;
645 jjnr = nlist->jjnr;
646 shiftidx = nlist->shift;
647 gid = nlist->gid;
648 shiftvec = fr->shift_vec[0];
649 fshift = fr->fshift[0];
650 facel = fr->epsfac;
651 charge = mdatoms->chargeA;
652 krf = fr->ic->k_rf;
653 krf2 = krf*2.0;
654 crf = fr->ic->c_rf;
Value stored to 'crf' is never read
655 nvdwtype = fr->ntype;
656 vdwparam = fr->nbfp;
657 vdwtype = mdatoms->typeA;
658
659 vftab = kernel_data->table_vdw->data;
660 vftabscale = kernel_data->table_vdw->scale;
661
662 /* Setup water-specific parameters */
663 inr = nlist->iinr[0];
664 iq0 = facel*charge[inr+0];
665 iq1 = facel*charge[inr+1];
666 iq2 = facel*charge[inr+2];
667 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
668
669 jq0 = charge[inr+0];
670 jq1 = charge[inr+1];
671 jq2 = charge[inr+2];
672 vdwjidx0 = 2*vdwtype[inr+0];
673 qq00 = iq0*jq0;
674 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
675 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
676 qq01 = iq0*jq1;
677 qq02 = iq0*jq2;
678 qq10 = iq1*jq0;
679 qq11 = iq1*jq1;
680 qq12 = iq1*jq2;
681 qq20 = iq2*jq0;
682 qq21 = iq2*jq1;
683 qq22 = iq2*jq2;
684
685 outeriter = 0;
686 inneriter = 0;
687
688 /* Start outer loop over neighborlists */
689 for(iidx=0; iidx<nri; iidx++)
690 {
691 /* Load shift vector for this list */
692 i_shift_offset = DIM3*shiftidx[iidx];
693 shX = shiftvec[i_shift_offset+XX0];
694 shY = shiftvec[i_shift_offset+YY1];
695 shZ = shiftvec[i_shift_offset+ZZ2];
696
697 /* Load limits for loop over neighbors */
698 j_index_start = jindex[iidx];
699 j_index_end = jindex[iidx+1];
700
701 /* Get outer coordinate index */
702 inr = iinr[iidx];
703 i_coord_offset = DIM3*inr;
704
705 /* Load i particle coords and add shift vector */
706 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
707 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
708 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
709 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
710 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
711 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
712 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
713 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
714 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
715
716 fix0 = 0.0;
717 fiy0 = 0.0;
718 fiz0 = 0.0;
719 fix1 = 0.0;
720 fiy1 = 0.0;
721 fiz1 = 0.0;
722 fix2 = 0.0;
723 fiy2 = 0.0;
724 fiz2 = 0.0;
725
726 /* Start inner kernel loop */
727 for(jidx=j_index_start; jidx<j_index_end; jidx++)
728 {
729 /* Get j neighbor index, and coordinate index */
730 jnr = jjnr[jidx];
731 j_coord_offset = DIM3*jnr;
732
733 /* load j atom coordinates */
734 jx0 = x[j_coord_offset+DIM3*0+XX0];
735 jy0 = x[j_coord_offset+DIM3*0+YY1];
736 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
737 jx1 = x[j_coord_offset+DIM3*1+XX0];
738 jy1 = x[j_coord_offset+DIM3*1+YY1];
739 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
740 jx2 = x[j_coord_offset+DIM3*2+XX0];
741 jy2 = x[j_coord_offset+DIM3*2+YY1];
742 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
743
744 /* Calculate displacement vector */
745 dx00 = ix0 - jx0;
746 dy00 = iy0 - jy0;
747 dz00 = iz0 - jz0;
748 dx01 = ix0 - jx1;
749 dy01 = iy0 - jy1;
750 dz01 = iz0 - jz1;
751 dx02 = ix0 - jx2;
752 dy02 = iy0 - jy2;
753 dz02 = iz0 - jz2;
754 dx10 = ix1 - jx0;
755 dy10 = iy1 - jy0;
756 dz10 = iz1 - jz0;
757 dx11 = ix1 - jx1;
758 dy11 = iy1 - jy1;
759 dz11 = iz1 - jz1;
760 dx12 = ix1 - jx2;
761 dy12 = iy1 - jy2;
762 dz12 = iz1 - jz2;
763 dx20 = ix2 - jx0;
764 dy20 = iy2 - jy0;
765 dz20 = iz2 - jz0;
766 dx21 = ix2 - jx1;
767 dy21 = iy2 - jy1;
768 dz21 = iz2 - jz1;
769 dx22 = ix2 - jx2;
770 dy22 = iy2 - jy2;
771 dz22 = iz2 - jz2;
772
773 /* Calculate squared distance and things based on it */
774 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
775 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
776 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
777 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
778 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
779 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
780 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
781 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
782 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
783
784 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
785 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
786 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
787 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
788 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
789 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
790 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
791 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
792 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
793
794 rinvsq00 = rinv00*rinv00;
795 rinvsq01 = rinv01*rinv01;
796 rinvsq02 = rinv02*rinv02;
797 rinvsq10 = rinv10*rinv10;
798 rinvsq11 = rinv11*rinv11;
799 rinvsq12 = rinv12*rinv12;
800 rinvsq20 = rinv20*rinv20;
801 rinvsq21 = rinv21*rinv21;
802 rinvsq22 = rinv22*rinv22;
803
804 /**************************
805 * CALCULATE INTERACTIONS *
806 **************************/
807
808 r00 = rsq00*rinv00;
809
810 /* Calculate table index by multiplying r with table scale and truncate to integer */
811 rt = r00*vftabscale;
812 vfitab = rt;
813 vfeps = rt-vfitab;
814 vfitab = 2*4*vfitab;
815
816 /* REACTION-FIELD ELECTROSTATICS */
817 felec = qq00*(rinv00*rinvsq00-krf2);
818
819 /* CUBIC SPLINE TABLE DISPERSION */
820 vfitab += 0;
821 F = vftab[vfitab+1];
822 Geps = vfeps*vftab[vfitab+2];
823 Heps2 = vfeps*vfeps*vftab[vfitab+3];
824 Fp = F+Geps+Heps2;
825 FF = Fp+Geps+2.0*Heps2;
826 fvdw6 = c6_00*FF;
827
828 /* CUBIC SPLINE TABLE REPULSION */
829 F = vftab[vfitab+5];
830 Geps = vfeps*vftab[vfitab+6];
831 Heps2 = vfeps*vfeps*vftab[vfitab+7];
832 Fp = F+Geps+Heps2;
833 FF = Fp+Geps+2.0*Heps2;
834 fvdw12 = c12_00*FF;
835 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
836
837 fscal = felec+fvdw;
838
839 /* Calculate temporary vectorial force */
840 tx = fscal*dx00;
841 ty = fscal*dy00;
842 tz = fscal*dz00;
843
844 /* Update vectorial force */
845 fix0 += tx;
846 fiy0 += ty;
847 fiz0 += tz;
848 f[j_coord_offset+DIM3*0+XX0] -= tx;
849 f[j_coord_offset+DIM3*0+YY1] -= ty;
850 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
851
852 /**************************
853 * CALCULATE INTERACTIONS *
854 **************************/
855
856 /* REACTION-FIELD ELECTROSTATICS */
857 felec = qq01*(rinv01*rinvsq01-krf2);
858
859 fscal = felec;
860
861 /* Calculate temporary vectorial force */
862 tx = fscal*dx01;
863 ty = fscal*dy01;
864 tz = fscal*dz01;
865
866 /* Update vectorial force */
867 fix0 += tx;
868 fiy0 += ty;
869 fiz0 += tz;
870 f[j_coord_offset+DIM3*1+XX0] -= tx;
871 f[j_coord_offset+DIM3*1+YY1] -= ty;
872 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
873
874 /**************************
875 * CALCULATE INTERACTIONS *
876 **************************/
877
878 /* REACTION-FIELD ELECTROSTATICS */
879 felec = qq02*(rinv02*rinvsq02-krf2);
880
881 fscal = felec;
882
883 /* Calculate temporary vectorial force */
884 tx = fscal*dx02;
885 ty = fscal*dy02;
886 tz = fscal*dz02;
887
888 /* Update vectorial force */
889 fix0 += tx;
890 fiy0 += ty;
891 fiz0 += tz;
892 f[j_coord_offset+DIM3*2+XX0] -= tx;
893 f[j_coord_offset+DIM3*2+YY1] -= ty;
894 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
895
896 /**************************
897 * CALCULATE INTERACTIONS *
898 **************************/
899
900 /* REACTION-FIELD ELECTROSTATICS */
901 felec = qq10*(rinv10*rinvsq10-krf2);
902
903 fscal = felec;
904
905 /* Calculate temporary vectorial force */
906 tx = fscal*dx10;
907 ty = fscal*dy10;
908 tz = fscal*dz10;
909
910 /* Update vectorial force */
911 fix1 += tx;
912 fiy1 += ty;
913 fiz1 += tz;
914 f[j_coord_offset+DIM3*0+XX0] -= tx;
915 f[j_coord_offset+DIM3*0+YY1] -= ty;
916 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
917
918 /**************************
919 * CALCULATE INTERACTIONS *
920 **************************/
921
922 /* REACTION-FIELD ELECTROSTATICS */
923 felec = qq11*(rinv11*rinvsq11-krf2);
924
925 fscal = felec;
926
927 /* Calculate temporary vectorial force */
928 tx = fscal*dx11;
929 ty = fscal*dy11;
930 tz = fscal*dz11;
931
932 /* Update vectorial force */
933 fix1 += tx;
934 fiy1 += ty;
935 fiz1 += tz;
936 f[j_coord_offset+DIM3*1+XX0] -= tx;
937 f[j_coord_offset+DIM3*1+YY1] -= ty;
938 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
939
940 /**************************
941 * CALCULATE INTERACTIONS *
942 **************************/
943
944 /* REACTION-FIELD ELECTROSTATICS */
945 felec = qq12*(rinv12*rinvsq12-krf2);
946
947 fscal = felec;
948
949 /* Calculate temporary vectorial force */
950 tx = fscal*dx12;
951 ty = fscal*dy12;
952 tz = fscal*dz12;
953
954 /* Update vectorial force */
955 fix1 += tx;
956 fiy1 += ty;
957 fiz1 += tz;
958 f[j_coord_offset+DIM3*2+XX0] -= tx;
959 f[j_coord_offset+DIM3*2+YY1] -= ty;
960 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
961
962 /**************************
963 * CALCULATE INTERACTIONS *
964 **************************/
965
966 /* REACTION-FIELD ELECTROSTATICS */
967 felec = qq20*(rinv20*rinvsq20-krf2);
968
969 fscal = felec;
970
971 /* Calculate temporary vectorial force */
972 tx = fscal*dx20;
973 ty = fscal*dy20;
974 tz = fscal*dz20;
975
976 /* Update vectorial force */
977 fix2 += tx;
978 fiy2 += ty;
979 fiz2 += tz;
980 f[j_coord_offset+DIM3*0+XX0] -= tx;
981 f[j_coord_offset+DIM3*0+YY1] -= ty;
982 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
983
984 /**************************
985 * CALCULATE INTERACTIONS *
986 **************************/
987
988 /* REACTION-FIELD ELECTROSTATICS */
989 felec = qq21*(rinv21*rinvsq21-krf2);
990
991 fscal = felec;
992
993 /* Calculate temporary vectorial force */
994 tx = fscal*dx21;
995 ty = fscal*dy21;
996 tz = fscal*dz21;
997
998 /* Update vectorial force */
999 fix2 += tx;
1000 fiy2 += ty;
1001 fiz2 += tz;
1002 f[j_coord_offset+DIM3*1+XX0] -= tx;
1003 f[j_coord_offset+DIM3*1+YY1] -= ty;
1004 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1005
1006 /**************************
1007 * CALCULATE INTERACTIONS *
1008 **************************/
1009
1010 /* REACTION-FIELD ELECTROSTATICS */
1011 felec = qq22*(rinv22*rinvsq22-krf2);
1012
1013 fscal = felec;
1014
1015 /* Calculate temporary vectorial force */
1016 tx = fscal*dx22;
1017 ty = fscal*dy22;
1018 tz = fscal*dz22;
1019
1020 /* Update vectorial force */
1021 fix2 += tx;
1022 fiy2 += ty;
1023 fiz2 += tz;
1024 f[j_coord_offset+DIM3*2+XX0] -= tx;
1025 f[j_coord_offset+DIM3*2+YY1] -= ty;
1026 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1027
1028 /* Inner loop uses 260 flops */
1029 }
1030 /* End of innermost loop */
1031
1032 tx = ty = tz = 0;
1033 f[i_coord_offset+DIM3*0+XX0] += fix0;
1034 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1035 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1036 tx += fix0;
1037 ty += fiy0;
1038 tz += fiz0;
1039 f[i_coord_offset+DIM3*1+XX0] += fix1;
1040 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1041 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1042 tx += fix1;
1043 ty += fiy1;
1044 tz += fiz1;
1045 f[i_coord_offset+DIM3*2+XX0] += fix2;
1046 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1047 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1048 tx += fix2;
1049 ty += fiy2;
1050 tz += fiz2;
1051 fshift[i_shift_offset+XX0] += tx;
1052 fshift[i_shift_offset+YY1] += ty;
1053 fshift[i_shift_offset+ZZ2] += tz;
1054
1055 /* Increment number of inner iterations */
1056 inneriter += j_index_end - j_index_start;
1057
1058 /* Outer loop uses 30 flops */
1059 }
1060
1061 /* Increment number of outer iterations */
1062 outeriter += nri;
1063
1064 /* Update outer/inner flops */
1065
1066 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*30 + inneriter*260)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_F] += outeriter*30 + inneriter
*260
;
1067}